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Abstract

Neuregulin(Nrg)/ErbB and integrin signaling pathways are critical for the normal function of 

the embryonic and adult heart. Both systems activate several downstream signaling pathways, 

with different physiological outputs: cell survival, fibrosis, excitation-contraction coupling, 

myofilament structure, cell-cell and cell-matrix interaction. Activation of ErbB2 by Nrg1β in 

cardiomycytes or its overexpression in cancer cells induces phosphorylation of FAK (Focal 

Adhesion Kinase) at specific sites with modulation of survival, invasion and cell-cell contacts. 

FAK is also a critical mediator of integrin receptors, converting extracellular matrix alterations 

into intracellular signaling. Systemic FAK deletion is lethal and is associated with left ventricular 

non-compaction whereas cardiac restriction in adult hearts is well tolerated. Never the less, these 

hearts are more susceptible to stress conditions like trans-aortic constriction, hypertrophy, and 

ischemic injury. As FAK is both downstream and specifically activated by integrins and Nrg-1β, 

here we will explore the role of FAK in the heart as a protective factor and as possible mediator of 

the crosstalk between the ErbB and Integrin receptors.
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2. Introduction

In 1995 three articles were contemporaneously published in Nature describing the effect 

of systemic deletion of Neuregulin(Nrg)-1, epidermal growth factor receptors ErbB2 and 

ErbB4 in mice. These studies demonstrated that Nrg/ErbB signaling is needed for the 

correct development of heart trabeculae, a structure responsible for the normal function 

of the embryonic heart[1–3]. Since then our knowledge has greatly increased and it is 
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now clear that this signaling system is also active in the adult heart and is critical for its 

maintenance under stressed conditions. Specific deletion of ErbB2[4] and ErbB4[5] leads to 

spontaneous dilated cardiomyopathy associated with higher susceptibility to aortic banding. 

Both cardiac and cancer research have connected directly and indirectly Nrg-1β/ErbB 

to several signaling pathway, such as Phosphatidylinositol 3-Kinase (PI3K)/Akt, Mitogen-

Activated Protein Kinase (MAPK)/ Extracellular signal-Regulated Kinase (Erk) 1/2, and 

the non-receptor tyrosine kinase Src/Focal Adhesion Kinase (FAK), and demonstrated its 

involvement in a wide variety of physiological outputs, including cardiac cell survival, 

migration, angiogenesis, cytoskeleton, and excitation contraction coupling( for a detailed 

review on these pathways in the heart see ref. [6]).

The primary role of integrins is to link the extracellular matrix (ECM) to the intracellular 

signaling. Deletion of β1 subunit, the most common in the heart, suggests that ECM is 

involved in the differentiation of cardiomyocytes during heart development [7]. Integrins 

are also critical for the maintenance of the adult heart both under normal and pathological 

conditions, as their deletion results in a spontaneous increase in fibrosis as well as induction 

of heart failure [8]. The non-receptor tyrosine kinase FAK is the main effector of integrins, 

converting changes in the extracellular matrix into intracellular signaling.

As FAK is both downstream and specifically activated by integrins and Nrg-1β, here we will 

explore the role of FAK in the heart as a protective factor and a possible mediator of the 

crosstalk between ErbB and Integrin receptors (Fig 1).

3. Nrg-1β/ErbB2/ErbB4 signaling

3.1 Nrg-1β/ErbB dependent Akt and Erk1/2 signaling and their role in the heart.

Both Erk1/2 and Akt signaling pathways have been extensively studied in the heart 

and we will just briefly summarize these studies here (for a detailed review on these 

pathways as NRG-1β downstream effectors please refers to Pentassuglia and Sawyer, 2009, 

Experimental Cell Research: The role of Neuregulin-1β/ErbB signaling in the heart[6]). 

Several studies conducted so far demonstrate that both Erk1/2 and Akt mediate Nrg1β-

dependent cell survival, metabolism, and growth in the heart under normal and stressed 

conditions. Postnatal cardiac-specific deletion of ErbB2 leads to spontaneous dilated cardio-

myopathy and a higher susceptibility to stress stimuli [4]. Cardiac-specific deletion of both 

Grb2-associated binder (GAB) [9, 10] 1 and 2, scaffolding adaptor proteins that mediates 

Nrg1β/ErbB signaling, abolishes Nrg-1β induced phosphorylation of both Erk1/2 and Akt. 

