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Abstract

The tumor suppressor p53 plays a vital role in responding to cell stressors such as DNA damage, 

hypoxia, and tumor formation by inducing cell-cycle arrest, senescence, or apoptosis. Expression 

level alterations and mutational frequency implicates p53 in most human cancers. In this review, 

we show how both computational and experimental methods have been used to provide an 

integrated view of p53 dynamics, function, and reactivation potential. We argue that p53 serves 

as an exceptional case study for developing methods in modeling intrinsically disordered proteins. 

We describe how these methods can be leveraged to improve p53 reactivation molecule design and 

other novel therapeutic modalities, such as PROteolysis TARgeting Chimeras (PROTACs).
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The Opportunities and Challenges of the Tumor Suppressor p53

The transcription factor p53 acts as arguably the most important tumor suppressor protein 

in humans, with more than 50% of all human cancers implicating mutated p53 in their 

progression. This transcription factor regulates key genes that are involved in cell function 

and carcinogenesis, such as apoptosis, senescence, and DNA repair. Because of mutant 

p53’s frequent involvement in cancer progression, it is thought of as a promising and 

exciting drug target in the field of cancer therapy [1,2]. However, many p53 mutants 

are known to have significantly altered dynamics and function in comparison to the 

wildtype protein, challenging traditional structure-based drug discovery methods in the 

quest for mutant p53 reactivation. Furthermore, p53 consists of multiple domains, adding 

an additional level of complexity to the characterization of this protein: the intrinsically 

disordered N-terminal transactivation domain (NTD, residues 1–93) that is responsible for 

activating target genes, the sequence-specific DNA binding domain (DBD, residues 94–

294), the tetramerization domain (TET, residues 323–360) which assists in formation of 

the functional p53 tetramer, and the intrinsically disordered C-terminal regulatory domain 

(CTD, residues 363–393) (Figure 1).

In this review, we describe how modern computational methodologies, tightly integrated 

with experiment, are emerging as capable of providing avenues for reactivation of 

p53 cancer mutants. We discuss recent computational and experimental advances in 

characterizing each of these domains separately as well as in the context of the larger 

oligomeric, quaternary complex. Lastly, we discuss the therapeutic implications in terms 

of mutant p53 reactivation and protein-protein interactions, and provide a perspective on 

how the approaches developed to study this important system can be useful to guide 

work on similar challenging systems, including intrinsically disordered proteins (IDPs) 

more generally and in the context of emerging therapeutic modalities, such as PROteolysis 

TARgeting Chimeras (PROTACs). This mini-review covers the most recent developments in 

p53 reactivation research; for more comprehensive reviews, we refer readers to Refs. [1–5].

Insight into individual p53 domains

Despite lacking a fixed three-dimensional structure, intrinsically disordered proteins (IDPs) 

can adopt one or more secondary structures upon target binding (protein, small molecule, 

RNA, DNA or ions), post-translational modifications or chemical environment changes. 

Given the inherent instability of p53, its multidomain architecture with long intrinsically 

disordered stretches and the challenges it poses to experimental studies, molecular dynamics 

(MD) simulations have provided a useful window into the function and dynamics of the 

wildtype p53 protein and its oncogenic mutants. Computational costs associated with all-

atom simulations, however, limit the size of the systems under investigation, and thus, the 

great majority of studies have focused on individual protein domains.

DBD

The p53 DBD is intrinsically unstable, often aggregating with small perturbations in 

temperature, ionic environment, or mutations. This domain is a hotspot region for cancer 

mutations (Figure 1) and has been the focus of several recent computational studies 
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highlighting the diverse effects of the single-point mutations. MD simulations of several 

structural mutants evidenced distinct conformational sampling in the S6/S7 loop, located at 

the vicinity of an aggregation-prone region, compared to wildtype [6]. Changes in the loop’s 

interaction network due to the mutations are suggested to drive the destabilization of the 

DBD, leading to unfolding and protein aggregation. The presence of allostery within the 

DBD that explains the inactivating effect of mutations located distant from the DNA binding 

surface has also been proposed for the R249S mutant using MD simulations [7] and the 

Y220C mutant following extensive sampling and Markov state models (MSMs) [8].

The flexibility of the DBD was highlighted in MD simulations of 20 mutants, which 

identified exacerbation of wildtype’s inherent structural vulnerabilities by the mutations 

and suggested a general mechanism for p53 rescue by targeting the so-called “structural-

disruption motifs” [9]. Using NMR in combination with equilibrium denaturation 

experiments, Bej et al [10] probed the backbone dynamics of the DBD, showing a linear 

correlation between the equilibrium denaturation parameters with the extent of changes in 

conformational entropy. Upon studying aggregation of p53 mutants using MD and coarse-

grained simulations of a DBD peptide segment containing the aggregation nucleating region 

in conjunction with biophysical experiments, Lima et al found polymorphisms in the β-sheet 

peptide aggregates [11]. Distinct structural destabilization and aggregation properties were 

also evident in experimental and computational studies of the DNA-contact R273 mutants, 

indicating that conformational instability is widespread among p53 mutants and the loss of 

contact with DNA may not be the single molecular basis of altered p53 function [12].

