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Abstract

Programmable C•G-to-G•C base editors (CGBEs) have broad scientific and therapeutic potential, 

but their editing outcomes have been difficult to predict and their editing efficiency and product 

purity are often low. We describe a suite of engineered CGBEs paired with machine learning 

models to enable efficient, high-purity C•G-to-G•C base editing. We performed a CRISPRi screen 

targeting DNA repair genes to identify factors that affect C•G-to-G•C editing outcomes and used 

these insights to develop CGBEs with diverse editing profiles. We characterized ten promising 

CGBEs on a library of 10,638 genomically integrated target sites in mammalian cells and trained 

machine learning models that accurately predict the purity and yield of editing outcomes (R=0.90) 

using these data. These CGBEs enable correction to the wild-type coding sequence of 546 

disease-related transversion single-nucleotide variants with >90% precision (mean 96%) and up 

to 70% efficiency (mean 14%). Computational prediction of optimal CGBE-sgRNA pairs enables 

high-purity transversion base editing at >4-fold more target sites than can be achieved using any 

single CGBE variant.

Single-nucleotide variants (SNVs) represent approximately half of currently known human 

pathogenic gene variants1. Base editors, fusions of programmable DNA-binding proteins 

with base-modifying enzymes, enable conversion of individual target nucleotides in the 

genome2–10. The two major classes of base editors are cytosine base editors (CBEs), which 

convert C•G to T•A, and adenine base editors (ABEs), which convert A•T to G•C2,3,8. 

CBEs and ABEs can install transition mutations with high efficiency and product purity 

(the fraction of all edited alleles that contain only the desired edit), but in general, cannot 

efficiently install transversion mutations including C•G to G•C2,5,11,12.

We previously demonstrated that CBE editing byproducts, including C•G-to-G•C or 

C•G-to-A•T transversion outcomes, are inhibited by knockout of cellular uracil DNA N-

glycosylase (UNG) or by fusion of uracil glycosylase inhibitor (UGI)2,7,8,11,12, suggesting 

that transversion byproducts result from an abasic intermediate that is generated by UNG-

catalyzed excision of deaminated target cytosines (Fig. 1a). Consistent with this model, 

firstgeneration C•G-to-G•C base editors (CGBEs) were CBE derivatives that lack UGI 

domains11. These CGBEs, including editors with fusions to UNG and other DNA-repair 
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proteins13–16, can provide efficient C•G-to-G•C editing but only at a minority of tested 

target sites with few criteria to identify sites amenable to CGBE editing13–15.

Previously, we used libraries containing thousands of genomically integrated target sites and 

corresponding guide RNAs in mammalian cells to comprehensively characterize CBE and 

ABE base editing profiles. We used these data to train machine learning models (collectively 

named BE-Hive) that learned the sequence determinants driving CBE and ABE base editing 

outcomes12,17. We envisioned that broad characterization of the sequence determinants of 

CGBE editing outcomes could enable accurate prediction of editing efficiencies and product 

purities, and thus facilitate the broader use of CGBEs.

Here, we performed a focused CRISPR interference (CRISPRi) screen to identify DNA 

repair genes that impact cytosine base editing efficiency and purity. Guided by these 

data, we constructed various fusions proteins containing deaminases and Cas proteins 

fused to DNA repair components to engineer novel CGBEs with promising C•G-to-G•C 

editing activities. We characterized ten such CGBEs with diverse editing profiles using a 

“comprehensive context library” of 10,638 genomically integrated, highly variable target 

sites in mouse embryonic stem cells (mESCs)12. We used the resulting data to train machine 

learning models that successfully predict CGBE editing efficiency, purity, and bystander 

editing patterns with high accuracy (CGBE-Hive), enabling reliable identification of CGBE 

variants and target sites that together support high-purity C•G-to-G•C editing. Moreover, we 

show that editing activity is predicted with substantially higher accuracy by deep learning 

models compared to simpler models, indicating that CGBE-Hive has learned complex 

sequence features that play important roles in determining C-to-G editing activity. Notably, 

247 cytosines predicted by CGBE-Hive to be edited by a CGBE with >80% C•G-to-G•C 

editing purity were indeed edited in mammalian cell experiments with an average of 83% 

purity.

The panel of CGBEs in this study offer diverse editing profiles that collectively expand 

the sequence landscape amenable to high-quality C•G-to-G•C editing by up to 4.1-fold 

over the number predicted to be amenable to editing by any single CGBE. Finally, we 

demonstrate CGBE-mediated correction of 546 disease-associated single-nucleotide variants 

(SNVs) with >90% precision among the resulting edited amino acid sequences. These 

findings advance our understanding of transversion base editing outcomes and provide new 

CGBEs that improve the scope and utility of base editing.

Results

Exploring the activity of DNA glycosylases in C•G-to-G•C transversion outcomes

Previous work suggested that excision of uracil from genomic DNA to generate an abasic 

lesion followed by error-prone polymerase activity on the strand opposite the abasic site 

results in C•G-to-G•C and C•G-to-A•T transversion outcomes (Fig. 1a)2,11,16. Motivated by 

this model, we sought to develop C•G-to-G•C base editors that enhanced uracil excision at 

CBE-edited nucleotides. We started with a CBE architecture lacking UGI (BE4B) (bpNLS–

APOBEC1–Cas9 D10A–bpNLS; abbreviated AC), similar to other reported CGBEs13–15.
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We fused a variety of known uracil excising and binding enzymes to the C-terminus of the 

BE4B (AC) scaffold and assessed the frequency of C•G-to-G•C edits across five genomic 

loci in HEK293T cells (Fig. 1b). Several glycosylases (i.e., SMUG1, MBD4, and TDG2) 

did not alter editing outcomes, and fusion to UNG led to a reduction of C•G-to-G•C 

editing yield and purity at three out of five targeted sites, consistent with a recent report13. 

Nevertheless, we found that fusion of a UNG orthologue from Mycobacterium smegmatis 
(UdgX) moderately improved C•G-to-G•C product purity by 1.2-fold on average18–20, with 

the largest improvement at the RNF2 locus (56±0.8% with BE4B to 72±2.1% with AC–

UdgX; p=0.0002, Student’s two-sided t-test) and significant changes observed at HEK site 

2 C6, HEK site 3 C5, and EMX1 C6 (p<0.01, Student’s two-sided t-test). However, we 

observed only modest changes to editing yield (1.1-fold relative to BE4B at the most 

efficiently edited C across the five tested genomic loci). These observations suggested that 

fusion partners may enhance C•G-to-G•C transversion base editing outcomes.

Next, we asked whether the orientation of the glycosylase fusion impacts editing outcomes. 

We constructed BE4B (AC) fusion variants with either UdgX (abbreviated X) or GFP in 

three orientations: at either the N- or C-terminus (e.g., XAC or ACX) or between the 

deaminase and Cas9 (e.g., AXC). We observed that C•G-to-G•C editing was similar or 

slightly improved for UdgX fusions compared to N- and C-terminal GFP fusions (Fig. 1c). 

However, the editing efficiency and purity of AXC was modestly higher than that of the 

best GFP fusion at a majority of sites (four out of five sites for efficiency; three out of five 

sites for purity). We chose to advance the AXC architecture since it offered similar or better 

performance than the XAC and ACX variants at these test loci.

CRISPRi screen for determinants of base editing outcomes

Next, we investigated whether other DNA repair or translesion synthesis factors impact C•G-

to-G•C editing outcomes of AXC. We observed no significant changes in editing purity of 

AXC in individual UNG, APE1/APEX1, MLH1, REV1 knockout cell lines, and direct AXC 

fusions to mammalian polymerase domains did not consistently improve editing outcomes 

(Supplementary Figs. 1-2; Supplementary Discussion 1). We thus performed a much broader 

search for modulators of cytosine transversion editing by performing two high-throughput 

genetic screens.

Using a recently developed screening platform21 capable of reading out DNA repair 

outcomes by DNA sequencing (Fig. 2a-b, Supplementary Fig. 3a), we investigated how 

knockdown of each of 476 genes, a set enriched for regulators of DNA repair, impacts 

the activity of BE1 (deaminase–dCas9) and BE4B (AC) editors. Briefly, we transduced an 

sgRNA library (1,513 gene-targeting sgRNAs and 60 non-targeting controls, Supplementary 

Table 1) into HeLa cells stably expressing the CRISPRi effector dSpCas9–KRAB22. After 

allowing 5 days for gene knockdown, we transfected the cells with plasmids encoding 

SaCas9-based CBEs (either SaCas9-BE1 or SaCas9-BE4B) and an SaCas9 sgRNA that 

targets a sequence adjacent to the genomically integrated SpCas9 sgRNA sequences. 

Notably, we used SaCas9-based CBEs to avoid guide RNA exchange between the base 

editors and CRISPRi machinery. A key aspect of this approach was that the proximity of 

the target site and CRISPRi sgRNA enabled these features to be read out together by paired-
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end DNA sequencing, thus linking editing outcomes to CRISPRi perturbation identities 

(Fig. 2a). To prepare samples for sequencing, we isolated genomic DNA from treated 

cells, affixed unique molecular identifiers (UMIs) to DNA fragments containing both the 

sgRNA expression cassettes and edited target sites, and sequenced the linked sgRNA, target 

sites, and UMI sequences. Comparing frequencies of editing outcomes from each CRISPRi 

sgRNA with those from non-targeting sgRNAs (examples in Fig. 2b, Supplementary Fig. 

3a) then identified genes that promote or suppress various editing outcomes (Supplementary 

Table 2).

Consistent baseline activity of BE1 and BE4B in the screens enabled quantitation of editing 

differences driven by CRISPRi sgRNAs (Fig. 2, Supplementary Fig. 3, Supplementary Fig. 