Concomitantly these hearts show profound dilated features associated with deposition of 

both collagen and elastic fibers, and alterations at the cardiac vessels [9].

There is growing evidence that the Nrg-1β/ErbB2 signaling plays a critical role in conditions 

of stress. Ex-vivo ischemia reperfusion of isolated hearts in the Langendorff system induces 

Nrg-1β cleavage, activation and phosphorylation of the ErbB4 receptor and downstream 

signaling pathways. These data suggests that the ErbB receptors are possibly involved 

in cardiac recovery[11]. Nrg-1β preconditioning attenuates apoptotic cell death during 

ischemic injury as shown by a decrease in cleaved caspase-3 and an increase in the 

phosphorylation levels of Akt. Concomitant inhibition of PI3K signaling was able to 
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block Nrg-1β-dependent cardioprotection [12]. In isolated adult myocytes pretreatment 

with Nrg-1β prevents doxorubicin-induced cell death. Akt inhibition blocks this effect, 

whereas a constitutively active form of Akt exerts a function similar to Nrg-1β itself [13]. 

Akt also mediates Nrg-1β/ErbB protection against reactive oxygen species (ROS). Nrg-1β 
pretreatment significantly decreases ROS in cultured myocytes treated with hydrogen 

peroxide, while inhibition of Akt abolishes this effect [14]. In mice treated with doxorubicin, 

Nrg-1β promotes survival and preservation of cTnI and cTnC from degradation in the heart 

via Akt signaling [15], further proving a critical role for Akt in Nrg-1β/ErbB-dependent 

survival.

Erk1/2 signaling activated by Nrg-1β has been implicated in the promotion of 

cardiomyocyte differentiation from embryonic stem cells. During the development of 

embryonic bodies there is a distinctive pattern of ErbB receptor expression. All cells of 

the embryonic body express ErbB2 but only the myocyte fraction expresses ErbB4, which is 

essential for their development and survival[16]. ErbB induced cardiomyocyte development 

requires the activation of Erk1/2, as the expression of either wild type or constitutively active 

MEK1 is sufficient to increase the number of cells expressing myosin heavy chain [17]. In 

both neonatal and adult myocytes, Erk1/2 mediates Nrg-1β-dependent hypertrophy, protein 

expression, and sarcomere structure [18–20]. The inhibition of ErbB2 or Erk1/2 leads to 

myofilament disarray both in adult and neonatal myocytes[18, 21]. These data support a 

role for the Nrg-1β/ErbB2/Erk1/2 signaling axis in the assembly and maintenance of the 

contractile apparatus in the heart.

3.2 Nrg-1β dependent FAK activation

FAK, a component of the Focal Adhesion Complex (FAC), interacts and regulates several 

structural and signaling proteins, including the Nrg-1β signaling pathway in the heart. 

FAK has three distinct domains: the N-teminal FERM (F for 4.1 protein, E for ezrin, 

R for radixin and M for moesin), which has autoinhibitory function[10, 22], a central 

kinase domain[23, 24], and a C-terminal Focal Adhesion Targeting (FAT) domain[25, 26]. 

The first step of FAK activation requires auto-phosphorylation of the tyrosine residues 

397 induced by integrin activation (see paragraph 4.1). The FERM domain has an auto-

inhibitory function and integrin activation leads to FAK binding to talin and paxillin via 

FAT. This induces conformational changes that lead to displacement of the FERM domain, 

releasing the autoinhibition; at this point FAK can autophosphorylate itself at Y397. This 

autophosphorylation induces Src binding and phosphorylation of Y576 and Y577 in the 

catalytic domain (Fig 1A) [27–29].

The different phosphorylation sites of FAK modulate either its own catalytic activity or 

the affinity for binding proteins. Phosphorylation of Y397 creates a motif recognized by 

SH2-domain containing proteins (PLCγ, SOCS, GRB7, P120, and p85 of PI3K)[30–33]. 

Phosphorylation at Y397 induces Src binding and activation of downstream signaling 

pathway through both FAK and Src[34] and promotes the recruitment of PI3K and 

p130CAS[33–36]. Src phosphorylation of FAK increases affinity for SH3-domain mediated 

binding of p130CAS and for SH2- domain mediated binding for CRB2 adaptor proteins[37, 

38]. Y925 can also activate myosin light chain kinase via ERK2[39, 40]. The best-known 
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downstream targets of FAK are p130CAS and Paxillin. Recent experiments show that 

FAK plays a role in FAC dynamics and modulation[41] and promotes maturation of FAC 

with inhibition of α-actinin binding to actin filaments[42]. FAK localization at the Z-line 

suggests a role in sarcomere organization as well [43].

