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Abstract

Norovirus is the leading cause of epidemic and endemic acute gastroenteritis worldwide and the 

most frequent cause of foodborne illness in the United States. There is no specific treatment 

for norovirus infections and therapeutic interventions are based on alleviating symptoms and 

limiting viral transmission. The immune response to norovirus is not completely understood and 

mechanistic studies have been hindered by lack of a robust cell culture system. In recent years, 

the human intestinal enteroid/human intestinal organoid system (HIE/HIO) has enabled successful 

human norovirus replication. Cells derived from HIE have also successfully been subjected to 

genetic manipulation using viral vectors as well as CRISPR/Cas9 technology, thereby allowing 

studies to identify antiviral signaling pathways important in controlling norovirus infection. 

RNA sequencing using HIE cells has been used to investigate the transcriptional landscape 

during norovirus infection and to identify antiviral genes important in infection. Other cell 

culture platforms such as the microfluidics-based gut-on-chip technology in combination with 

the HIE/HIO system also have the potential to address fundamental questions on innate immunity 

to human norovirus. In this review, we highlight the recent advances in understanding the innate 

immune response to human norovirus infections in the HIE system, including the application of 

advanced molecular technologies that have become available in recent years such as the CRISPR/

Cas9 and RNA sequencing, as well as the potential application of single cell transcriptomics, viral 

proteomics, and gut-on-a-chip technology to further elucidate innate immunity to norovirus.
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INTRODUCTION

Norovirus is the leading cause of epidemic and endemic acute gastroenteritis worldwide 

and the most frequent cause of foodborne illness in the United States [1]. Norovirus 

gastroenteritis causes approximately 21 million cases of illness in the United States 

and over 600 million cases worldwide every year [2]. Although the disease is typically 

self-limiting, some cases result in severe illness, with an estimated 56 000 to 71 000 

hospitalizations and 570 to 800 norovirus related deaths reported in the United States each 

year [2]. Human norovirus spreads primarily via the oral-faecal route or through contact 

with contaminated food, water, or surfaces. As few as 18–1018 genome equivalents are 

sufficient to cause infection [3–5], and an estimated 50% human infectious dose (HID50) 

ranges between 1320 and 2800 genome equivalents [5]. Norovirus disease is characterized 

by stomach pain, nausea, explosive vomiting and diarrhoea within 12–48 h of exposure 

[6]. In immune-competent individuals these symptoms typically resolve within 1–3 days 

although the virus might be detectable for several weeks [7]. There is no specific treatment 

for norovirus infection and therapeutic interventions are based on alleviating symptoms [8]. 

Outbreak management relies heavily on early identification of cases, isolation of infected 

individuals, and strict disinfection and decontamination protocols [7, 8]. Several norovirus 

vaccine candidates are under development, four of which have undergone clinical trials [9]; 

however, none have currently been licensed. In this review, we will summarize the current 

information on the innate immune response to norovirus infection in human intestinal 

enteroids (HIE) and advanced molecular technologies that may help to better understand 

the molecular mechanisms that regulate norovirus replication allowing the development of 

effective prophylactic and therapeutic interventions.

Human volunteer challenge studies have provided important information on aspects of virus 

infection such as the environmental conditions that affect virus stability [10], the HID50 

[3, 5], host genetic factors that govern susceptibility to infection [11], as well as insights 

on the immune response during infection [12–14]. Several studies have shown association 

between susceptibility to norovirus infection and expression of a functional FUT2 gene 

[11, 15–17]. FUT2 encodes α–1,2-fucosyltransferase, an enzyme that is important for 

expression of human blood group antigen (HBGA) molecules on mucosal surfaces. α–

1,2-fucosyltransferase transfers a second fucose molecule to the H blood group antigen 

precursor, thereby generating H antigen [17, 18]. Norovirus infection requires HBGA which 

function as binding ligands to facilitate virus attachment to cells [19]. Individuals that 

express a functional FUT2 gene are termed secretor-positive and are therefore susceptible 

to norovirus infection [17]. Secretor-negative individuals lack functional FUT2 alleles, 

consequently, they do not express H-antigen structures on their mucosa and are resistant 

to infection by most norovirus strains, including the globally predominant genotype GII.4 

[20], although exceptions have been reported [6, 17].