4). To evaluate differences in point mutations, we calculated the effects of all CRISPRi 

sgRNAs on the frequencies of two major categories: outcomes containing any C•G-to-T•A 

point mutation and outcomes containing any C•G-to-G•C point mutation (Fig. 2c). For 

both classes, the effects of individual CRISPRi sgRNAs were consistent between replicates 

(Fig. 2c, upper left and lower right panels). Comparison between classes though revealed 

that some CRISPRi sgRNAs showed different effects on C•G-to-T•A versus C•G-to-G•C 

outcomes (Fig. 2c, upper right panel), indicating that specific genes influence partitioning 

between these outcomes. In the BE4B screen, the clearest differential effects resulted from 

sgRNAs targeting UNG (Fig. 2b, c). Consistent with the effects of UGI fusions and UNG 
loss2,11, UNG knockdown increased frequencies of C•G-to-T•A editing while decreasing 

frequencies of C•G-to-G•C editing. Notably, the effects of UNG repression on BE1 editing 

were not as significant or straightforward (Supplementary Fig. 3a,c), perhaps reflecting 

differences in how nicked versus unnicked target substrates are processed (Fig. 2b and 

Supplementary Fig. 3a).

One advantage to screening with sequencing-based readouts was that we could detect 

changes to a diverse range of editing products. For example, we also observed that 

CRISPRi-mediated depletion of double-strand breaks (DSB) repair genes affect the 

frequency of rare indels caused by base editing, though these pathway-phenotype 

relationships were not always straightforward (Supplementary Fig. 4a, Supplementary Table 

2). Indeed, while knockdown of HDR factors BRCA1, BRCA2, and PALB2 increased 

AC-generated deletions, depletion of the HDR gene BLM decreased them. Interestingly, 

depletion of BRCA2 was also among the strongest reducers of C•G-to-T•A editing outcomes 

(Supplementary Fig. 4b). We also identified genes that affect the base editing window 

(Supplementary Figs. 4c, 5; Supplementary Discussion 2).

To identify genes that specifically promoted C•G-to-G•C editing, we calculated the relative 

fraction of outcomes containing any C•G-to-G•C edit among outcomes containing any 

point mutation for each CRISPRi sgRNA (Fig. 2d and Supplementary Fig. 4d). The gene 

whose knockdown most significantly reduced the C•G-to-G•C editing fraction compared to 

non-targeting sgRNAs was RFWD3, an E3 ligase with multiple roles in DNA repair recently 

identified as required for successful translesion synthesis across a variety of genomic 

lesions23. Other hits included UNG; multiple subunits of the replicative polymerase POLD 
and replicative clamp loader RFC; EXO1; translesion polymerases REV1 and REV3L; and 

RAD18, an E3 ubiquitin ligase involved in translesion synthesis (Supplementary Table 2). 
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The different phenotypes for REV1 knockdown versus our individual knockout cell line may 

arise from compensatory mechanisms that could alter DNA repair outcomes in cells lacking 

REV1. We also identified genes whose knockdown reduced frequencies of both C•G-to-T•A 

and C•G-to-G•C base editing for both BE1 and BE4B (Supplementary Fig. 4e), including 

ASCC3, which may act by affecting accessibility of the target locus, a known determinant 

of base editing efficiency2,3,8. Together, these screen results suggest important roles for 

DNA replication processes, especially translesion synthesis, in modulating C•G-to-G•C base 

editing outcomes.

CBE fusion proteins can alter C•G-to-G•C transversion outcomes

To further advance the development of CGBEs, we generated new CGBE candidates by 

fusing AXC, the prototype CGBE described above, to proteins nominated by our CRISPRi 

screens. These included those encoded by genes that reduced C•G-to-G•C editing following 

knockdown, including DDX1, EXO1, POLD1, POLD2, POLD3, RAD18, RBMX, REV1, 

RFWD3, and TIMELESS, and several additional genes involved in DNA polymerization, 

some of which also affected editing outcomes in the CRISPRi screen (PCNA, POLH, 

POLK, UBE2I, and UBE2T, Supplementary Table 2).

We fused each of these proteins to the N- or C-terminus of AXC to assess their effect 

on C•G-to-G•C editing efficiency or purity and assessed their editing performance at 

five genomic loci in HEK293T cells. Three proteins increased C•G-to-G•C editing purity 

when fused to the N-terminus of AXC (Supplementary Fig. 6a): DNA polymerase D2 

(POLD2), exonuclease 1 (EXO1), and RNA binding motif protein X-linked (RBMX). 

Editing improvements for fused constructs varied by site. The most pronounced effects were 

observed at the RNF2 locus, where editing purity significantly improved from 54±1.4% 

with AXC to 73±0.4% with RBMX–AXC, 74±1.4% for EXO1–AXC, and 77±0.8% for 

POLD2–AXC (p < 0.001, Student’s two-sided t-test). Marginal improvements in purity were 

also observed at HEK site 2, HEK site 3, and HEK site 4 loci. At RNF2 we also observed 

a significant increase in editing yield from 43±2.4% with AXC to 50±5.2% with RBMX–

AXC, 53±3.6% with EXO1–AXC, and 55± 5.5% for POLD2–AXC (p < 0.05, Student’s 

two-sided t-test). C-terminal fusions typically did not perform as well as N-terminal fusions 

(Supplementary Data 1).

Encouraged by these improvements, we developed additional candidate CGBEs 

containing RBMX, EXO1, POLD2, and UdgX as fusions to AXC. We compared 

single and dual pairwise fusion architectures for these components, testing N- and 

C-terminal dual fusions as well as tandem N terminal fusions (N-, N-) using 

32-residue linkers identified in a linker-testing experiment for these constructs 

(Supplementary Fig. 7). From a total of 28 single- and dual-fusion proteins 

tested, the four dual fusion architectures POLD2–deaminase–UdgX–nCas9–RBMX, 

POLD2–deaminase–UdgX–nCas9–UdgX, UdgX–deaminase–UdgX–nCas9–UdgX, and 

UdgX–deaminase–UdgX–nCas9–RBMX further increased C•G-to-G•C editor yield and 

purity at some sites (on average, by +10% and +13%, respectively) compared to single 

fusion architectures across nine cytosines in five genomic loci (Supplementary Fig. 6b).
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Collectively, these results indicate that CGBEs, including fusions to proteins identified in the 

CRISPRi screen, can affect C•G-to-G•C editing outcomes in a site-dependent manner. Some 

base editing applications may prioritize protein size over other base editing characteristics. 

We therefore explored the use of trans-splicing split-inteins as a means to reduce the size 

of large CGBEs into two smaller protein components24, and observed no changes in editing 

outcomes of split-CGBEs compared to their full-length counterparts (Supplementary Fig. 

8). When necessary, these split CGBE variants may support favorable cytosine transversion 

outcomes without requiring the expression of full-length proteins.

Base editor deaminase and Cas9 domains bias repair outcomes

We next sought to understand how different deaminase domains affect C•G-to-G•C editing 

in the AXC architecture. Since the base editing window may influence cytosine transversion 

outcomes2,11,12, we examined a panel of catalytically impaired deaminases that support 

different CBE editing windows25 and observed an increase in C•G-to-G•C editing purity at 

three of five tested loci (Fig. 3a). The APOBEC1 R126E R132E (EE)25 deaminase showed 

the greatest improvement, averaging 1.2-fold higher product purity at HEK site 2, HEK site 

3, and RNF2. Editing yield with these deaminase alternatives varied by locus. We observed 

similar or reduced editing yield compared to AXC at four out of five loci that is likely due 

to the lower catalytic activity of these deaminases, though reduced yield did not correlate 

with altered C•G-to-G•C purity. Editing yield by EE-AXC at the RNF2 locus significantly 

improved (AXC=52±3.2% vs. EE-AXC=66±3.5%, p=0.007, Student’s two-sided t-test).

We also hypothesized that changes to the Cas9 binding domain of CGBEs could alter 

editing windows and C•G-to-G•C editing outcomes by altering the competition between 

Cas9 and repair machinery for access to the target locus. We assessed AXC editors that use 

Cas9 variants with different binding kinetics, including new variants with combinations of 

previously reported Cas9 mutations (Fig. 3b)26–29. AX–HF-nCas9 substantially improved 

C•G-to-G•C editing at the C9 position of the HEK site 3 locus, increasing yield 

(AXC=34±1.9% vs. AX–HF-nCas9=52±1.7%,) and purity (AXC=49±2.2% vs. AX–HF-

nCas9=60±1.2%) (p < 0.005 for both, Student’s two-sided t-test) (Fig. 3b). AX-Hypa-nCas9 

showed similar effects but AX-HF-nCas9 typically performed modestly better. These results 

suggest Cas protein binding parameters can affect C•G-to-G•C editing yield and purity of 

CGBEs at some target loci.

The balance of editing yield and purity among candidate CGBEs and the variability in these 

two measures across different loci suggests that different target sites will be best edited 

by different CGBEs. Therefore, a suite of CGBEs with different kinetics and substrate 

preferences would likely enable efficient and high-purity C•G-to-G•C editing across a 

broader range of diverse target sequences than could be achieved by any single CGBE 

variant alone.

Combining deaminase, Cas9 domain, and DNA repair fusion proteins into new CGBEs

We integrated the above findings from varying protein fusions, deaminases, and Cas 

domains into improved CGBEs. We evaluated the four most promising dual-fusion AXC 

editors (POLD2–AXC–RBMX, POLD2–AXC–UdgX, UdgX–AXC–RBMX, and UdgX–
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AXC–UdgX), four single-fusion AXC editors (POLD2–AXC, RBMX–AXC, EXO1–AXC, 

and UdgX–AXC), AXCs with deaminase variants of those same editors, and direct 

deaminase–nCas9 CGBEs without additional fusion proteins. The five cytidine deaminases 

tested in these 10 CGBE architectures included rAPOBEC1, EE, Anc689 (ancestrally-

reconstructed APOBEC1 node 68930), eA3A, and eA3A-T31A12. In addition, we tested 

both SpCas9 nickase and HF-Cas9 nickase variants. In total, we evaluated 95 candidate 

CGBEs at eight genomic loci in HEK293T cells.