Significant research aims to develop wildtype p53 reactivating small molecules through the 

stabilization of the native, folded state over the unfolded, aggregated state [13]. Two small 

molecules, PRIMA-1 and its analogue APR-246, were identified in a cell-based screen from 

the National Cancer Institute library [14,15]. Both molecules have been shown to target 

mutant p53 proteins, restoring wild-type p53 transcriptional activity, and are currently in 

clinical trials [16]. Another class of stabilizers, termed cavity binders, have been developed 

to target the elongated surface crevice created by the Y220C mutation [5,17,18]. The 

conformational sampling afforded by computer simulations has additionally enabled the 

identification of promising druggable pockets in the DBD in a number of studies [6,8,19]. 

This includes cryptic pockets that are absent from the experimentally resolved structures but 

emerge in all-atom simulations, providing new therapeutic opportunities for p53 reactivation 

[8,19]. (Figure 2). Among these, the L1/S3 pocket is especially important as it exists across 

all mutant forms of p53 presenting a broad therapeutic opportunity [19].

CTD

The p53 CTD exhibits properties of an intrinsically disordered protein, binding a number 

of proteins by adapting various conformations: an alpha-helix, a beta-strand, a beta-turn, 

or disordered structures [20–24] (Figure 3). Kumar et al. probed the CTD’s conformational 

behavior upon changing protein environment, finding a distinct and predictable switch 

of residues 380–388 between an α-helical and β-sheet secondary structures [25]. Via 

circular dichroism spectroscopy and FRET, they probed the importance of temperature 

and hydrophobic interactions with binding partners in the secondary structure of the CTD, 
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finding that hydrophobicity allows the CTD to preferentially retain a more α-helical 

structure and higher temperatures allow for acquisition of secondary structure [25].

Kannan et al. investigated the binding of the p53 CTD to 5 of its binding partners, namely 

S100B, cyclinA, CBP, sirtuin, and Set9 using equilibrium and non-equilibrium MD in 

explicit solvent [26]. The equilibrium MD demonstrated that the free p53 CTD peptide 

fluctuates between various conformations, including the conformations captured in crystal 

structures of its complexes [26]. Using non-equilibrium MD, the unbinding of the p53 CTD 

peptide was achieved, indicating that long-range electrostatic interactions (e.g., farther than 

10 Å) results in formation of reactive conformations. This work further showed how peptide 

folding at or close to the binding interface steers the reactive conformations toward the 

binding partner [26].

Two recent separate studies on the p53 CTD peptide investigated secondary structure 

formation called molecular recognition features (MoRFs) with microsecond-timescale 

conventional MD or nanosecond-timescale replica-exchange MD [25,27]. Iida et al. 

focused on the interaction of the CTD peptide with S100B using virtual-system coupled 

multicanonical MD, a generalized ensemble MD simulation for enhanced conformational 

sampling [28]. They concluded that the CTD peptide adopts various conformations upon 

binding S100B rather than the single α-helical conformation observed in the NMR structure 

of the p53CTD-S100B complex. Analyzing the multimodal structural distribution of the 

complex, they found the conformation observed in the NMR model is the most probable 

orientation in the ensemble. They also found that the entropy of p53 CTD peptide in the 

S100B-bound state is higher than that of the free state, indicating conformational entropy 

may not affect p53CTD-S100B complex formation.

NTD

In the intrinsically disordered NTD, residues 10 to 40 are particularly important as they are 

found in a stable α-helix while in complex with MDM2, an important negative regulator 

of p53 [29] (Figure 3). The interface of the p53 NTD and MDM2 complex is an important 

drug target; as such, NTD structure and dynamics has received the attention of many 

researchers. Herrero-Nieto et al. combined MD at the millisecond timescale with MSMs 

to explore the ensemble of conformations of the p53 NTD peptide in isolation [30]. They 

found multiple states enriched in secondary structure elements including an α-helix as well 

as β-sheets in the conformational landscape of p53 NTD corresponding to about 40% of the 

equilibrium population. Apart from these structurally and kinetically diverse ordered states, 

the remaining 60% was completely heterogeneous and lacked any secondary structure. 

