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ABSTRACT

BACKGROUND AND PURPOSE: Normal pressure hydrocephalus is characterized by systolic peaks of raised intracranial pressure,
possibly due to a reduced compliance of the spinal CSF spaces. This concept of a reduced spinal CSF buffer function may be
reflected by a low cervical CSF outflow from the cranium. The aim of this study was to investigate craniospinal CSF flow rates by
phase-contrast MR imaging in patients with normal pressure hydrocephalus.

MATERIALS AND METHODS: A total of 42 participants were included in this prospective study, consisting of 3 study groups: 1) 10
patients with normal pressure hydrocephalus (mean age, 74 [SD, 6] years, with proved normal pressure hydrocephalus according to
current scientific criteria); 2) eighteen age-matched healthy controls (mean age, 71 [SD, 5] years); and 3) fourteen young healthy con-
trols (mean age, 21 [SD, 2] years, for investigation of age-related effects). Axial phase-contrast MR imaging was performed, and the
maximal systolic CSF and total arterial blood flow rates were measured at the level of the upper second cervical vertebra and
compared among all study groups (2-sample unpaired t test).

RESULTS: The maximal systolic CSF flow rate was significantly decreased in patients with normal pressure hydrocephalus compared
with age-matched and young healthy controls (53 [SD, 40] mL/m; 329 [SD, 175] mL/m; 472 [SD, 194] mL/m; each P, .01), whereas
there were no significant differences with regard to maximal systolic arterial blood flow (1160 [SD, 404] mL/m; 1470 [SD, 381] mL/m;
1400 [SD, 254] mL/m; each P. .05).

CONCLUSIONS: The reduced maximal systolic craniospinal CSF flow rate in patients with normal pressure hydrocephalus may be
reflective of a reduced compliance of the spinal CSF spaces and an ineffective spinal CSF buffer function. Systolic craniospinal CSF
flow rates are an easily obtainable MR imaging–based measure that may support the diagnosis of normal pressure hydrocephalus.

ABBREVIATIONS: ACBmax ¼ maximal arterial blood flow rate to the brain during systole; CSFmax ¼ maximal CSF flow rate from the brain to the spinal canal
during systole; DESH ¼ disproportionately enlarged subarachnoid space hydrocephalus; HC-M ¼ age-matched healthy controls; HC-Y ¼ healthy young con-
trols; Ø ¼ diameter; NPH ¼ normal pressure hydrocephalus; VENC ¼ velocity-encoding

Normal pressure hydrocephalus (NPH) is the most frequent
form of hydrocephalus in elderly patients.1 It is character-

ized by the clinical syndrome of progressive gait disturbance, cog-
nitive deficits, and urinary incontinence, the so-called Hakim-
Adams triad.1 NPH has been shown to be responsive to CSF

shunting, with the likelihood of symptom improvement better in
the early stages of the disorder,2,3 emphasizing the importance of
an early diagnosis. However, the diagnosis of NPH remains a
major challenge.

Typical imaging findings in NPH include ventricular enlarge-

ment with an Evans index of .0.31,4 a narrow callosal angle (,

90°),5 periventricular high-signal changes representing transepen-

dymal cerebral fluid egress,6,7 tight sulci in the convexities of the

cerebral hemispheres,8 and an enlarged Sylvian fissure (dispro-

portionately enlarged subarachnoid space hydrocephalus [DESH]

criteria).4

Phase-contrast MR imaging allows the quantification and

characterization of pulsatile flow with high spatial and temporal

resolution.9 Arterial inflow, venous outflow, and CSF flow to and

from the brain can be quantified in relation to the cardiac cycle.9

Several studies have described higher CSF oscillations at the level
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of the aqueduct10-12 as well as lower total cerebral blood flow at

the cervical level in patients with NPH.11,13,14

The pathophysiology of NPH has not been fully elucidated.
Chronic hypertension may cause periventricular ischemia,15,16

resulting in ventricular enlargement15,16 and reduced compliance
of the CSF spaces.17 Periventricular ischemia may also locally
increase venous resistance, leading to a decrease of CSF absorp-
tion, thereby further contributing to ventricular enlargement.18