No single CGBE outperformed all other candidates at all sites (Fig. 4a). To identify a set of 

the most promising CGBEs, we selected 32 editors that demonstrated improved C•G-to-G•C 

editing outcomes at some sites for testing at eight additional genomic loci (Fig. 4b). We used 

these data to identify ten CGBEs with high purity, yield, and maximally distinct activities 

at different endogenous loci using quadratic programming and hierarchical clustering 

(Supplementary Methods): Anc689–nCas9, UdgX–Anc689–UdgX–nCas9–RBMX, eA3A–

nCas9, RBMX–eA3A–UdgX–HF-nCas9, RBMX–eA3A–UdgX–nCas9, EE–nCas9, UdgX–

EE–UdgX–nCas9–UdgX, APOBEC1–nCas9, UdgX–APOBEC1–UdgX–HF-nCas9, and 

POLD2–APOBEC1–UdgX–nCas9–UdgX.

To test how this set of CGBEs performed in human cell lines other than HEK293T cells, we 

assayed the ability of each of these CGBEs to edit five target genomic sites in K562, U2OS, 

and HeLa (Supplementary Fig. 9). We observed that while CGBE outcomes vary modestly 

by cell type, the top-performing CGBE variants for each tested site were generally the same 

in all three additional cell lines. These results indicate that deaminase, Cas protein, and DNA 

repair protein variants can improve C•G-to-G•C editing in across different cell types.

Target library characterization of CGBEs

We observed that different target loci were best edited by different CGBEs, indicating that 

diverse CGBE sequence preferences may be strong determinants of C•G-to-G•C editing 

efficiency and purity. Previously, we used high-throughput analysis of base editing outcomes 

at thousands of genomically integrated target sequences to better understand CBE and ABE 

sequence-activity relationships, and we used these data to train machine learning models that 

facilitate the selection of target sequences amenable to C•G-to-G•C conversion by CBEs12. 

We envisioned that comprehensive characterization of our top ten promising and diverse 

CGBEs could similarly aid in the selection of targets amenable to efficient and high-purity 

C•G-to-G•C editing by specific CGBEs.

We characterized each of the ten CGBEs using a high-throughput genome-integrated 

library assay of 10,638 matched sgRNA and target pairs in mESCs, previously referred 

to as the “comprehensive context library”12. The target sequences in this library cover 

all possible sequence contexts surrounding the edited C•G with minimal sequence bias 

(Fig. 5a, Supplementary Methods). To detect editing outcomes with high sensitivity, we 

maintained an average coverage of ≥300x per library member throughout the course of 

the experiment and an average sequencing depth of ≥4,000x per target. We collected two 

biological replicates per CGBE characterization experiment. We previously validated that 

the library assay data has strong consistency between biological replicates and is concordant 

with data from base editing endogenous genomic loci12,31.
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We used the resulting library data to quantify editing windows and product purities for each 

CGBE (Fig. 5b, Supplementary Methods). CGBE editing activity was generally centered 

around protospacer position 6 with editing window widths ranging from 3 nt (EE–nCas9; 

positions 5–7) to 8 nt (UdgX–APOBEC1–UdgX–HF-nCas9 nickase; positions 4–11). The 

editing windows of CGBEs with additional components beyond Cas and deaminase domains 

were shifted by up to 3 nt compared to direct deaminase–Cas fusions, indicating that CGBE 

protein fusions can affect editing window size and position.

Engineered CGBE architectures showed significant improvements in C•G-to-G•C product 

purity compared to simple deaminase–nCas9 fusions. Across the 10,638 target sites 

in the comprehensive context library, the fusion CGBEs POLD2–APOBEC1–UdgX–

nCas9–UdgX, UdgX–EE–UdgX–nCas9–UdgX, and UdgX–Anc689–UdgX–nCas9–RBMX 

showed 25% higher mean C•G-to-G•C purity than their corresponding deaminase–nCas9 

counterparts within each editor’s editing window (P < 5.1×10−9; Welch’s t-test) (Fig. 5c). 

We observed large variation in CGBE editing efficiency, with mean efficiency ranging 

from 1.8% by UdgX–EE–UdgX–nCas9–UdgX to 23.0% by Anc689–nCas9 across the 

comprehensive context library within the same experimental batch. Notably, the protein 

fusion CGBEs exhibiting increased C•G-to-G•C purity also reduced editing yield by 1.4- to 

1.6-fold on average.

C•G-to-G•C editing purity exceeded 90% for at least one of the tested CGBEs at 895 

cytosines across the comprehensive context library. Some cytosines edited with purities as 

high as 90–100% by some CGBEs were edited with purity as low as 0–10% by other 

CGBEs, indicating that these CGBEs indeed offer complementary editing characteristics, 

and confirming that a panel of diverse CGBEs maximizes the utility of C•G-to-G•C base 

editing compared to using any single CGBE (Fig. 5d). We clustered CGBEs by C•G-to-

G•C editing purity across the comprehensive context library and observed that engineered 

CGBEs did not cluster by deaminase (Fig. 5e), indicating that protein fusion engineering of 

CGBE architectures resulted in distinct sequence preferences governing C•G-to-G•C editing.

Sequence determinants and machine learning modeling of CGBE activity

C•G-to-G•C product purity of CGBEs varies substantially by sequence context (Fig. 5f). 

We observed 24.7±26.3% average C•G-to-G•C purity across all tested CGBEs for cytosines 

positioned near the center of the editing window, with substantial variation across target 

sequences: the top 5% had >79.6% C•G-to-G•C purity while the bottom 5% had <1.0%. 

To decipher the sequence determinants that underly CGBE activity, we computed simple 

motifs for editing efficiency and transversion purity using a logistic regression model that 

considers each nucleotide independently (Fig. 5g, Supplementary Methods)12. These motifs 

revealed that TC is strongly favored while GC is disfavored for editing efficiency across 

the tested CGBEs. We further trained gradient-boosted regression trees to predict CGBE 

editing efficiency sequence context, which achieved good accuracy with R=0.57–0.77 at 

held-out target sites. Consistent with our previous characterization of BE4 variants12, we 

observed sequence motifs that associated RCTA with higher C•G-to-G•C purity (R=A or 

G) across all characterized CGBEs. Cytosines in an ACTA motif were edited with an 

average C•G-to-G•C purity of 68.7% (N=1,760) across CGBEs, substantially higher than the 
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24.7% average across all sequence contexts, indicating a major role for sequence context in 

determining C•G-to-G•C editing outcomes. These simple target sequence motifs predicted 

27.0%−53.3% of the variation in C•G-to-G•C purity.

Next, we trained BE-Hive models for these ten CGBEs (termed CGBE-Hive) and evaluated 

the models’ ability to predict C•G-to-G•C editing purity at held-out sequence contexts not 

seen during training. These models explained 58.3%−76.3% of the variance in C•G-to-G•C 

purity in the held-out dataset, a substantial improvement over logistic regression described 

above (27.0%−53.3%) (Fig. 5h). This performance improvement highlights that while C•G-

to-G•C purity can be predicted using a simple motif such as RCTA that considers each 

nucleotide independently, higher-order interactions between nucleotides learned by deep 

neural networks substantially improve C•G-to-G•C editing purity predictions. Collectively, 

these observations establish that CGBE editing efficiency and purity can be accurately 

predicted by machine learning models.

To further investigate sequence determinants of CGBE editing outcomes, we calculated 

target sequence motifs for cytosines with the highest C•G-to-G•C efficiency for each 

CGBE (Supplementary Methods). While most CGBEs shared sequence preferences favoring 

TC for overall editing efficiency and RCTA for purity, different CGBEs had distinct 

motifs that correlated with C•G-to-G•C yield. POLD2–APOBEC1–UdgX–nCas9–UdgX 

favored RCTA for C•G-to-G•C yield, while eA3A–nCas9 simply favored TC (Fig. 5i). 

Interestingly, RBMX–eA3A–UdgX–nCas9 favored CTC, while UdgX–EE–UdgX–nCas9–

UdgX favored TCT, and Anc689–nCas9 favored CTA (Fig. 5i). These observations reveal 

that different CGBEs show distinct sequence preferences that influence the yield of C•G-to-

G•C outcomes.

We provide machine learning models trained on up to 10,638 sgRNA-target pairs for these 

ten CGBEs in our online interactive web app (www.crisprbehive.design)12. Users can query 

sgRNAs and target sequences for data-driven predictions on editing outcomes of all CGBEs 

characterized in this study.

Model-guided correction of pathogenic transversion SNVs

To extend the applicability of these CGBEs, we assessed their compatibility with PAM-

variant Cas9 proteins. We evaluated editing at eight loci by CGBEs using Cas9-NG, an 

engineered SpCas9 variant with broadened PAM compatibility32, and observed similar 

editing purities to SpCas9 CGBEs at NGG PAM substrates (Supplementary Fig. 10, 11). The 

best performing NG-CGBEs at each locus retained >50% yield relative to SpCas9 CGBEs at 

targets with NGG PAMs (Supplementary Fig. 10).

Given the broadened targeting scope of NG-CGBEs we sought to characterize their 

performance on the “transversion-enriched SNV library”12 in mESCs, which contains 

3,400 sgRNA-target pairs selected by BE-Hive from 18,523 disease-related G•C-to-C•G 

and A•T-to-C•G SNVs from the ClinVar and HGMD databases that are targetable by 

Cas9-NG1,33, predicted to be correctable by cytosine transversion base editing with high 

purity and yield. We generated the following NG-CGBEs based on their performance on the 

comprehensive context library: Anc689–nCas9-NG, APOBEC1–nCas9-NG, eA3A–nCas9-
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NG, UdgX– Anc689–UdgX–nCas9-NG –RBMX, and UdgX–APOBEC1–UdgX–HF-nCas9-

NG. As Cas9-NG generally demonstrates reduced editing activity compared to wild-type 

SpCas932, similar to HF-Cas9, we included UdgX–APOBEC1–UdgX–nCas9-NG without 

the HF modifications as an alternative binding-impaired Cas9-fusion variant.