Zhao et al. coupled replica exchange molecular dynamics (REMD) simulations with MSMs 

to investigate the effect of dual phosphorylation at Ser46 and Thr55 on conformational 

ensemble of the p53 NTD peptide and found a slightly larger α-helical content in the 

ensemble after phosphorylation [31].

p53 and MDM2 engage in a negative autoregulatory loop, where upregulation of p53 

leads to increased expression of MDM2, which in turn binds and targets p53 for ubiquitin-

dependent degradation. Many tumors exploit this negative feedback loop by introducing 

MDM2 mutations to increase p53 degradation in cancer cells. Due to the co-dependence 
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of these two proteins, there have been great strides in utilizing computational methods 

to understand this protein-protein interaction. For example, metadynamics simulations 

[32], potential of mean force (PMF) studies [33], parallel cascade selection molecular 

dynamics (PaCS-MD) [34], MSMs [35–37], and modeling employing limited data (MELD)-

accelerated MD [38] have been used to understand the binding/unbinding process of p53 

and MDM2 at a molecular level. These methods were able to accurately predict the 

thermodynamic and kinetics of p53/MDM2 binding and reveal states along the p53/MDM2 

binding trajectory, which can all be used as models in p53/MDM2 structure-based drug 

design.

Our enhanced understanding of the p53/MDM2 interaction aids in designing inhibitors to 

disrupt this protein-protein interaction. This is evidenced by the number of drug discovery 

programs targeting p53/MDM2 as discussed in a recent review by Miller, Gaiddon, and 

Storr [4]. The Amgen compound, AMG232 (currently in Phase I/II clinical trials), is one of 

the most potent p53/MDM2 inhibitors to date exhibiting sub-nanomolar binding, inducing 

significant p53 upregulation, and demonstrating clinically suitable PK properties. Aileron 

Therapeutics developed a stapled peptide, ALRN-6924, a highly potent dual inhibitor of 

both MDM2 and MDMX that has been shown to restore p53 activity in vitro and in 
vivo and is undergoing Phase I clinical studies. MDMX is also a negative regulator of 

p53 that binds its transactivation domain to inhibit activation of p53 transcription factors; 

in particular, MDMX binds MDM2 to prevent its auto-ubiquitination, which stabilizes 

p53 ubiquitin-dependent degradation [39,40]. Therefore, dual targeting of both MDM2 and 

MDMX has provided an interesting avenue in significantly enhancing anticancer activity.

Modeling the full-length p53

Structural characterization of full-length proteins that contain folded and disordered 

domains is a major challenge. Thus, experimental and computational approaches generally 

analyze various fragments of such multidomain IDPs in isolation. However, folded or 

disordered components of multidomain IDPs do not function as isolated entities: instead, 

all components of the entire protein act in synergy. In support of this, Wright et al. recently 

showed the NTD’s importance in DNA binding accuracy using NMR and inteins, evidencing 

that the NTD reduces DBD binding to nonspecific p53 DNA by five-fold. This suggests 

competition between NTD and non-specific DNA in binding to the DBD while leaving 

response-element DNA binding uninhibited [41]. Furthermore, He et al. probed the NTD-

DBD interactions via NMR, showing small chemical shifts suggesting weak interactions, 

perhaps regulating binding between the DBD and response element DNA by nucleic acid 

mimicry or electrostatic screening [42].

Although there are high-resolution structures available for different domains of the full-

length protein (fl-p53), there is no x-ray crystallographic or NMR structure of the entire 

fl-p53 [43]. Characterizing the structural ensembles and long timescale dynamics of the 

fl-p53 structure, or at least of large multi-domain fragments, while in complex with DNA 

or other protein interactors in atomic detail would be invaluable for understanding the 

p53-activated tumor suppression pathways, as well as how its behavior changes with p53 

cancer mutations, post-translational modifications, or binding of small molecules or protein 
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interactors. A first glimpse into the fl-p53 monomer concerted dynamics has been provided 

by MD simulations of Chillemi et al. [44]. These simulations revealed correlated motions 

between the transactivation domain 1 (TAD1) and the proline-rich region of the NTD, the 

tetramerization region in the CTD, and Lys120 in the DBD.

Advances in computing architectures and software performance have made possible 

simulations of the explicitly solvated full-length DNA-complexed p53 at sufficient 

timescales that can reveal domain dynamics and allosteric communication in the fl-p53 

tetramer context. MD simulations of our all-atom integrative fl-p53 tetramer models bound 

to three different DNA sequences, namely a p21 response element, a PUMA response 

element and a nonspecific DNA sequence, yielded final structures consistent with electron 

microscopy maps and, for the first time, showed the direct interactions of the p53 CTD 

with DNA at the atomic level [45]. (Figure 4). Solvent mapping analyses of these nearly 

1 μs-long simulations revealed multiple potential druggable pockets in p53 and a collective 

principal component analysis identified sequence-dependent differential quaternary binding 

modes of the p53 tetramer to DNA [45]. In a subsequent study including wild-type p53 and 

the R175H mutant in the fl-p53 tetramer context, the symmetric quaternary DNA binding 

mode observed for the wild-type DBDs was found absent in the R175H mutant system, 

similar to the case of wild-type p53 DBDs binding to nonspecific DNA in the previous study 

[46]. These findings prove the requirement of functional p53 and an optimal DNA sequence 

for a productive binding mode of DBD and DNA at the molecular level.