New concepts have attributed the pathophysiology of NPH to
abnormal dynamics of CSF and blood flow,19-23 including hyper-
dynamic CSF flow in the aqueduct, reduced cerebral blood
flow,22 increased CSF pulse pressure, and pathologic conditions
of CSF reabsorption.18 Despite the name, intracranial pressure is
not always normal in NPH;24 systolic peaks of raised intracranial
pressure are frequently observed.20 In healthy individuals, CSF
outflow compensates for systolic intracranial volume peaks to
avoid increased pressure.24 In patients with NPH, the systolic in-
tracranial pressure peaks may be due to a reduced compliance of
the spinal CSF spaces, which may be reflected by an inefficient
craniospinal CSF outflow. To our knowledge, craniospinal CSF
flow in the upper cervical spine has not been assessed in patients
with NPH.

We, therefore, aimed to investigate spinal craniospinal CSF
flow rates in patients with NPH and compare them with those in
age-matched and younger healthy controls. We hypothesized
that craniospinal CSF outflow is reduced in patients with NPH as
a sign of a lowered buffer function of the spinal CSF spaces.
Moreover, we intended to provide an MR imaging–based tool
that may help diagnose NPH using instrumental instead of clini-
cal metrics.

MATERIALS AND METHODS
Subjects
Institutional review board (Ethics Committee of the Medical
Department, LMU Munich) approval was obtained before the
study, and all subjects provided written informed consent. A total
of 42 study participants were included in this prospective study
(for patient demographics see Table 1). We defined 3 study groups:
1) ten patients with proved NPH according to current scientific
criteria (see more details below);25,26 2) eighteen age-matched,
healthy controls (HC-M); and 3) fourteen young healthy controls
(HC-Y) for the investigation of age-related effects.

A detailed history of all participants was obtained with a spe-
cial focus on neurologic and cardiovascular disorders. Exclusion
criteria for all groups were MR imaging–based contraindications
such as cardiac pacemakers, cochlear implants or other ferromag-
netic implants; claustrophobia; and any severe non-neurologic
disorder. Inclusion criteria were defined as group-specific for the
NPH, HC-M, and HC-Y groups.

Before inclusion in the NPH group
of the study, patients were diagnosed
with NPH at the Department of
Neurology at Ludwig-Maximilians-
University of Munich. Diagnosis was
based on clinical neurologic parame-
ters, imaging parameters, and the lum-
bar tap test.

Neurologic parameters were evaluated by detailed neurologic
examinations and tests. To evaluate the symptom complex of de-
mentia, we performed several neurocognitive tests, including the
Mini-Mental State Examination, psychomotor velocity during
visual tracking, object recognition and naming, Verbal Learning
and Recall Performance, Number Connection Test, and general
linguistic competence. For assessment of gait instability, a 3D gait
analysis was performed; gait pattern was analyzed by functional
gait assessment, and both the Timed Up and Go test and the 10
Meter Walk Test were conducted. The symptom of urinary
incontinence was identified by clinical anamnesis.

NPH was considered proved when a typical hypokinetic
apractic gait disturbance was present, together with at least 1
more of the Hakim triad symptoms (dementia and/or urinary
incontinence), along with no other reason for hydrocephalus and
gait disturbance.

For evaluation of NPH imaging parameters, an initial CT of
the brain was acquired and imaging features of NPH were
assessed. NPH was considered proved if the following conditions
were present: hydrocephalus with an Evans index of .0.3, tight
sulci in the convexities of the cerebral hemispheres, and an
enlarged Sylvian fissure (DESH criteria4).

The lumbar tap test (removing 30mL of CSF through a lum-
bar puncture) was performed before and after neurologic testing.