All six CGBEs tested on the transversion-enriched SNV library enabled high-purity C•G-

to-G•C editing at disease-associated SNVs. At 247 cytosines predicted by CGBE-Hive 

to have >80% C•G-to-G•C editing purity, CGBEs demonstrated an average of 83% C•G-

to-G•C editing purity (Fig. 6a). Each CGBE corrected > 200 SNVs to their wild-type 

coding sequence with >90% precision among edited amino acid sequences (amino acid 

correction precision; Fig. 6b), with a total of 546 unique SNVs across CGBEs. For 

example, in the genomeintegrated library, eA3A–nCas9-NG corrected the G•C-to-C•G SNV 

in COL3A1 associated with Ehlers-Danlos syndrome34 with 71.4% yield and 92.8% purity, 

and corrected an SNV in BRCA2 associated with familial breast and ovarian cancer35 

with 66.5% yield and 82.5% purity. The fusion CGBE UdgX–APOBEC1–UdgX–nCas9-NG 

corrected an SNV in NSD1 associated with Sotos syndrome36 with 40.0% yield and 73.4% 

purity and corrected an SNV in NIPBL associated with Cornelia de Lange syndrome37 with 

38.8% yield and 76.9% purity. Collectively, these results reveal efficient and high-purity 

correction of hundreds of disease-related SNVs by CGBEs.

Notably, the UdgX–APOBEC1–UdgX–nCas9 CGBE maintained a similar high purity of 

C•G-to-G•C editing between HF-nCas9 and nCas9-NG variants. UdgX–APOBEC1–UdgX– 

nCas9-NG, however, offered substantially better yield of genotype and coding sequence 

corrected G•C-to-C•G SNVs (Fig. 6a,b). These results suggest that fusion of CGBEs to 

Cas9-NG variants may obviate the need to use HF-variant Cas9-proteins to alter their 

binding kinetics to promote C•G-to-G•C editing outcomes.

The best-edited targets in the transversion-enriched SNV library varied greatly by CGBE. 

Some SNVs edited with >90% purity by one CGBEs had purity below 5% for other CGBEs 

(Supplementary Fig. 12). CGBE-Hive models accurately accounted for this diversity in 

editing purity in the transversion-enriched SNV library, and accurately predicted the yield 

of exact genotype correction products and of alleles with corrected amino acid sequences 

(R=0.89–0.93 and R=0.91–0.94, respectively, Fig. 6c), as well as the DNA and amino acid 

correction precision (R=0.77–0.85 and R=0.82–0.90, respectively, Fig. 6d), including targets 

with multiple cytosines in the editing window. Since accurately predicting correction yield 

and precision requires accurate predictions for CGBE efficiency, C•G-to-G•C purity, and 

bystander editing patterns, these results establish that CGBE-Hive has learned important 

aspects of CGBE editing activity and can guide the use of CGBEs for high-purity correction 

of disease-related transversion SNVs.

Using CGBE-Hive to pick the best among the characterized CGBEs to correct each 

SNV should achieve greater C•G-to-G•C correction than applying any single CGBE to 

a set of targets. Indeed, we observed that using CGBE-Hive to choose the three CGBE 

variants predicted to best achieve the desired edit (top-3 performance) increased the number 

of targets corrected with ≥90% precision or to ≥40% efficiency by 4.1- and 5.0-fold, 

respectively, compared to the number of targets that are expected to be corrected with 
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these precision and efficiency thresholds by picking any single CGBE (Fig. 6e). These 

improvements of 4.1- and 5.0-fold by using the top three CGBE-Hive choices were nearly 

identical to the performance from picking the best CGBE out of all six options in hindsight. 

CGBE-Hive also displayed strong top-1 performance: Using CGBE-Hive to choose just 

a single CGBE increased the number of targets corrected with ≥90% precision or to 

≥40% efficiency to 1.7- and 4.0-fold, respectively, compared to picking a single CGBE 

in expectation.

For correction precision, CGBE-Hive recovered the best performing CGBE variant in its top 

choice in 43.3% of targets and in its top three choices in 84.2% of target sequences. For 

correction yield, CGBE-Hive recovered the best-performing CGBE variant in its top choice 

in 67.5% of targets and in its top three choices in 97.2% of targets. These results collectively 

demonstrate that this panel of CGBEs have diverse editing activities that CGBE-Hive has 

learned to predict, to optimize selection of the most promising CGBE variant to use for a 

desired edit. These improvements were also observed at endogenous loci in HEK293T cells 

(Fig. 6f, Supplementary Discussion 3). Thus, CGBE-Hive enables researchers to reap the 

benefits of the diversity of CGBEs developed in this study without the need to test all CGBE 

variants.

Comparisons with recently reported CGBEs, prime editing, and off-target profiling

Next, we determined whether the CGBE variants described in this work extend the scope 

of C•G-to-G•C base editing beyond those accessible with recently described CGBEs or 

PE. We were encouraged to find that the CGBEs developed in this study extend the 

scope of C•G-to-G•C genome editing by enabling higher yields and product purities at a 

wider array of target sequences compared to the use of previously described CGBEs alone 

except at loci already edited with high yield and purity by deaminase–nCas9 constructs 

(Supplementary Fig. 13; Supplementary Discussion 4). Furthermore, we observed that 

these novel CGBEs complement prime editing (PE) technology38. We found PE typically 

offers higher product purities while editing with CGBEs offers higher editing yields at 

some loci (Supplementary Fig. 14; Supplementary Discussion 5), consistent with recent 

reports13–15,38. Notably, prime editing currently requires extensive optimization of pegRNA 

features to achieve high-efficiency edits, while CGBE-Hive prediction obviates CGBE editor 

selection. CGBEs complement prime editing for efficient C•G-to-G•C editing, although 

additional optimization of both technologies may further improve their properties.

We also sought to characterize potential off-target editing outcomes of CGBEs. Since the 

genome-wide off-targets of base editors that use cytosine deaminase enzymes are known 

to be predominantly sgRNA dependent, we characterized Cas9-dependent off-target editing 

profiles of CGBEs by examining the activity of CGBEs at previously confirmed off-target 

loci of corresponding Cas9:sgRNA complexes8. The architectural changes and protein 

fusions used to develop the CGBEs in this study resulted in lower Cas9-dependent off-

target editing compared to corresponding CGBEs lacking protein fusions (Supplementary 

Fig. 11, 15), despite their generally higher on-target editing, perhaps because the more 

complex fusions or architectural changes introduce additional conformational requirements 

in editor:DNA complexes that are not met by some off-target loci (see Supplementary 
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Discussion 6). While DNA repair protein CGBE components may result in additional Cas-

independent off-target effects, these are likely to differ by cell type and delivery method, and 

therefore are best assessed for each application.

Discussion

Understanding and controlling the outcomes of genome editing experiments are important 

challenges for achieving targeted, precise genome manipulation. We investigated molecular 

determinants of transversion base editing, including the effects of the deaminase and Cas 

effector domains, as well as many DNA repair proteins, and used these insights to engineer 

novel CGBEs. We characterized the editing outcomes and performance of these reagents 

using a high-throughput genome-integrated library assay in mammalian cells and identified 

sequence features that affect base editing outcomes of ten diverse CGBEs. We showed that 

C-to-G editing activity is predicted with substantially higher accuracy by deep learning 

models compared to simpler models, indicating that complex sequence features drive C•G-

to-G•C editing activity.

We provide trained CGBE-Hive machine learning models which accurately predict CGBE 

efficiency, C•G-to-G•C editing purity, and bystander editing patterns (R=0.90) to enable 

predictable and consistently pure CGBE editing. We demonstrate a machine learning 

workflow using CGBE-Hive to identify optimal CGBE and sgRNA editing strategies to 

install a desired edit and show that this workflow expands high-efficiency and high-purity 

C•G-to-G•C editing to more loci than using any single CGBE by 5.0-fold and 4.1-fold 

with the top three CGBE-nominated choices. We demonstrate CGBE-mediated correction 

of the amino acid sequences of 546 disease-associated single nucleotide variants (SNVs) 

with >90% precision. Furthermore, we demonstrated efficient and pure installation of 

four disease-relevant SNPs and tested the performance of these tools in other mammalian 

cell lines. Collectively, the base editor and computational tools presented in this work 

substantially improve the targeting scope, effectiveness, and utility of CGBE-mediated 

transversion base editing.

Methods

General methods

DNA oligonucleotides were obtained from Integrated DNA Technologies (except where 

otherwise specified). All mammalian editor plasmids used in this work were cloned by 

Gibson assembly according to manufacturer’s protocols. Except for the CRISPRi library, 

plasmids expressing sgRNAs were constructed by ligation of annealed oligonucleotides into 

BsmBI-digested acceptor vector as previously described24,30. Plasmids expressing pegRNAs 

were constructed by Golden Gate assembly using a custom acceptor plasmid as previously 

described38. Protospacer sequences of sgRNAs used for non-library experiments in this 

work are listed in Supplementary Table 4. pegRNA protospacer and extension sequences are 

listed in Supplementary Table 4, tab #3. Vectors for low-throughput mammalian cell 

experiments were purified using Plasmid Plus Midiprep kits (Qiagen) or PureYield plasmid 

miniprep kits (Promega), which include endotoxin removal steps. Cloning of the CBE 

SaCas9 sgRNA for screening was conducted by KLD assembly according to the 

Koblan et al. Page 13

Nat Biotechnol. Author manuscript; available in PMC 2022 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



manufacturer’s protocol using BPK2660 (Addgene #70709) as a template with the following 

primers (protospacer is bolded): GGTGTTTCGTCCTTTCCACAAGATA, 

gCTGATAGGCAGCCTGCACTGGGTTTTAGTACTCTGTAATGAAAATTACAGAATC

TAC.