Human volunteer challenge studies have also given initial insights into the antiviral response 

that restricts norovirus infections. Analysis of serum collected during the first 4 days after 

infection in two human volunteer challenge studies showed that norovirus induces T-helper 1 

and T-helper 2 (Th1 and Th2) cytokines, chemokines, and inflammatory cytokines including 

IFN-γ, IL-6, IL-8, IL-12p70, MCP-1 and TNF-α, as part of the acute response, with peak 
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detection at 2 days post-infection [12]. Assessment of norovirus-specific antibody responses 

during infection using saliva collected from elderly individuals in 43 long-term care facilities 

showed that virus-specific salivary IgA titers increase beginning at 5 days after symptom 

onset, with peak titers at 14 days [21]. Together, these studies show that both the innate and 

adaptive immune responses are important for controlling norovirus infection [22, 23]. What 

remains to be elucidated are the specific molecular mechanisms and signalling pathways 

involved in the antiviral response against human norovirus.

Models for norovirus infection

For many years mechanistic studies were hampered by lack of a robust cell culture system. 

Efforts to grow norovirus in a number of well-established cell lines, including primary 

kidney cell lines, primary intestinal cell lines, and colon carcinoma cell lines, failed [24]. 

Despite the established tropism of murine norovirus (MNV) for innate immune cells, 

efforts to replicate human norovirus in the same cell types derived from peripheral blood 

mononuclear cells (PBMCs) also failed [25]. It has been reported that human noroviruses 

are capable of replicating in human B cells [26, 27]. Attempts to obtain sustained norovirus 

replication in B cells using unfiltered, unprocessed stool as inoculum showed that bacterial 

surface expressed human blood group antigens (HBGA) are important factors for successful 

virus replication [26]. Additionally, the addition of HBGA-expressing Enterobacter cloacae 
to the cell culture could restore the infectivity of filtered human norovirus positive stool 

filtrate, whereas a non-HBGA-expressing bacterium could not [26]. BJAB and Raji B cell 

lines initially showed promise for replicating human norovirus however these studies have 

been shown to be difficult to reproduce [26, 27].

Several replicon models that stably express human norovirus RNA have been developed as 

tools to facilitate studying the immune response to norovirus infection [28–30]. A number 

of animal models have also been utilized to study human norovirus including non-human 

primates [31, 32], gnotobiotic pigs [33, 34] and humanized mice [35]. Each of these models 

had limitations including low levels of virus replication. Recently, zebrafish larvae have been 

reported as a robust model for human norovirus infection [36]. However, this model does 

not necessarily represent cells in the human gut and the ensuing innate immune responses 

after a norovirus infection. Despite the above-mentioned efforts, what remains unclear are 

the antiviral proteins that specifically restrict virus replication as well as the molecules that 

recognize norovirus to initiate the antiviral signal pathways. Until recently, much of our 

understanding of the molecular mechanisms involved in norovirus pathogenesis and immune 

response has been derived from transformed cell lines and infection with human norovirus 

surrogate viruses such as feline calicivirus, porcine calicivirus, MNV and Tulane virus [37–

39] (Fig. 1).

In recent years, technical advances in the culture of primary human intestinal epithelial cells 

using intestinal 3D organoid cultures [40] along with availability of advanced molecular 

technologies, have revolutionized approaches to study the immune response in norovirus 

infection. Techniques such as gene manipulation, bulk and single-cell RNA sequencing 

(scRNA-seq), proteomics [41–43], as well as gut-on-a-chip technology, which mimic the 
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intestinal physiological environment [40–42], have the potential to be applied to human 

norovirus studies in order to move the field forward (Fig. 2).