To verify NPH, positive findings on a lumbar tap test were
necessary, ie, an objective improvement of gait instability after
the lumbar tap test. This was defined as at least 20% improve-
ment compared with the initial performance during gait analysis,
in detail, $ 20% increase of maximum walking speed measured
for.10 m (10 Meter Walk Test). An objective improvement of
dementia after the lumbar tap test was defined as at least 10% per-
formance enhancement compared with the initial value during
neuropsychological testing.

The inclusion criteria for the NPH group were a proved NPH
diagnosed earlier at the Department of Neurology at Ludwig-
Maximilians-University of Munich, a minimum of 60 years of
age, and an insidious onset of symptoms with progression of
symptoms during at least 3 months. The exclusion criterion for
the NPH group was a secondary hydrocephalus (eg, after cranio-
cerebral trauma or meningitis), whereas the presence of other
neurologic diseases without potential influence on the develop-
ment of hydrocephalus did not constitute an exclusion criterion
(eg, tremor or dizziness; Table 2). For characteristics of patients
with NPH, see Table 3.

The inclusion criterion for the HC-M group was a mean age
(71 [SD, 5 years]) comparable with that of the patients in the NPH
group (74 [SD, 6 years]). Exclusion criteria for the HC-M group
were the simultaneous occurrence of at least 2 of the 3 symptoms
of the Hakim triad and/or the presence of hydrocephalus. Other

Table 1: Participant demographics

NPH HC-M HC-Y
Study participants (No.) 10 18 14
Sex (female/male) 8/2 11/7 8/6
Age (mean) (min/max) (yr) 74 (SD, 6.2) (60/82) 71 (SD, 5.3) (60/86) 21 (SD, 1.7) (19/24)

Note:—Max indicates maximum; min, minimum.
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exclusion criteria were diseases known to cause hydrocephalus
(Table 2).

Inclusion criterion for the HC-Y group was 18–25 years of
age; exclusion criteria were analogous to those of the HC-M
group (Table 2).

MR Imaging and MR Imaging Flow Rates
Participants were imaged in the supine position, with legs slightly
elevated to improve comfort, on a 3T MR imaging scanner
(Magnetom Verio; Siemens). A phased-array head and neck coil
with a total of 12 channels was used. A pulse oximeter was fixed
onto the forefinger to synchronize the measurements with the
cardiac cycle (R wave–triggered). MR imaging included both
structural and flowMR imaging sequences.

Structural MR images consisted of an axial FLAIR sequence
(TR¼ 7000ms, TE¼ 94ms, FOV¼ 250� 175 mm2, voxel size¼
0.9 � 0.9 � 3.0 mm3) and a sagittal 3D MPRAGE sequence (TR ¼
11ms, TE ¼ 4.76ms, FOV ¼ 210 � 210 mm2, voxel size ¼ 1.0 �
1.0 � 0.7 mm3, integrated parallel acquisition techniques with
acceleration factor¼ 2).

Flow imaging to measure hemo- and hydrodynamic parame-
ters consisted of 2 retrospectively gated, velocity-encoded (VENC),
cine phase-contrast sequences. To locate the correct positioning,

we used a sagittal phase-contrast 2D localizer with the following
parameters: TR ¼ 19.2ms, TE ¼ 5.1ms, FOV ¼ 200 � 200 mm2,
voxel size ¼ 1.0 � 0.8 � 35 mm3. First, a high VENC (80 cm/s)
axial sequence was acquired to quantify high-velocity blood flow in
the internal carotid arteries and vertebral arteries. A second
sequence with a low VENC (8–10 cm/s) was performed to quantify
CSF flow. As suggested by Tain et al,27 measurements were
obtained at the level of C2, with an orientation perpendicular to
the main 4 arteries (left and right internal carotid and vertebral
arteries) for the high-VENC sequence and perpendicular to the
spinal canal for the low-VENC sequence. Sequence parameters
were as follows: TR ¼ 40.25ms, TE ¼ 7.19ms, FOV ¼ 130 � 110
mm2, voxel size ¼ 0.8 � 0.5 � 6.0 mm3. Phase-contrast imaging
was performed for 32 heart cycles and took about 3 minutes, with
discrete differences due to the individual heart rates of the study
participants.