Methods that can identify correlated motions and allosteric communication in protein 

structures can be extremely helpful for the interpretation of simulations of dynamic 

multidomain proteins such as full-length p53. A recent development of the dynamical 

network analysis method by Melo et al. provides exciting opportunities for the efficient and 

automated identification of communication pathways in biomolecular structures, including 

visualization in VMD [47]. The methodology is optimized enough to efficiently process 

large multi-subunit protein simulations, making it exceptionally poised for p53 and other 

complex proteins analysis. Another method developed by Porter et al. looks for cooperative 

changes in solvent exposure as indication of functionally relevant conformational changes 

and led to the identification of not only allosteric signaling but also cryptic pockets in tested 

systems [48]. Furthermore, connecting dynamical network analysis with MSMs is likely 

to indicate how residue-level communication networks shift in different states. Multiscale 

methods that intersect computational approaches operating at different scales are tools 

capable of addressing longer-range structure, dynamics and function questions in this and 

other systems [49].

Conclusions & Outlook

In this review we discuss recent efforts that have provided hitherto unseen insights into 

the structure, dynamics, function, and druggable new pockets of p53 through integrating 

cutting-edge computational and experimental biophysical approaches. Techniques that drill 

down into one p53 domain have provide value in their own right, but structure based drug 

design has great potential to now also use such integrated methods on the full-length p53 

structure as well as its complex with DNA. We posit that the larger-scale approaches to 
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p53 reactivation will be particularly useful in drug design, especially in the way that they 

provide a more complete understanding of how dynamics affects function, including insights 

on longer-range allosteric effects.

Taking a higher level view, the field of computational chemistry has made significant 

strides in developing methods to understand protein complexes, with p53 commonly used 

as an appropriate example. A related field that stands to benefit from such approaches is 

PROTAC design. PROTACs are a promising therapeutic modality, which selectively targets 

proteins for degradation through exploitation of the intracellular ubiquitin-proteasome 

machinery [50]. These hetero-bifunctional molecules consist of a target protein ligand, 

an E3 ligase ligand, and an often flexible linker. This new approach in drug design 

shows great promise in selectively and rapidly degrading target proteins, thereby inhibiting 

downstream signals associated with disease pathways. Indeed, PROTAC design may be a 

worthwhile approach in targeting p53-associated tumors. For example, Li et al. developed 

MD-224, the first MDM2 PROTAC that rapidly degrades MDM2 at concentrations < 1 nM 

in human leukemia cells and thereby prevents p53 degradation by MDM2 [51]. Similar 

computational approaches, as we and others have demonstrated for p53, can be used to learn 

the optimal ternary complex for PROTACS, as well as understand multidomain dynamics 

and communication in IDPs.

Similar to p53, many multi-domain hub proteins have long IDP regions which are used 

for mediating the interactions with their protein partners. Impairment of such interactions 

are often significant and disease associated. The computational approaches used to explore 

fl-p53 dynamics can be adopted to investigate dynamics and long-range communication 

of large multi-domain proteins and their complexes. With larger and larger structural 

information emerging from recent advances in single particle cryoelectron microscopy 

and cryoelectron tomography, computational approaches that can explore such realistic 

complexes without losing atomic detail will become an asset.
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Figure 1. 
P53 architecture and the hot-spot cancer mutations in p53 DNA-binding domain.
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Figure 2. 
Druggable pockets in p53 DNA-binding domain. (a) L1/S3 pocket in an MD-generated 

open conformation [19], (b) Mutation-induced Y220C pocket from crystal structure 

(pdbID:3ZME, chain A), (c) L6 pocket in an MD-generated open conformation [8].
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Figure 3. 
Binding interface of p53 CTD and NTD with several protein interactors: (a) CREB-binding 

protein, (b) Sir2 protein, (c) S100B and (c) MDM2. CTD shown in green representation and 

NTD in yellow. Specific residues involved in the protein-protein interactions are highlighted.
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Figure 4. 
Full-length p53 tetramer model in complex with DNA. DNA is depicted in light blue 

surface representation while NTD, DBD, TET and CTD domains of one fl-p53 monomer are 

highlighted in orange, pink, purple and green surface representation, respectively.
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