In isolated adult rat ventricular myocytes (ARVM) Nrg-1β is able to activate the Src/FAK 

signaling pathway. Nrg-1β treatment induces phosphorylation of FAK at Y861 and Y925 

that is most prominent at the sites of the intercalated disk (Fig 1B). This is associated with 

formation of lamellipodia and ultimately cell-cell junctions[44]. This signal may mediate the 

cardioprotective role of Nrg-1β in stress conditions. In isolated hearts, ischemic injury leads 

to Nrg-1β cleavage and ErbB4 as well as FAK phosphorylation [11]. Evidence collected in 

other tissues shows similar findings. In the brain Nrg-1β induces FAK activation via ErbB2/

ErbB3 heterodimer [45]. In different type of tumors (brain, breast, and ovary) positive for 

the ErbB2 receptor FAK is activated at baseline conditions [46–48] and promotes tumor cell 

motility [49–51], proliferation [52], formation of FAC [53, 54], resistance to ErbB2 specific 

chemotherapeutic agents [55].

3.3 Role of FAK in cardiac development

Cardiac morphogenesis is one of the first events that takes place during embryonic 

development and requires the complex coordination of recruitment, differentiation, and 

proliferation of cardiac and cardiac precursors cells. Like the Nrg/ErbB pathway[1–3], 

FAK signaling is involved in the embryonic development of the heart from its early 

stages. Systemic deletion of FAK in mice is lethal and shows cardiac defects in early 

embriogenesis as the heart fails to separate the mesocardial and the endocardial layers and 

lethality is associated with left ventricular non-compaction[56]. During heart development, 

a set of cells, the Neuronal Crest Cells (NCCs), migrate from the neuronal tube toward 

the developing heart to participate in the maturation of the cardiac outflow tract in to 

the aorta and pulmonary trunk. FAK expression is critical for the differentiation of the 

NCCs into smooth muscle cells (SMCs), which participate in the development of the aortic 

arch arteries. The failure of NCCs to develop in to SMCs results in the regression of the 

developing aortic branches rather than a premature halting of the process [57]. Embryonic 

myocyte chemotaxis is also impaired, suggesting the involvement of FAK in myocyte 

migration towards the cushion mesenchyme [58, 59]. Similar to what is observed in vivo, 

FAK regulates cardiogenesis and migration in cultured embryonic stem cells. Inhibition 

of FAK phosphorylation leads to decreased cell migration, which stimulates ES cells to 

differentiate in cardiac lineages, as assessed by expression of α-MHC [60]. Cardiac specific 

deletion of FAK with the use of nkx2.5 promotor-driven Cre-recombinase induces rapid 

cyanosis and mice die 10 to 120 min after birth. Analysis of the embryonic cardiac tissue 

shows that FAK is reduced as early as E13.5 and it is almost absent at E18.5. Histological 

analysis shows defect in ventricular septation and in few cases the presence of a double-

outlet right ventricle, thickening of the semilunar valve leaflets but normal trabeculation[58].

Similar to what has been observed in nkx2.5-driven FAK cardiac-specific deletion, the use 

of MLC2a-Cre also leads to embryonic death at an early stage of development. At E13.5 

all embryos appear normal, but at E14.5 mice show total body edema and nonspecific 
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focal hemorrhages associated with cardiac failure. Histological analysis shows a thinning 

in the myocardium, septum, and trabeculae. At E16.5 there are ventricular septa defects 

and thin ventricular walls along with embryonic lethality. Analysis of the tissue with 

electron microscopy reveals a dilation of the rough endoplasmatic reticulum, mitochondria 

with irregular or disrupted cristae, and thin disorganized myofibrils. At E14.5 there are 

also reduced numbers of mitotic cells present in the heart of the FAK cardiac-restricted 

mice compared with genetic and age matched mice. The few mice with cardiac specific 

FAK deletion that survived into adulthood are fertile and they have a normal lifespan, but 

examination of the heart shows eccentric right ventricle hypertrophy [61].