General mammalian cell culture conditions

HEK293T (ATCC CRL-3216), U2OS (ATTC HTB-96), K562 (CCL-243), and HeLa 

(CCL-2) cells were cultured and passaged in Dulbecco’s Modified Eagle’s Medium 

(DMEM) plus GlutaMAX (ThermoFisher Scientific), DMEM (Gibco), McCoy’s 5A 

Medium (Gibco), RPMI Medium 1640 plus GlutaMAX (Gibco), or Eagle’s Minimal 

Essential Medium (EMEM, ATCC), respectively, each supplemented with ~10% (v/v) 

fetal bovine serum (Gibco, qualified) and 1x Penicillin Streptomycin (Corning). All 

cell types were incubated, maintained, and cultured at 37 °C with 5% CO2. Cell lines 

were authenticated by their respective suppliers or short tandem repeat profiling and 

tested negative for mycoplasma. Culturing conditions for library analyses are detailed 

below. Lentivirus was produced in HEK293T cells by co-transfection with packaging 

plasmids encoding gag and pol, rev, and tat from HIV-1 and VSVG envelope protein. 

For these transfections, we used either TransIT®-LT1 Transfection Reagent (Mirus) or 

Polyethylenimine (PEI; Polysciences, Inc.).

HEK293T tissue culture transfection (non-viral) protocol and genomic DNA preparation

HEK293T were cells grown, seeded, and transfected as previously described2,3,11,24,30,38. 

Briefly, cells were trypsinized and seeded on 48-well poly-D-lysine coated plates (Corning) 

to an approximated of 3 × 105 cells per well. 16–24 h post-seeding, cells were transfected at 

approximately 60% confluency with 1 µL of Lipofectamine 2000 (Thermo Fisher Scientific) 

according to the manufacturer’s protocols and 750 ng of base editor plasmid and 250 ng 

of sgRNA plasmid. For Prime editing experiments, non-nicking conditions were carried out 

with 750 ng of PE2 and 250 ng pegRNA while nicking experiments included an additional 

83 ng of nicking sgRNA. 72 h post-transfection, media was removed, cells were washed 

with 1x PBS solution (Thermo Fisher Scientific), and genomic DNA was extracted by the 

addition of 150 µL of freshly prepared lysis buffer (10 mM Tris-HCl, pH 7.5; 0.05% SDS; 

25 µg/mL Proteinase K (ThermoFisher Scientific)) directly into each well of the tissue 

culture plate. The genomic DNA•lysis buffer mixture was incubated at 37 °C for 1 h, 

followed by an 80 °C enzyme inactivation step for 30 min. Primers used for mammalian 

cell genomic DNA amplification are listed in Supplementary Table 4. Protospacer sequences 

used for each locus are listed in Supplementary Table 4.

High-throughput DNA sequencing of genomic DNA samples

Genomic sites of interest were amplified from genomic DNA prepared and sequenced on 

an Illumina MiSeq as previously described2,3,11,24,30,38 with minor modifications. Briefly, 

amplification primers containing Illumina forward and reverse adapters (Supplementary 

Table 4) were used for PCR 1, amplifying the genomic region of interest. PCR 1 reactions 

were performed with 0.5 µM of each forward and reverse primer, 1 µL of genomic DNA 

extract, 3% DMSO, 0.25 µL Phusion HS-II polymerase, 5 µL Phusion HF buffer, 0.5 µL 
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10mM dNTPs, and water to a final volume of 25 µL. PCR1 reactions were carried out as 

follows: 98 °C for 2 min, then 32 cycles of [98 °C for 10 s, 61 °C for 20 s, and 72 °C 

for 30 s], followed by a final 72 °C extension for 2 min. Unique Illumina barcoding primer 

pairs were added to each sample in a secondary PCR reaction (PCR 2). Specifically, 25 µL 

of a given PCR 2 reaction contained 0.5 µM of each unique forward and reverse Illumina 

barcoding primer pair, 1 µL of unpurified PCR 1 reaction mixture, 0.25 µL Phusion HS-II 

polymerase, 5 µL Phusion HF buffer, 0.5 µL 10mM dNTPs, and water to a final volume of 

25 µL. The barcoding PCR 2 reactions were carried out as follows: 98 °C for 2 min, then 

12 cycles of [98 °C for 10 s, 61 °C for 20 s, and 72 °C for 30 s], followed by a final 72 

°C extension for 2 min. PCR products were evaluated by electrophoresis on 2% agarose 

gel. PCR 2 products (pooled by common amplicons) were purified by electrophoresis with 

a 2% agarose gel using a QIAquick Gel Extraction Kit (Qiagen), eluting with 40 µL of 

water. DNA concentration and library preparation was performed as previously described38 

by fluorometric quantification (Qubit, ThermoFisher Scientific) and diluted to 4 nM final 

library concentration before sequencing on an Illumina MiSeq instrument according to the 

manufacturer’s protocols.

Sequencing reads were demultiplexed using MiSeq Reporter (Illumina). Alignment of 

amplicon sequences to a reference sequence was performed using CRISPResso239 which 

was run to calculate indels with a window size of 10. C•G-to-G•C editing purity was 

calculated as C•G-to-G•C editing yield ÷ [C•G-to-T•A yield + C•G-to-A•T yield + indels].

Nucleofection of HAP1, U2OS, K562, and HeLa cells

Nucleofection was performed on K562, HeLa, and U2OS cells as previously described38. 

750ng of base editor-expression plasmid and 250ng sgRNA-expression plasmid were 

nucleofected in a final volume of 20uL in a 16-well nucleocuvette strip (Lonza). K562 

cells were nucleofected using the SF Cell Line 4D-Nucleofector X Kit (Lonza) with 5 × 105 

cells per sample (program FF-120), according to the manufacturer’s protocol. U2OS cells 

were nucleofected using the SE Cell Line 4D-Nucleofector X Kit (Lonza) with 3–4 × 105 

cells per sample (program DN-100), according to the manufacturer’s protocol. HeLa cells 

were nucleofected using the SE Cell Line 4D-Nucleofector X Kit (Lonza) with 2 × 105 cells 

per sample (program CN-114), according to the manufacturer’s protocol. Nucleofiection 

of HAP1 cells was performed using the same amounts of DNA and final volume in a 

16-well nucelocuvette strip; however, HAP1 cells were nucleofected using the SE Cell 

Line 4D-Nucleofector X Kit (Lonza) with 4 × 105 cells per sample (program DZ-113), 

according to the manufacturer’s protocol. Cells were harvested 72 hours after nucleofection 

for genomic DNA extraction.

Selection of ten CGBEs for target library characterization

We sought to select the most representative and diverse subset of CGBEs from endogenous 

base editing data for 72 CGBEs at eight or 16 endogenous target loci. Briefly, we used 

a convex relaxation of a quadratic program to find a subset of CGBEs with maximally 

diverse transversion editing purities and yields. Clustering analysis was used to suggest the 

number of unique CGBE families. Analytic results were curated manually. The six fusion 

CGBEs assayed were: PolD2–APOBEC1–UDGX–Cas9–UDGX, RBMX–eA3A–UDGX–
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Cas9, RBMX–eA3A–UDGX–HF-nCas9, UDGX–Anc689–UDGX–Cas9–RBMX, UDGX–

APOBEC1–UDGX–HF-nCas9, and UDGX–EE–UDGX–Cas9–UDGX. The four simple 

CGBE editors were deaminase–nCas9 with eA3A, Anc689, APOBEC1, and EE deaminases. 

We also assayed eA3A-T31A–nCas9 and eA3A-BEN3—ΔN13-UGI. eA3A–nCas9, eA3A-

T31A–nCas9 and eA3A-BEN3—ΔN13-UGI were characterized in the comprehensive 

context library only in HEK293T, while all other CGBEs were characterized in the 

comprehensive context library only in mESCs. eA3A–nCas9-NG and eA3A-T31A–nCas9-

NG were further characterized in the transversion-enriched SNV library in mESCs.

To identify CGBEs with distinct activities, we used quadratic programming to identify 

a subset of CGBEs with maximum pairwise distances between vectors of C•G-to-G•C 

editing purity and yield across eight or 16 endogenous loci. We also performed hierarchical 

clustering, and observed that across these endogenous loci, CGBE editing activity primarily 

clustered by deaminase, though there were also substantial intra-cluster differences in 

editing activities due to variety in protein fusion architectures that were occasionally larger 

than inter-cluster differences, which indicates that CGBE editing activity is affected by both 

deaminase and protein fusion architectures. As our quadratic programming and clustering 

methods only consider numerical distances and do not propose subsets optimized for high 

purity or yield, we manually curated the quadratic programming results by replacing CGBEs 

with similar neighbors from hierarchical clustering when the neighbors had meaningfully 

higher purity or yield. Since deaminases, protein fusions, and high-fidelity Cas9 variants are 

known to alter base editing activity12–15,26, we also manually curated our final subset to 

ensure a diversity of these elements.

CRISPRi library construction

For our CRISPRi screen we used a platform called Repair-seq, which was developed by 

Hussmann et al. 2021 using a CRISPRi guide library described elsewhere21. This library 

contains 1513 gene-targeting sgRNAs selected from hCRISPRi-v2.140 and 60 non-targeting 

controls selected from hCRISPRi-v240 (Supplementary Table 1). Gene-targeted sgRNAs 

were against 476 genes enriched for ones involved in DNA metabolic processes (e.g., 

replication, repair, recombination). A minority of the spacer sequences for the gene-targeting 

sgRNAs in this library were repeated in hCRISPRi-v2.1 and are therefore annotated in 

Supplementary Table 1 as targeting multiple gene promoters, with multiple guide identifiers. 

Our 476 gene count considers only the first set of annotations. Oligonucleotides containing 

sgRNA targeting sequences were synthesized by Twist Bioscience (Supplementary Table 1).

CRISPRi library cloning

The guide library was cloned in pAX198 as described elsewhere21. This vector 

was derived from pU6-sgRNA EF1Alpha-puro-T2A-BFP41 (Addgene, 60955) through 

multi-step molecular cloning, as described elsewhere21. pAX198 contains a CRISPRi 

guide expression cassette driven by a modified mouse U6 promoter and ending 

with a termination signal consisting of 6 Ts. pAX198 also contains a ‘target 

region’ for genome editing derived from sequence at the human HBB gene, 

specifically the second and third exons of HBB (no intron) and part of the 3’UTR 

(ENST00000647020.1). This region is where we directed Anc689nCas9 and Anc689-
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dCas9 (see CRISPRi screen cell culture section of Methods). Prior to library cloning, 

a BstXI site was removed from the target region by site-directed mutagenesis. 