Human intestinal enteroid/organoid cultures and norovirus tropism

HIEs and organoid cultures [40, 44–47] have created platforms to study the cellular 

processes and signalling pathways involved in restricting replication of enteric viruses 

including human norovirus [48, 49]. Human intestinal organoids (HIO) and HIE are three-

dimensional (3D) cultures containing multiple intestinal cell types that are derived from 

Lgr5+ intestinal stem cells [44] (Fig. 2). HIO contain a mesenchymal niche and are derived 

from embryonic or pluripotent stem cells (iPSCs) [50], whereas HIE are derived from adult 

stem cells isolated from intestinal biopsies [40, 51, 52]. These stem cells are propagated in a 

3D format supported by Matrigel which allows assembly of the cells into organoid structures 

that retain cellular composition and physiological functions of the intestinal epithelium 

[53]. Additionally, adult stem cells are intrinsically programmed with their location-specific 

function [54], and the differentiated cells that are derived from these stem cells retain an 

immune profile akin to that of the cells in the corresponding intestinal segment [55]. For 

replication of human norovirus infection in vitro, these 3D HIE cultures are dissociated and 

plated as monolayers which are then utilized in a wide variety of studies [56] (Fig. 2).

Successful norovirus replication in vitro using monolayers of HIEs was first reported in 

2016 [57] and later confirmed by several other laboratories [58–62]. The cell types found 

in enteroid cultures include enterocytes, goblet, enteroendocrine, and Paneth cells [53]. 

Human norovirus potentially replicates in multiple cells types including enterocytes and 

enteroendocrine cells (EECs) [63, 64]. Presence of human norovirus in enterocytes was 

first discovered by histological comparison of tissue biopsies from infected and uninfected 

immunocompromised transplant patients which showed presence of the major capsid protein 

VP1 in enterocytes from infected individuals [63]. Interestingly, the VP1 expression was 

also detected in other cells types including, macrophages, T cells and dendritic cells, 

however, non-structural proteins RdRp and VPg were detected along with VP1 only in 

enterocytes [63]. Recently human norovirus has been shown to replicate in enteroendocrine 

epithelial cells (EEC) [64]. Immunohistochemical staining of tissue from the jejunum and 

ileum of a paediatric intestinal transplant recipient with severe gastroenteritis showed the 

presence of human norovirus VP1 protein in EEC. Confocal fluorescence microscopy 

showing colocalization of positive and negative sense human norovirus RNA with the EEC 

marker (chromogranin A -CgA), confirmed active norovirus replication in this cell type in 
vivo [64, 65].

The use of commercial media has further optimized human norovirus replication in HIE 

yielding higher levels of virus replication compared to home-made conditioned media [61]. 

However, not all norovirus strains can replicate in HIEs [57, 58] with success rate of samples 

with high viral load as low as 20% [58]. GII.4 viruses demonstrate higher replication 

levels compared to other genotypes such as GII.3 [57, 58]. A potential explanation for this 

difference could be that norovirus strains respond differently to the antiviral mechanisms 

employed by the host cell to restrict virus replication. Other components of the complex 

intestinal environment, such as the intestinal microbiome and M cells, may also play a role 
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in the strain-specific differences in virus replication [61]. The absence of these components 

potentially represent major drawbacks of the HIE system.

Human norovirus replication is enhanced or depends on the inclusion of bile acids in the cell 

culture media [57, 66]. However, the requirement for bile is strain dependent as inclusion 

is critical for replication of GI.1, GII.1, GII.3, GII.6, and GII.17 strains whereas GII.4 virus 

replication occurs without supplementation, but is enhanced by bile [61]. This breakthrough 

has cleared the way for other lines of research including investigation of the antiviral 

mechanisms that restrict virus replication.

Genetic manipulation of enteroids

Several research groups have begun exploring whether cells derived from HIE and HIO 

are amendable to genetic manipulation. Using CRISPR/Cas9 technology, a knockout cell 

line for the FUT2 gene was created [16], FUT2 encodes an enzyme that affects HBGA 

expression in intestinal epithelial cells and susceptibility to human norovirus infection [17]. 