3.4 Cardioprotective role of FAK in the adult heart

Several studies conducted so far demonstrate that in the adult heart FAK mediates 

mechanical and hypertrophic signaling, and exerts a critical role in cardiac survival, 

adaptation, and protections of myofilament structure under conditions of stress [62–65]. 

Cardiac specific deletion of FAK in mice at a perinatal stage does not alter baseline cardiac 

function and hemodynamics [66], and there are no differences seen in the posterior and 

intraventricular septal wall thickness or LV chamber size [67]. However, when treated with 

Angiotensin (Ang) II or subjected to trans-aortic constriction (TAC), these mice develop 

eccentric hypertrophy associated with re-expression of skeletal-actin, Atrial Natriuretic 

Factor (ANF), Brain Natriuretic Peptide (BNP), beta Myosin Heavy Chain (MHC), and 

collagen I and VI. These mice also display increased fibrosis, but no increase in cell death. 

In contrast to these findings, expression of a truncated form of FAK increases the basal 

level of apoptosis [68]. RNA analysis shows that TAC-induced ANF expression is abolished 

in FAK deficient mice concomitant with an increase in alpha but not in beta MHC [67]. 

FAK deletion leads to disorganized myofibrils with increased interspace filled with large 

aggregates of swollen mitochondrial [66, 68]. Long term exposure to TAC leads to an 

increase in wet lung weight, decreased cardiac output, and increased interstitial fibrosis. 

FAK cardiac deficiency blocks ERK1/2 activation induced by adrenergic stimulation [67], 

and phosphorylation of both p130cas and paxillin is reduced [66, 69]. In aging mice FAK 

deficiency leads to spontaneous decrease of heart weight/body weight and myocyte cross-

sectional area, increase thickness of LV posterior wall and fibrosis [67].

Hypertrophy induced by Angiotensin II is blocked by the expression of FRNK, a naturally 

occurring dominant negative isoform of FAK. In these myocytes ANP and NF-κB 

expression is decreased, as well as Erk1/2 and Akt basal phosphorylation [70]. Treatment 

with calcium chelators effectively blocks AngII induced phosphorylation of FAK, ANF 

expression, and decreases expression of fatty acid oxidation-related genes. Activation of 

the receptor PPARδ also blocks FAK-dependent activation of Erk1/2 but not of c-Jun 

N-terminal Kinase (JNK) [71]. In neonatal cardiomyocytes stimulation with hypertrophic 

agonists induces activation of FAK at S910, which can interact with paxillin and it is 

involved in sarcomere assembly, cell migration, and heart failure. Further analysis shows 

that this activation depends on Erk1/2 as well as Src/Erk5 and Protein Kinase C (PKC)δ/

Erk5 [72]. FAK overexpression, in absence of other stimuli, leads to concentric hypertrophy, 

associated with increased heart size, β-MHC expression, and left ventricular wall thickening, 

without changes in the left ventricle diameter or fractional shortening. In contrast FAK 
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overexpression during pressure overload exerts a cardio-protective role via Akt, mTORC1, 

S6K, and rpS6 signaling [73]. Pressure overload alone can induce FAK activation [74] and it 

associates with Src, Grb2 [75], and ARHGAP21 [76, 77].

FAK also plays a critical role in linking events initiated by mechanical stress during 

hypertrophic responses in cardiomyocytes. Mechanical stretch activates and changes the 

localization of FAK, from the nucleus to the myofilament [78], as well as increasing 

the phosphorylation of Erk1/2, and paxillin [79, 80]. FAK accumulated in myocytes of 

failing hearts in spontaneously hypertensive rats [81, 82] and it is phosphorylated by 

integrin receptors [64, 83]. Inhibition of FAK blocks stretch-induced ANF expression [78]. 

In cultured Neonatal Rat Ventricular Myocytes (NRVM) FAK is associated with Shp2 

and after stretch this complex is significantly reduced. Stretch reduces protein tyrosine 

phosphatase Shp2 phosphatese activity, and its inactivation leads to increased basal FAK 

phosphorylation, cell size, and expression of β-MHC [84]. Depletion of FAK with siRNA or 

inhibition of Src with the kinase inhibitor PP2 blocks stretch induced activation of Erk1/2, 

Akt S473, and S6K [84].