Library cloning was performed with standard protocols (details available at https://

weissmanlab.ucsf.edu/CRISPR/Pooled_CRISPR_Library_Cloning.pdf). Briefly, library 

oligonucelotides were amplified by PCR (primers 5’-TATGAACCACTAAGGCGTCCAC, 

5’-TCACCAGCAGACTTTACGCAGC), purified using MinElute Reaction Cleanup Kit 

(Qiagen), digested with BlpI and BstXI, isolated by gel purification, and ligated into 

a similarly digested expression vector (insert to backbone ratio of 1:1 for 16 hours at 

16ºC). Ligation reactions were electroporated into MegaX DH10B T1R Electrocomp™ cells 

(ThermoFisher). Cells were grown on agar plates and then scraped into liquid for plasmid 

purification. The final sgRNA library (AX227) was verified by sequencing.

CRISPRi screen cell culture

The Repair-seq screens reported here were performed in previously described HeLa cells42, 

which stably express a dCas9-BFP-KRAB fusion (from pHR-SFFV-dCas9-BFP-KRAB; 

Addgene #46911), in two rounds. The first round of screening evaluated Anc689– nCas9. 

The second round evaluated Anc689-dCas9. Both rounds of screening were conducted as 

follows: Cells were transduced with guide library (AX227, see CRISPRi library cloning 

section of Methods) by lentiviral infection. The infections were carried out in DMEM 

supplemented with ~10% (v/v) fetal bovine serum, 1x Penicillin Streptomycin, and 8 µg/mL 

polybrene at an observed infection efficiency of ~5% for both Anc689–nCas9 and Anc689–

dCas9, as determined by flow cytometry. Approximately 2 days post transduction, cells were 

selected in 3 µg/mL puromycin and then, 3 days later, transfected with plasmids for base 

editing. We performed each screen in replicates, each split one day prior to transfection onto 

30 15 cm plates, each containing ~1.2e6 cells. The transfection procedure was as follows: 

(1) 25 ng plasmid DNA (75% editor plasmid; 25% sgRNA plasmid) was mixed with 3.5 mL 

of Opti-MEM (Gibco) and 4.6 mL Helafect Transfection Reagent (per 15 cm plate of cells). 

(2) This mixture was then incubated at room temperature for 20 minutes and (3) added to 

DMEM (Gibco) supplemented with ~10% (v/v) fetal bovine serum (20 mL per plate). (4) 

The prepared media was then used to replace non-transfection media on each plate of cells. 

Approximately 3 days later, cells were collected for sample preparation. For all arms of 

screening, ~100e6 cells or more were collected at a viability of >85%.

CRISPRi screen sample preparation

Sequencing libraries were prepared from cells collected at the end of the CRISPRi screens 

as follows: Genomic DNA was extracted from cell pellets (~200e6 cells for each replicate 

of Anc689–nCas9, and 125e6 and 098e6 cells for each of two replicates of Anc689-dCas9) 

using the NucleoSpin® Blood XL kit (Macherey-Nagel, up to 100e6 cells per column). We 

fragmented the genomic DNA by digestion with NotI-HF (NEB) and then enriched for edit-

containing fragments (1447 bp) by size selecting each sample on a large 0.8% agarose gel 

(Owl™ A1 Large Gel System, Thermo Fisher Scientific). Gel electrophoresis was conducted 

at large-scale (i.e., with wells large enough to hold 1.5 mL volume per well) to maximize 

recovery of fragments containing both edited sequences and sgRNA expression cassettes 

(‘target’ fragments). Gel preparation details are available at https://weissmanlab.ucsf.edu/

CRISPR/IlluminaSequencingSamplePrep_old.pdf. DNA was then isolated from excised 
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regions of the gel using NucleoSpin® Gel and PCR Clean up kit (Macherey-Nagel) with 

columns placed on a vacuum manifold. Of note, large sample volumes were passed through 

individual columns using syringe barrels to increase capacity.

Next, size-selected target fragments were prepared for sequencing using custom adaptors 

compatible with next-generation sequencing technologies from Illumina. These adapters, 

which contained 12 nt unique molecular identifiers (UMIs), were made by annealing 

individual DNA oligonucleotides (obtained from Integrated DNA Technologies). The 

oligonucleotide components were oBA676 (5’-

G*G*C*C*AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTC

GCCGTATCATT, HPLC purified) and oBA677 (5’-

CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNNNGTGACTGGAGTTCAGACG

TGTG CTCTTCCGATCT, HPLC purified), where * represents a phosphorothioated DNA 

base. Prior to ligation, DNA samples were digested with HindIII-HF (NEB). This step 

removed a 4 nt NotI overhang from one end of the target fragments, leaving only one side 

available for adaptor ligation. DNA was then purified using SPRIselect Reagent (Beckman 

Coulter) in a 0.8X reaction, quantified using Bioanalyzer High Sensitivity DNA Analysis 

(Agilent), and 1 µg of the product was ligated to adaptors using enzyme and buffer from the 

KAPA HyperPrep Kit (Roche) as follows: 30 µL ligation buffer, 10 µL ligase, adapter at 

200:1 adaptor:insert ratio, and PCR-grade water to 110 µL total volume. These reactions 

were incubated at 4ºC overnight on a thermocycler with lid temperature set to 30ºC.

Following ligation, DNA was purified using SPRIselect Reagent (Beckman Coulter) in two 

reactions (0.65X followed by 0.8X) and target fragments were enriched by PCR as follows: 

30 ng of template, amplification primers at 0.6 µM final concentration (each), 3% dimethyl 

sulfoxide, and 1X KAPA HiFi HotStart ReadyMix (50 µL total volume) run at 1 cycle of 3 

minutes at 95ºC; 16 cycles of 15 seconds at 98ºC, followed by 15 seconds at 70ºC; 1 cycle of 

1 minute at 72ºC; 4ºC hold. We performed enough PCR reactions to use nearly the entirety 

of each sample obtained from the ligation and subsequent clean-up reactions. Amplification 

primers used were oBA679 (5’-CAAGCAGAAGACGGCATACGAGAT) and 5’-

AATGATACGGCGACCACCGAGATCTACAC-[index]-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTATCCCTTGGAGAACCACCTTGT

TGG. Amplified DNA was purified using SPRIselect Reagent (Beckman Coulter) in a 0.8X 

reaction, and index samples were mixed for sequencing. Throughout sample preparation 

procedures, samples were checked for quality and yield using either a NanoDrop 

Spectrophotometers (Thermo Fisher Scientific), Agilent 2100 Bioanalyzer system, or by 

running on a Novex™ TBE Gel. Sample preparation procedures are also described 

elsewhere21.

CRISPRi screen analysis

Sequencing of CRISPRi screens, alignment and classification of screen sequencing data, 

statistical tests of gene significance in Fig. 2d, Supplementary Fig. 4, and Supplementary 

Table 2, and identification of the top two most active guide RNAs for relevant genes in 

Figure 2b and Supplementary Fig.5a and 5b were performed as described in Hussmann et al. 

202121. Intervals in Supplementary Figure 3c are 95% Clopper-Pearson intervals of outcome 
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fractions, converted to corresponding log2 fold changes. That is, given k observed UMIs for 

a given CRISPRi guide in a numerator outcome set out of n total UMIs in a denominator 

outcome superset, the bottom interval (vbottom) is the smallest value of the true population 

proportion of numerator to denominator outcomes such that there is <= 2.5% chance of 

observing >= k from Binomial(vbottom, n), and the top interval (vtop) is the largest value of 

the true population proportion of numerator to denominator outcomes such that there is <= 

2.5% chance of observing <= k from Binomial(vtop, n).

Target library cloning

The target libraries used in this manuscript were previously generated in Arbab, Shen et 
al. 202012. All editors described in this paper were cloned between the N–terminal and 

C–terminal NLS sequences flanking the eA3A-BE4max (Addgene 152997).

Target library cell culture

mESC lines used have been described previously and were cultured as described 

previously43. For stable Tol2 transposon-mediated library integration, cells were transfected 

using Lipofectamine 3000 (Thermo Fisher) following standard protocols with equimolar 

amounts of Tol2 transposase plasmid (a gift from R. Sherwood) and transposon-containing 

plasmid. For library applications, 15-cm plates with 2×107 initial cells were used. To 

generate library cell lines with stable Tol2–mediated genomic integration, cells were 

selected with 150 µg/mL hygromycin starting the day after transfection and continued for 

>2 weeks. For editing experiments, CGBEs were transfected with Tol2 transposase plasmid 

using Lipofectamine 3000 and selected with 10 µg/mL blasticidin starting the day after 

transfection for 4 days before harvesting. We maintained an average coverage of ≥300x per 

library cassette throughout.

Target library high-throughput sequencing

Library preparation was performed as described in Arbab, Shen et al. 202012. Genomic 

DNA was collected from cells 5 days after transfection, after 4 days of antibiotic selection. 

For library samples, 20 µg gDNA was used for each sample and we maintained an average 

sequencing depth of ≥4,000x per target. All PCRs were performed using NEBNext Ultra II 

Q5 Master Mix. Samples were pooled using Tape Station (Agilent) and quantified using a 

KAPA Library Quantification Kit (KAPA Biosystems). The pooled samples were sequenced 

using Illumina NextSeq.

Target library analysis: data processing

Sequencing reads were assigned to designed library target sites by locality sensitive 

hashing12,31. Target contexts that were intentionally designed to be highly similar to 

each other were designed barcodes to assist accurate assignment. Sequence alignment was 

performed using Smith–Waterman with the parameters: match +1, mismatch −1, indel start 

−5, indel extend 0. Nucleotides with PHRED score below 30 were assumed to be the 

reference nucleotide.

For base editing analysis, aligned reads with no indels were retained for analysis and events 

were defined as the combination of all possible substitutions at all substrate nucleotides in 
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the target site in a read, where a single sequencing read corresponds to an observation of 

a single event. Substrate nucleotides were defined as C and G for CBEs and A and C for 

ABEs.