This FUT2 knockout cell line demonstrated diminished replication of GII.4, GII.17, and 

GI.1 viruses. Further, norovirus replication was shown in secretor-negative J4 cells by 

knocking in the FUT2 gene, thereby demonstrating that FUT2 expression is necessary and 

sufficient for norovirus replication in HIEs. While the role of FUT2 has been established 

epidemiologically, these knockout HIE cell lines provided the genetic basis for this 

observation [16].

In another study which explored the role of interferon signalling in norovirus infection, 

lentiviral vectors were used to express proteins that antagonize interferon signalling thereby 

generating intestinal organoid lines incapable of interferon signalling [59]. Specifically, 

lentiviral vectors were used to express bovine viral diarrhoea virus NPro or parainfluenza 

virus type 5 (PIV5) V proteins. BVDF Npro blocks IFN production by degrading interferon 

regulatory factor 3 (IRF3) whereas the PIV5 V protein compromises IFN production and 

signalling by targeting key molecules such as STAT1, melanoma differentiation-associated 

protein 5 (MDA5), and LGP2 for degradation [59]. This study demonstrated that enteroid 

cells are robust enough for transfection and have the potential to be genetically modified 

to create cells that reliably sustain norovirus replication. Importantly, it showed that the 

enteroid cells can be modified to increase virus yield by disrupting the interferon signalling 

pathway, as demonstrated by a 33-fold increase in norovirus GII.3 replication in BVDF 

Npro-expressing cells compared to control (nontransduced) cells, and a six-fold increase in 

PIV5 V protein-expressing cells compared to control cells.

What is currently known about innate immune response to norovirus infection?

While the receptor for human norovirus is yet to be found, CD300lf (Fig. 1a) has been 

identified as the primary receptor for MNV [19, 67–69]. Following viral entry, virus 

particles are recognized by molecular sensors on the plasma membrane, in endosomes, and 

in the cytosol which trigger induction of an antiviral or inflammatory response [70] (Fig. 

1b). The specific sensors that recognize human norovirus have yet to be identified; however, 

a recent study showed that Toll-like receptors (TLR) 2 and 5 are activated by norovirus 

virus-like particles (VLPs) [71] (Fig. 1b). Using a TLR2-transfected HEK293 responder 
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cell line, the authors demonstrated that norovirus VLPs can attach to TLR2. Using a TLR5 

expressing cell line with an NF-kB-luciferase cassette, they also demonstrated that norovirus 

VLPs attachment to TLR5 can induce NF-ΚB driven inflammatory signalling (Fig. 1b, c). 

These results suggest that TLR 2 and 5 may be involved in recognition of human norovirus 

leading to induction of an inflammatory response upon infection. Whether this observation 

can be recapitulated in a physiologically relevant system such as enterocytes derived from 

HIE requires additional studies.

An early study utilizing 293FT cells transfected with stool-isolated human norovirus RNA 

showed that while these cells were capable of replicating norovirus RNA, a robust type 

I interferon response is not induced [72], which was in contrast with the prominent role 

of type I interferon in the restriction of MNV replication in macrophages and dendritic 

cells [73–75]. It has now been demonstrated that human noroviruses indeed induce a robust 

innate immune response chiefly orchestrated by type I and type III interferon [59, 76, 77] 

(Fig. 1d). Studies with MNV have further dissected this pathway to reveal pivotal roles 

for transcription factors STAT1 and 2 as well as interferon regulatory factors (IRF) 1, 3 

and 7 [59, 78, 79] (Fig. 1b, e). MDA5, another molecular sensor that recognizes single 

stranded RNA, is also thought to be involved [80, 81]. Using the Norwalk replicon system, it 

was shown that MDA5 activation by human norovirus RNA results in activation of the JAK-

STAT pathway which leads to production of interferon, a cytokine response that induces 

an antiviral state in infected cells and surrounding uninfected cells [81]. Fig. 1 summarizes 

what is currently known regarding the antiviral response to norovirus infection. Although 

some factors involved in the antiviral response to MNV are included, the immune response 

to MNV infection was out of the scope of this review and has been covered extensively 

elsewhere [76, 82].