FAK is also involved in cardiomyocyte survival in the setting of metabolic stress including 

ischemic injury. In isolated NRVM chemical inhibition of glycolysis and myocardial 

respirationinduces phosphorylation of FAK, its association with PI3K, and Akt activity 

[85]. Overexpression of FAK is cardioprotective during ischemic injury by experimental 

myocardial infarction. FAK overexpressing mice have smaller infarct area, higher ejection 

fraction and fractional shortening after 8 weeks of remodeling. Further analysis shows 

reduced apoptosis and increased NF-κB translocation into the nucleus and transcription 

activity [86]. FAK cardiac restricted deletion in mice subjected to transient ligation of LAD 

coronary artery results in a higher infarct size and cell death, as well as in a decrease in heart 

function, and activation of NF-κB survival pathway [87]. Similar results were observed in 

mice overexpressing FRNK [85].

Stretch reduces basal phosphorylation of FAK at Y861, but it is increased with concomitant 

inhibition of the AngII receptor. Overexpression of FRNK or disruption of integrin 

β1D abolishes basal and stretch-mediated phosphorylation of FAK and ERK1/2 [88]. 

Tension-mediated focal adhesion maturation is a critical step for myocytes in adaptation 

to mechanical tension. Localization of vinculin at focal adhesion sites in myofibroblast 

depends on extracellular matrix stiffness and myosin II. Myosin II is also able to modulate 

recruitment of vinculin via FAK-dependent phosphorylation of paxillin [89].

4. ErbB/FAK/Integrin interaction

4.1 The role of Integrins in the heart

Integrins are transmembrane receptors able to sense alterations in the extracellular matrix 

and translate them to the cytoskeleton. They are formed by two different chains, α and β, 

non-covalently associated. Both subunits are present in different splicing variants (18 for α 
and 8 for β) leading to more than 24 possible heterodimers[90, 91]. Each splicing variant 

and heterodimer has a specific expression pattern, unique for tissue type and developmental 

stage[92–95]. Integrins can regulate the expression levels and the activation status of ion 
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channels, as well as initiating specific ion currents directly or through the Src tyrosine kinase 

signaling[96, 97]. Hormone[98, 99] and growth factor receptors[100, 101] often interact 

with integrins. Integrins are essential for growth factor receptors and hormone mediated cell 

survival[102, 103], DNA synthesis[104, 105], and chemotherapy resistance[106].

Alterations in the ECM and integrin expression have been associated with various cardiac 

conditions. It has been observed that accumulation of ECM components in the myocardium 

and coronary arteries leads to cardiac failure[107, 108]. In pressure overload, integrin 

receptors subtypes change, suggesting a role in mechano-transduction[109–112]. Restricted 

deletion of β1 in myocytes leads to myocardial fibrosis and development of spontaneous 

dilated cardiomyopathy in 6 month old mice, as well as an exaggerate response to pressure 

overload without evidences of cell death[8]. A more severe phenotype has been observed in 

transgenic mice overexpressing a dominant negative isoform of β1. These transgenic mice 

die at perinatal stage and their hearts display extensive fibrotic replacement [113].

Upon activation, integrins associate at focal adhesion sites and bind actin filaments. The 

interaction with actin is mediated by proteins with structural (talin and vinculin)[114, 

115], signaling (Fak, Src, and PIPKγ)[116–118], and adaptor (p130CAS and melusin) 

functions[119–123]. One of the best characterized pathways is the Src/FAK signaling, which 

also promotes actin anchoring (see paragraph 3.2) [24].

4.2 Cross talk between integrins and ErbB receptors

Two different types of cross-talk between integrins and ErbB receptor tyrosine kinase (RTK) 

have been identified. The first is commonly called “collaborative”, where both integrins and 

RTK need to be activated by their respective ligand to form a cluster[124]. This interaction 

between RTK and integrins is mediated by FAK[44, 125]. In the second, called “direct”, 

integrins can directly phosphorylate RTK without the need of growth factors and FAK 

signaling[126, 127].

In cancer cells there is solid evidence for integrin/ErbB2 cross talk, whereas to date this has 

not been fully investigated in the heart. Cancer cells overexpressing both ErbB2 and integrin 

receptors α6β4 are highly aggressive and have a malignant phenotype[128]. In cell lines of 

breast carcinoma laminin induced phosphorylation of ErbB2 via integrin interaction[129]. 