For indel analysis, reads containing indels with at least one indel position occurring between 

protospacer positions −6 to 26 were retained, where position 1 is the 5’–most nucleotide of 

the protospacer, and 0 is used to refer to the position between −1 and 1. Reads containing 

indels without at least six nucleotides with at least 90% match frequency on both sides of 

each indel were discarded. Events were defined as indels identified by position, length, and 

inserted nucleotides occurring in a read. Combination indels were either not observed at 

all or only at exceedingly low frequencies in endogenous data and were therefore excluded 

from consideration when analyzing library data.

Target library analysis: base editing profiles

Base editing profiles were calculated using the same approach as Arbab, Shen et al. 202012, 

using a multi-step procedure to maximize sensitivity. Briefly, single-nucleotide mutation 

frequencies were tabulated at each target position from sequence alignments in treatment 

and control data. Treatment data was adjusted for 1) background mutations using untreated 

control data, 2) sequencing errors, 3) batch effects using other treatment data including 

published data from Arbab, Shen et al. 202012, which primarily helped adjust for rare 

substitution artifacts from library construction. We then identified mutations that occurred 

consistently for any editor across replicates to build base editing profiles with sufficient 

sensitivity to detect rare mutations. We defined cytosine base editing activity as C to A, G, 

or T at positions −9 to 20 and G to A or C at positions −9 to 5. For all analysis in this work 

that required tabulating reads with base editing activity, we discarded reads that did not have 

base editing activity according to these broad profiles. Window sizes were calculated at 50% 

or greater efficiency relative to the position–wise maximum.

Target library analysis: calculating efficiency and purity

We required a minimum of 100 reads for calculating editing efficiency, and a minimum of 

100 edited reads to calculate purity of editing outcomes. Library members not satisfying 

these criteria were filtered. The resulting efficiency and purity values were reported as data 

in the manuscript, and used to train machine learning models. Calculated editing efficiencies 

and purities were not adjusted for batch effects: instead, our efficiency model is designed to 

account for batch variation in baseline editing efficiencies by taking it in as optional input. 

Bystander editing patterns were not found to vary substantially by batch (Arbab, Shen et al., 
2020).

Target library analysis: clustering

CGBEs transversion purities at (target site, nucleotide) tuples in the comprehensive context 

library were tabulated, and pairwise distances between CGBEs were calculated as the 

variance explained (R2) between each pair of CGBEs. Clustering was performed using 

the L1 distance metric between vectors with the UPGMA clustering algorithm (average 

linkage).
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Target library analysis: identifying targets with diverse editing outcomes

We calculated a “diversity score” for a target site and substrate nucleotide given observed 

editing activity values (yield or purity) by a panel of base editors. For a vector of observed 

values denoted x, our diversity score was defined as max(x) + 2*std(x). We included max(x) 

in the score function to encourage library members with very high and very low values to be 

considered diverse.

To explore the possibility that observed diversity of transversion purity could be explained 

by analyzing low-abundance outlier library members, we investigated the relationship 

between the diversity of transversion purity and library member abundance in the 

transversion-enriched SNV library. We computed a diversity score for each library member, 

where large values indicate that different CGBEs had different transversion editing purity 

at that target. We also calculated the relative abundance of each library member in the 

sequencing data. If library members with extremely high diversity scores were associated 

with low relative abundance (e.g., if they were explainable by low coverage bottlenecking 

outliers), their relative abundances should be shifted relative to the background distribution. 

We tested this hypothesis by comparing the distribution of relative abundance for the top 

10 to top 50 library members ranked by diversity score to the full distribution of relative 

abundances. By Welch’s T-Test, we found no statistical evidence that high-diversity library 

members had shifted relative abundance (P>0.40, N=4,000). Furthermore, we observed a 

mildly positive Pearson correlation (R=0.14, P=4×10−14) between relative abundance and 

the diversity score, indicating that across the whole library, library members with higher 

relative abundance tend to have slightly higher diversity of base editing outcomes. Taken 

together with other analysis in our paper, we conclude that differences in editing purity 

by different CGBEs at the same target are better explained by their distinct sequence 

preferences.

Target library analysis: sequence motif models

For prediction tasks where the target variable is continuous and has range in (0, 1), we first 

applied a logistic transformation to the data, then used linear regression. For continuous 

data representing fractions, we discarded values equal to 0 or 1. For classification tasks, 

the target variables were either 0 or 1 indicating absence or presence of activity, and we 

used logistic regression. Target variables included the efficiency of C•G-to-T•A editing by 

CBEs and the purity of cytosine transversions by CBEs. Each of these statistics involves 

calculating a denominator corresponding to the total number of reads at a target sequence, or 

the total number of edited reads at a target sequence not including indels. Target sequences 

with fewer than 100 reads in the denominator were discarded to ensure the accuracy of 

estimated statistics in the training and testing data. Features were obtained by one–hot–

encoding nucleotides per position relative to a substrate nucleotide or to the protospacer. 

When featurizing data relative to a single substrate nucleotide, each substrate nucleotide 

within a specified range of positions was used. Ranges used included position 6 only (for 

the comprehensive context library that contained all NNN–NNN–mers surrounding position 

6) and positions 4–8, which was used only when exploratory data analysis indicated that 

the activity of interest did not vary substantially by position. All nucleotides within a 10–bp 

radius of the target position were one–hot–encoded. Position was not used as a feature. The 
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data were randomly split into training and test sets at an 80:20 ratio. We note that sequence 

motifs described by these regression models consider each position independently and are 

intended primarily for visualization.

Motifs for yield were calculated from the top 150 cytosines ranked by C-to-G yield. Column 

sizes are scaled by their information content.

Target library analysis: base editing efficiency models

We observed that base editing efficiency varies by experimental batch. To combine replicates 

across batches, we first performed mean centering and logit transformation at up to 10,638 

gRNA-target pairs in each experimental condition separately from the 12kChar library 

which includes all 4-mers surrounding A or C from protospacer positions 1 to 11. We 

discarded data at target sites with fewer than 100 total reads, then averaged values at 

matched target sites across experimental replicates. Values of negative or positive infinity 

(resulting from logit of 0 or 1) were discarded. The data were randomly split into training 

and test sets at a ratio of 90:10. Each target site had a single output value corresponding 

to the mean logit fraction of sequenced reads with any base editing activity. Data points 

comprising a single replicate were assigned weight=0.5. Data points comprising multiple 

replicates were assigned a weight of the median logit variance divided by the logit variance 

at that data point, or 1, whichever value was smaller. In this manner, exactly half of the data 

points comprising multiple replicates were assigned a weight of 1, and those with higher 

variance were assigned a lower weight. We obtained features from each target sequence 

using protospacer positions −9 to 21. Features included one-hot encoded single nucleotide 

identities at each position, one–hot encoded dinucleotides at neighboring positions, the 

melting temperature of the sequence and various subsequences, the total number of each 

nucleotide in the sequence, and the total number of G or C nucleotides in the sequence.

We used gradient-boosted regression trees from the python package scikit-learn and trained 

them with tuples of (x, y, weights) using the training data. We performed hyperparameter 

optimization as described in Arbab, Shen et al. 202012. We performed 5-fold cross–

validation by splitting the training set into a training and validation set at a ratio of 8:1 

and retained the combination of hyperparameters with the strongest average cross-validation 

performance as the final model. We trained models in this manner for each combination of 

cell-type and base editor. Models were evaluated on the test set which was not used during 

hyperparameter optimization.

Target library analysis: bystander editing models

Bystander models were designed and trained using the same approach as Arbab, Shen 

et al. 202012. Briefly, we designed and implemented a deep conditional autoregressive 

model that uses an input target sequence surrounding a protospacer and PAM to output 

a frequency distribution on combinations of base editing outcomes in the python package 

PyTorch44. The model predicts substitutions at cytosines and guanines for CBEs. The model 

transforms each substrate nucleotide and its local context using a shared encoder into a deep 

representation, then applies an autoregressive decoder that iteratively generates a distribution 

over base editing outcomes at each substrate nucleotide while conditioning on all previous 
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generated outcomes. The encoder and decoder are coupled with a learned position–wise 

bias towards producing an unedited outcome. The model is trained on observed data 

by minimizing the KL divergence. Importantly, the conditional autoregressive design is 

sufficiently expressive to learn any possible joint distribution in the output space, thereby 

representing a powerful and general method for learning the editing tendencies of any base 

editor from data. We assembled a dataset where each sgRNA–target pair was matched with 

a table of observed base editing genotypes and their frequencies among reads with edited 

outcomes. We discarded data points with fewer than 100 edited reads. We discarded edited 

genotypes occurring at higher than 2.5% frequency with no edits at any substrate nucleotides 

(defined as C for CBEs and A for ABEs) in positions 1–10. Data from multiple experimental 

replicates were combined by summing read counts for each observed genotype.

Target library analysis: performance evaluation

We evaluated machine learning model performance using held-out data. For evaluating 

models at predicting yield, we used the efficiency model to predict a base editing efficiency 

score using efficiency summary statistics (mean, std) from the training set. We multiplied the 

predicted base editing efficiency with the predicted frequency of editing patterns from the 

bystander model.

Target library analysis: indel quantification

Indels were quantified using the same approach as Arbab, Shen et al. 202012. Indels have 

strong batch effects in our library assay which can be adjusted within each connected 

component in the graph defined with nodes representing base editors and edges connecting 

base editors measured in the same experimental batch. We were able to adjust batch effects 

for eA3A–nCas9 using two-way ANOVA as previously described since it was included in 

the same connected component as all BEs previously characterized in Arbab, Shen et al., 
202012. We were not able to adjust batch effects for all other CGBEs as they were in a 

separate connected component.