HIE and the innate immune response to human norovirus infection

Interferon (IFN) is a major component of the antiviral response that is induced upon 

norovirus infection [75]. To investigate this, HIE cells that had been treated with exogenous 

IFN (type I IFN [IFNα1 and IFNβ1] or type III IFN [IFNλ1, IFNλ2, and IFNλ3]) 

were infected with norovirus GII.3 or GII.4. Both strains showed reduction in replication 

suggesting that GII.4 and GII.3 norovirus strains are sensitive to IFN [77]. Consistent 

with this finding, when enteroid-derived IFN-receptor-knockout cell lines were infected 

with GII.3 and GII.4 strains, both strains showed higher levels of replication compared to 

infection in wild-type cells [77]. However, GII.3 virus replication was rescued to a greater 

extent than GII.4, suggesting that GII.3 infected cells are more susceptible to IFN restriction 

[77]. This was further confirmed using transcriptome analysis which demonstrated that 

human norovirus elicits a predominantly type III IFN response, and that GII.3 strains 

induced a more robust IFN-stimulated gene response compared to GII.4 strains [77].

Using a specific Janus kinase 1 (JAK1)/JAK2 inhibitor Ruxolitinib (Rux) to disrupt IFN 

signalling downstream of the IFN-receptor prior to infection of duodenal IECs with GII.3 

or GII.4 strains of norovirus resulted in an increase in GII.4 virus replication. This further 

demonstrated the importance of IFN signalling in restricting virus replication in HIE [59]. 
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Altogether, these studies clearly highlight the benefit of using HIE in understanding the role 

of IFN in the antiviral response against human norovirus.

Interferon stimulated genes that restrict human norovirus infection

The IFN signalling pathway is a cytokine-based response that results in restriction of virus 

growth in infected cells and upregulation of antiviral genes in surrounding uninfected cells. 

IFN secreted from virus-infected cells functions in an autocrine and paracrine manner to 

engage the IFN-receptors on the cell surface and activate JAK kinases and phosphorylation 

of STAT1/2 which facilitate upregulation of hundreds of interferon stimulated genes (ISG) 

(Fig. 1e, f). These ISGs encode effectors of the antiviral response, which antagonize virus 

replication [83, 84](Fig. 1f).

Little is known about specific antiviral genes that restrict norovirus replication in enteroid/

organoid-derived cells. To investigate this, monolayers from two organoid-derived cell 

lines (terminal ileum organoids) were infected with GII.4 viruses [59] and using RNA-

sequencing, 162 genes were found to be differentially regulated in one cell line, and 70 

genes were differentially regulated in another cell line [59]. A majority of these were ISGs, 

demonstrating that human norovirus induces a robust ISG response. The highly upregulated 

genes included IFI44L, OAS2, OASL, MX-1 and ISG15 which have shown antiviral activity 

against several viruses including, Zika virus, respiratory syncytial virus, and influenza [85–

89].

In another study, transcriptome analysis of two enteroid cell lines using RNA-sequencing 

also demonstrated a robust transcriptional response 72 h after infection. Additionally, this 

study found that diverse type I (IFN β) and type III (IFN λ) IFN-driven responses were 

induced [90]. The use of HIE/HIO has significantly advanced the identification of potential 

antiviral genes that control norovirus infection. However, much work remains to be done 

to fully understand the molecular mechanisms by which the antiviral proteins restrict virus 

replication.

FUTURE PERSPECTIVES

A major caveat of using this enteroid/organoid system is that the gene expression changes 

that have been found using transcriptomic analysis represent changes in a bulk population 

of cells. Norovirus replicates in enterocytes, however the proportion of enterocytes that 

are infected and sustain virus replication is unclear. Furthermore, the extent to which 

other cellular types in these culture systems can sustain norovirus replication is not 

known. Other important information for the development of targeted therapies that could 

mitigate norovirus replication such as the contribution of each cell type to the immune 

response during infection, remains unclear. Several recent technologies, such as single cell 

transcriptomics [41, 42, 91], viral proteomics [92, 93] and gut on a chip system [94–96] are 

promising approaches to further dissect the innate immune response to norovirus.