Further analysis demonstrated that both integrins and ErbB2 co-localized[130, 131] and 

formed aggregates with tyrosine kinase proteins[44, 125]. These observations suggest a 

possible interaction between ErbB2 and integrin signaling. Expression of a constitutively 

active ErbB2 isoform in MFC-7 breast cancer cells leads to increase cell motility and it 

is associated with a higher expression of the integrin β1[132]. In human mammary and 

ovarian carcinoma cells the integrin receptor α6β4 co-immunoprecipitates with ErbB2. 

Further analysis demonstrated that upon binding to laminin α6β4 can also increase ErbB2 

phosphorylation[128]. The co-activation of both receptors is required to induce PI3K 

activation and motility in NIH3T3 cells[124]. β4 integrin can also regulate ErbB2 dependent 

DNA synthesis[104] and ErbB2 translation[133], enhances ErbB2-dependendent expression 

of the growth factor VEGF, which in turn enhances tumour cell invasiveness[134, 135], and 

transactivates EGFR/ErbB2 signaling[133].
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β1 integrin receptor is highly expressed in cardiomyocytes and is also the most abundant 

in the heart and may well interact with ErbB signaling according to literature in other 

cell types. Early on it was shown that in metastatic breast carcinoma cells cell adhesion is 

enhanced by activation of integrin β1[136]. In an epithelial tumor cell line overexpressing 

the ErbB2 receptor increases α5β1 expression and improves cell survival[137]. In 

earlier stages ErbB2 activation impairs spreading and adhesion on collagen surfaces by 

inactivating integrin β1 via PKB and PI3K/mTOR signaling[138, 139]. ErbB2 activation and 

overexpression can also induce scattering and apoptosis in human mammary epithelial cells 

cultured on collagen[140]. In contrast inhibition of laminin binding to integrin receptors 

(α6β4 or α3β1) sensitizes cancer cells toward ErbB2 specific cancer therapeutic agents 

Herceptin and Lapatinib[55].

In cardiac myocytes Nrg-1β induces specific phosphorylation of Src (Y215 and Y416) and 

FAK (Y867) and promotes the formation a protein complex between ErbB2 and Src, FAK, 

p130CAS, and paxillin[44]. These observations suggest the possibility of an ErbB/integrin 

cross-talk in cardiomyocytes. We hypothesize that the activation of FAK promotes the 

formation of an ErbB2/ErbB4/integrin complex, recruits and phosphorylates p130CAS, and 

modulates focal adhesion complex (FAC) and mechanical coupling (Fig 1). Further work 

will be necessary to fully explore this model in cardiac myocytes and understand the role 

that this plays in regulating cardiac structure and function.
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Highlights

• Nrg/ErbB signaling is critical for cardiac protection under condition of stress.

• Nrg/ErbB activates FAK signaling pathway in cardiac and cancer cells.

• FAK is critical for cardiac differentiation and survival under condition of 

stress.

• FAK mediated mechanical signal transduction initiated by integrins.

• These observations suggest a possible ErbB/integrin cross-talk mediated by 

FAK.
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Fig 1. FAK activation and role in cardiomyocytes.
A. Integrin-dependent activation of FAK. Binding to the extracellular matrix (ECM) and 

mechanical stretch activates integrin receptors at the cell surface (1). To initiate intracellular 

signaling integrin dimer induces conformational changes in FAK and auto-phosphorylation 

on tyrosine (Y) 397. Src can then phosphorylate FAK at Y576 and Y577 in the activation 

loop (2). Activated FAK can then: interact with Paxillin and Talin to bind α-actinin; 

induce actin polymerization, myofilament organization, and expression of Myosine Heavy 

Chain (MHC) via p130CAS; and promote survival via Erk1/2, S6K, mTORC1, and Akt, 

protein synthesis via mTORC1 and Akt, and stretch induced expression of ANF (3). B. 
Nrg1β-specific phosphorylation of FAK and its role in cardiomyocytes. Upon binding to 

Nrg1β (1), the ErbB2/ErbB4 heterodimer induces phosphorylation of FAK at Y861 and 

Y925 via Src (2). Phosphorylated FAK: is involved in sarcomere organization and binding 

to actin and α-actinin via interaction with p130CAS and CRB adaptor proteins; induces 

activation of Myosin Light Chain (MLC) via Erk1/2; promotes myocyte survival and focal 

adhesion complex formation; and migrates to the intercalated disks where it promotes 

cell-cell interaction and lamellipodia formation (3).
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