CGBEs are expected to generate indels at higher frequency than canonical base editors as 

a consequence of generating abasic sites more efficiently. Consistent with this expectation, 

we previously observed lower base editing to indel (BE:indel) ratios at sites with higher 

transversion base editing activity. However, we were surprised to observe a positive 

correlation between BE:indel ratios and high C•G-to-G•C editing purity among target library 

editing outcomes. The geometric mean BE:indel ratio for eA3A–nCas9 was 15:1 across 

all target sequences, lower than canonical CBEs at 40:112; however, upon close inspection, 

we recognized that BE:indel ratios were split dependent upon whether the target sequence 

was edited with high or low purity. Indeed, the geometric mean BE:indel ratio was below 

this 15:1 ratio for sites with <40% C•G-to-G•C purity (decreases from 17:1 to 12:1 as 

editing purity increases from 0% to 40%) while the geometric average BE:indel ratio 

increased from 12:1 to 29:1 as C•G-to-G•C purity increased from 40% to 100%. This 

surprising positive correlation between BE:indel ratios and C•G-to-G•C purity was observed 

for 11 CGBEs across the comprehensive context and transversion-enriched libraries, with 

R=0.05 to 0.20 (P<2.4×10−6). No CGBE had a statistically significant negative correlation. 

This observation suggests that while abasic sites are a common precursor of both indel 
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formation and C•G-to-G•C substitutions and that increased abasic site formation should lead 

to increases in both indels and C•G-to-G•C substitutions, target sites particularly amenable 

to highly pure C•G-to-G•C editing preferentially resolve abasic sites against indels. Taken 

together, these observations highlight the possibility of developing CGBEs with both highly 

pure C•G-to-G•C editing and high BE:indel ratios.

Target library analysis: evaluating CGBE-Hive optimization of CGBEs for SNVs

We used six CGBEs for this analysis: Anc689–nCas9-NG, APOBEC1–nCas9-NG, and 

eA3A–nCas9-NG, UdgX–Anc689–UdgX–nCas9-NG–RBMX, UdgX–APOBEC1–UdgX– 

nCas9-NG, and UdgX–APOBEC1–UdgX–HF-nCas9-NG. For each SNV, we used CGBE-

Hive to identify which CGBE had the highest predicted genotype correction precision or 

amino acid correction precision among CGBEs that had data for that SNV, which was not 

always all six CGBEs, as some conditions had different SNVs filtered out due to low read 

counts or poor data quality. Only SNVs with data for at least three CGBEs were considered. 

The baseline used was the expectation of the statistic with respect to a uniform distribution 

over the six CGBEs for each SNV.

Obtaining biological materials

Plasmids encoding CGBEs and CRISPRi screening materials are available through 

Addgene.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Development of prototype C•G-to-G•C base editors.
(a) Potential pathway for C•G-to-G•C conversion. (b) C•G-to-G•C editing outcomes in 

HEK293T cells for C-terminal fusions of DNA glycosylases to BE4B (AC, APOBEC1 

cytidine deaminase–Cas9 nickase). (c) Different fusion protein architectures lead to different 

C•G-to-G•C editing properties in HEK293T cells at the HEK3 locus for the Apo-UdgX-

Cas9n (AXC) architecture. Values and error bars reflect the mean and standard deviation of 

three biological replicates, shown as individual data points. HEK2=HEK site 2; HEK3=HEK 

site 3; HEK4=HEK site 4. C4, C6, and similar annotations indicate the in-window target 

nucleotides where the SpCas9 PAM is at positions 21–23.
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Figure 2. CRISPRi knockdown screen across 476 genes enriched for those with roles in DNA 
repair identifies candidate regulators of C•G-to-G•C editing.
(a) Schematic of screen design. (b). Summary of base editing outcomes in BE4B (also AC) 

screen. Bottom left – all editing outcomes containing only point mutations present at >=1% 

frequency for non-targeting CRISPRi guide RNAs. Line plots above the individual outcomes 

show the total editing frequency (black line) and the frequencies of each single base edit 

(C-to-T=red, C-to-G=brown, C-to-A=green, and G-to-C=blue lines) at each position. Line 

plots to the right show frequencies of outcomes for specific CRISPRi guide RNAs (blue 

- average of all non-targeting guide +/− standard deviation across individual non-targeting 

guide RNAs; orange - top 2 most active UNG guide RNAs). Heatmaps show log2 fold 

changes in outcome frequencies for top 2 UNG guide RNAs relative to non-targeting guide 

RNAs. (c) Log2 fold changes in frequency of outcomes containing C-to-T or C-to-G edits 

for each CRISPRi guide compared to non-targeting guide RNAs. Upper left - comparison 

of changes in C-to-T editing between two biological replicates. Lower right - comparison 

of changes in C-to-G editing between replicates. Upper right - comparison of changes in 

C-to-G editing to changes in C-to-T editing in replicate 1. All guide RNAs with at least 

500 recovered UMIs in each replicate are plotted. Blue dots: individual non-targeting guide 

RNAs, orange dots: UNG guide RNAs, green dots: ASCC3 guide RNAs, red dots: RFWD3 
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guide RNAs, grey dots: all other guide RNAs. (d) Effects of gene knockdown on relative 

C-to-G editing frequencies in BE4B screen. Each dot represents a gene, with the x-value 

representing the average of the two strongest Log2 fold changes in normalized C-to-G 

editing for guide RNAs targeting the gene from the average of all non-targeting guide RNAs, 

and the y-value representing a gene-level p-value summarizing the combined statistical 

significance of all guide RNAs targeting each gene (two-sided, uncorrected for multiple 

comparisons). Rep.=replicate.
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Figure 3. Effect of varying the cytidine deaminase and Cas9 components of CGBEs on C•G-to-
G•C editing outcomes in HEK293T cells.
(a) C•G-to-G•C editing outcomes for catalytically impaired, narrow-window cytidine 

deaminases show higher editing purity at HEK2 and RNF2. (b) C•G-to-G•C editing 

outcomes for high-fidelity Cas9 variants show altered editing windows and improved 

CGBE performance at some positions. “Cas9” represents the Cas9 D10A nickase variant 

of each Cas effector. Values and error bars reflect the mean and standard deviation of three 

biological replicates, shown as individual data points. HEK2=HEK site 2; HEK3=HEK 

site 3; HEK4=HEK site 4. C4, C6, and similar annotations indicate the in-window target 

nucleotides where the SpCas9 PAM is at positions 21–23.
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Figure 4. Novel engineered CGBEs with various DNA repair proteins, deaminases, Cas proteins, 
and architectures offer diverse editing performance on different target sites.
(a) C•G-to-G•C editing performance of CGBEs at eight genomic loci in HEK293T cells. 

(b) Further characterization of C•G-to-G•C editing outcomes for 12 variants from (a) at 

various genomic loci in HEK293T cells. Values and error bars reflect the mean and standard 

deviation of three biological replicates. HEK2=HEK293T cells site 2; HEK3=HEK293T 

cells site 3; HEK4=HEK293T cells site 4. C nucleotide annotations indicate the target 

nucleotide positions in the protospacer, where the SpCas9 PAM is at positions 21–23. 

Editing efficiencies, product purities, and indel frequencies for constructs that were tested 

but not shown in this figure can be found in Supplementary Data 1.
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Figure 5. Target library characterization and machine learning modeling of 10 CGBE variants.
(a) Overview of genome-integrated target library assay. Libraries of 12,000 or 4,000 pairs of 

sgRNAs and corresponding target sites are integrated into the genomes of mammalian cells 

using Tol2 transposase and treated with base editors. Edited cells are enriched by antibiotic 

selection, and library cassettes are amplified for high-throughput sequencing. (b) Base 

editing windows. Values are C•G-to-G•C editing efficiencies normalized to a maximum of 

100. The protospacer is at positions 1–20, with the SpCas9 PAM at positions 21–23. All 

data are in mES cells except for eA3A-nCas9, which is in HEK293T cells. (c) C•G-to-G•C 

editing purity in the comprehensive context library in mES cells. Box plots indicate median 

and interquartile range, whiskers indicate extrema, and black dots indicate mean. Two-sided 

Welch’s T-test * P≤5.1×10-9. (d) Heatmap of observed C•G-to-G•C purities by CGBE in 

target contexts from the comprehensive context library in mES cells. Black nucleotides 

indicate the cytosine for which purity is calculated. Target sites were sorted by outcome 
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variance and manually selected. (e) Clustering of CGBEs based on measured C•G-to-G•C 

purity in core window cytosines across the comprehensive context library in mESCs. Values 

are Pearson correlation. (f) Purity of editing outcomes across core window nucleotides in 

the comprehensive context library, ranked by C•G-to-G•C purity, averaged across CGBEs in 

mESCs. Trend lines and shading show the rolling mean and standard deviation across 1% 

intervals. (g) Representative sequence motifs for editing efficiency and C•G-to-G•C purity 

from logistic regression models. The sign of each learned weight indicates a contribution 

above (positive sign) or below (negative sign) the mean activity. Logo opacity is proportional 

to the motif’s Pearson’s R on held-out sequence contexts. (h) Observed C•G-to-G•C purity 

across CGBEs in mESCs compared to CGBE-Hive predictions. Trend lines and shading 

show the rolling mean and standard deviation. (i) Sequence motifs for C•G-to-G•C editing 

yield.
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Figure 6. Target library characterization and machine learning modeling of CGBE variants.
(a) Observed C-to-G purity by CGBE at SNVs predicted to have >80% C-to-G purity. 

Box plot indicates median and interquartile range, and whiskers indicate extrema. (b) 

Observed number of disease-related sgRNA-target pairs corrected at varying genotype 

precision and amino acid precision thresholds by various strategies for selecting CGBEs. 

See Supplementary Table 3. (c) Comparison of predicted versus observed correction yield 

of disease-related transversion SNVs in mES cells. Trend lines and shading show the rolling 

mean and standard deviation. (d) Comparison of predicted versus observed correction 

precision of disease-related transversion SNVs in mES cells. Trend lines and shading 

show the rolling mean and standard deviation. (e) Observed number of sgRNA-target pairs 

containing disease-related transversion SNVs corrected at various thresholds for genotype 

and amino acid precision. (f) Installation of disease-associated SNPs using CGBEs.
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