Single-cell RNA-sequencing has also led to the discovery of rare intestinal cell types [97], 

and the capability of norovirus to infect these rare cell types is yet to be clarified.
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A crucial component of the innate immune response to enteric pathogens are Microfold cells 

(M cells) [98]. M cells are unique as they function as a first line of defence in an innate 

immune capacity but also bridge the innate immune response and adaptive immune response 

by functioning as antigen presenting cells that facilitate the production of antibodies to 

protect from subsequent infection. Because of their important role in the intestine during 

the immune response against murine norovirus infection [99, 100], it may be important to 

develop culture conditions that support differentiation of M cells from enteroid monolayers 

[101] in order to ascertain their role in human norovirus infection. By using single cell 

approaches, the transcriptional response in each cell type can be determined to understand 

the individual contribution of each cell type to the response [102].

Along with single cell transcriptomics, advancements in mass spectrometry and high-

throughput cell imaging allow large-scale surveys at protein level [103]. Mass spectrometry 

proteomics approaches are frequently employed to study cell-viral interactions, how 

viruses affect cellular signalling pathways, and which cellular proteins are crucial for 

viral persistence [92, 104–107]. Every virus encodes proteins that manipulate key cellular 

pathways to promote viral replication and evade the host immune response [92]. Data from 

a proteomics study on HIE has confirmed that Paneth and goblet cells generated from 

intestinal stem cells in vitro share features typical of these cell types observed in vivo 
further confirming that HIE are useful models to investigate normal and disease processes 

in the intestine [108]. Applying viral proteomics to norovirus infections in enterocytes/HIE 

will help understand cellular responses during viral pathogenesis as well as in identifying 

diagnostic and therapeutic targets against human norovirus. Combining data generated 

by transcriptomics and viral proteomics methods [93] will allow a more comprehensive 

understanding of the regulatory network driving the human host response to norovirus 

infection (Fig. 2).

The knowledge derived from using the HIE/HIO system to understand the innate immune 

response to norovirus infection can be applied to other systems such as the recently 

developed gut-on-a-chip system which is an innovative in vitro platform for studying gut 

physiology [94–96]. This technology attempts to mimic the complexity and physiology of 

native tissues in vitro using cells grown in a series of chambers and maintained in culture 

medium under conditions that maintain physiological function of the tissue from which the 

cells were derived [94]. Compared to static cell culture, gut-on-a-chip technology allows the 

cells to be maintained under mechanically active conditions, and small amounts of the media 

can be continuously sampled for metabolites, cytokines, or even virus production [94, 95, 

109].

Recent work in which this technology was used to study Coxsackie B virus 1 (CVB1) 

replication in CaCo2 cells showed that gut-on-a-chip has the potential to be applied 

to norovirus studies [110]. In this study, CaCo2 cells were seeded in a gut-on-a-chip 

device containing two hollow microchannels separated by a porous membrane. Six days 

after seeding the cells were polarized and CVB1 was injected into the device allowing 

for infection on the apical side of the cell monolayers. Media was collected and virus 

replication and cytokine production (IP-10 and IL-8) were detectable at 24 h post-infection 

[110]. Differentiated organoid cells also have the potential to be maintained in this 
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microenvironment [111], which could expand the scope of the studies done with organoid 

cells in norovirus infection.

CONCLUSIONS

HIE/HIO are non-transformed cell culture models that contain multiple intestinal epithelial 

cell types that comprise the intestinal epithelium. HIEs provide an excellent platform 

to study human norovirus replication, which until recently has been a major hurdle in 

advancing human norovirus research. Fundamental questions and challenges can now be 

addressed to further our understanding of norovirus infection. Remaining questions in 

the field include identifying the human norovirus receptor that facilitates virus entry, the 

molecular sensors that trigger an antiviral response once infection has been established as 

well as the antiviral genes most relevant for restricting norovirus infection.

Another major challenge in studying norovirus replication and innate immune response 

in differentiated HIEs is the relatively low success for virus replication and difficulty 

in passaging the viruses. To overcome this, detailed understanding of the complexity of 

virus host interactions is required. Use of recently described molecular approaches such as 

RNAseq analysis and CRISPR/Cas9 modification of HIEs have identified many potential 

immune targets involved in norovirus replication opening opportunities to study the innate 

immune response after human norovirus infection.

Going forward, advanced technologies such as single cell transcriptomics, viral proteomics 

and gut on a chip technology may help to better understand the molecular mechanisms 

that regulate norovirus replication allowing the development of effective prophylactic and 

therapeutic interventions.
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Abbreviations:

EEC enteroendocrine epithelial cell

FUT2 α-1,2-fucosyltransferase

HBGA human blood group antigen

HIE human intestinal enteroids

HIO human intestinal organoids

IFN interferon

ISG interferon stimulated gene

JAK Janus kinase

MDA5 melanoma differentiation-associated protein 5
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MNV murine norovirus

PBMC peripheral blood mononuclear cell

PIV5 parainfluenza virus type 5

RIG-I retinoic acid-inducible gene 1

STAT signal transducer and activator of transcription

TLR toll-like receptor

VLP virus-like particle

VP1 virus protein 1

VPg viral protein genome-linked
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Fig. 1. 
The antiviral response in norovirus-infected cells. Norovirus infection induces an antiviral 

response that restricts virus replication. a. Human norovirus attachment is facilitated by 

human blood group antigens (HBGA) and a receptor that is yet to be identified. In mice the 

receptor is CD300lf [66]. b. Viral entry results in sensing of the virus and viral components 

by molecular sensors. The molecular sensors that are triggered during human norovirus 

infection have not been identified, however human norovirus virus-like particles (VLPs) 

have been shown to trigger TLR2 and TLR5 (70). MDA5 and RIG-I are also involved in the 

response against human norovirus [102] and TLR7 has been shown to trigger an antiviral 

response that protects against murine norovirus (MNV) [103]. c. Virus sensing results in 

activation of transcription factors including NFkB [103] and interferon regulatory factors 

IRF1(102), IRF3 and IRF7(3) which facilitate transcription of genes encoding type I, type 

II and type III interferon. d. Interferon is secreted and engages corresponding receptors 

on the cell surface, resulting in phosphorylation and activation of STAT1/2 through the 

JAK/STAT pathway [55]. e. STAT1/2 translocate to the nucleus and facilitate upregulation 

of hundreds of antiviral interferon stimulated genes (ISGs). f. The proteins encoded by 

antiviral ISGs restrict virus replication. This figure summarizes the immune components 

involved in the antiviral response to norovirus infection and includes findings from human 

norovirus infection as well as its surrogates: ¥human norovirus infection in human intestinal 
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enteroids, *murine norovirus, # human norovirus virus like particles (VLPs), §human 

norovirus replicon. Created with BioRender.com (accessed on 12 October 2021).
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Fig. 2. 
Application of human intestinal enteroids/organoids (HIE/HIO) in understanding the 

immune response to human norovirus infection. HIE/HIO can be applied in multiple ways to 

investigate the immune response to norovirus infection and determine host antiviral factors 

that restrict norovirus replication. HIE and HIO are derived either from adult intestinal 

biopsies, or adult induced pluripotent cells (iPSCs). Once HIE/HIO are propagated and 

differentiated, they can be infected with human norovirus. The cells can also be genetically 

manipulated using CRISPR/Cas9 or viral vectors to create mutant cell lines that can 

also be used in norovirus studies. Cells and RNA derived from infected HIE/HIO can 

be analysed for transcriptional changes using RNA sequencing. Similarly, the cells can 

also be subjected to proteomics-based analyses to investigate effects of norovirus infection 

on expression. Another potential application of HIE/HIO is measuring metabolites during 

norovirus infection using gut-on a chip technology. Created with BioRender.com (accessed 

on 12 October 2021).
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