Postprocessing and Data Analysis
Details of the MR imaging–based measurements of arterial inflow
and CSF flow to and from the brain have been described previ-
ously.28 In brief, time-dependent volumetric flow rates were cal-
culated by integrating the flow velocities within the luminal
cross-sectional areas over all 32 phase-contrast images represent-
ing 1 cardiac cycle. This calculation was performed using the
semiautomated pulsatility-based lumen-segmentation method to
decrease variability.29 Absolute flow rates were obtained for the 4
main cervical arteries (left and right internal carotid arteries; left
and right vertebral arteries).

The following volumetric flow rates were defined and calcu-
lated for all participants: 1) the maximal CSF flow rate from the
brain to the spinal canal during systole (CSFmax); and 2) the max-
imal arterial blood flow rate to the brain during systole (ACBmax).
Figure 1A, -B provides an example of blood and CSF flow VENC
images. All analyses were performed with MRICP software,
Version 1.4.35 (Alperin Noninvasive Diagnostics).

To determine the relationship between arterial blood inflow
(ACBmax) and CSF outflow (CSFmax), we calculated the ratio
between both parameters for all study groups (CSFmax/ACBmax).

In addition, the minimal diameter (Ø) of the spinal canal was
measured in a midsagittal MPRAGE image at the level of the inter-
vertebral space between the second and third upper cervical verte-

brae (ØC2/C3), (Fig 1C). To define the
impact of spinal width on the maximal
CSF outflow during systole (CSFmax),
we performed correlation analysis
between both parameters (CSFmax and
ØC2/C3).

Statistical Analysis
Statistical analyses were performed
using SPSS 17.0 for Windows (IBM)
and Matlab (MathWorks). The inde-
pendence of variables was validated by
the x 2 test. Group differences were
analyzed using the 2-sample unpaired
t test. Correlation analysis was per-
formed using the Pearson correlation

Table 2: Comorbidities of participantsa

Study Group NPH HC-M HC-Y
Arterial hypertension 5/10 6/18 0/14
Arteriovenous malformation 0/10 0/18 2/14
Atrial fibrillation 0/10 2/18 0/14
Headaches 0/10 1/18 1/14
Coronary heart disease 2/10 0/18 0/14
Dizziness 1/10 0/18 0/14
Meningiomab 0/10 1/18 0/14
Microangiopathy 1/10 1/18 0/14
Multiple sclerosis 0/10 0/18 4/14
Orthostatic tremor 1/10 0/18 0/14
Peripheral arterial disease 1/10 0/18 0/14
Restless leg syndrome 0/10 1/18 0/14
Seizure disorder 1/10 0/18 1/14
Prior stroke 1/10 3/18 0/14
History of syncope 0/10 1/18 0/14
History of transient ischemic attack 0/10 2/18 0/14

a Data are number of patients per study group.
b The meningioma measured 1.2 cm at the maximum.

Table 3: Characteristics of patients with NPH

Characteristics
No. of
Patients

Neurologic parameters (Hakim-
Adams triad)

Gait disturbance 10/10
Urinary incontinence 8/10
Dementiaa 8/10

Imaging parameters Evans index.0.3 10/10
DESH criteria 10/10
Ventricular enlargement 6/10
Signs of transependymal CSF
diapedesis

6/10

Lumbar tap testb Objective improvement of gait
disturbance

10/10

Objective improvement of cognitive
function

7/10

a Sixty percent progressive disease (predominant impairment of short-term memory).
b Forty percent additionally received a tap test via a Yuohy needle lasting several days.
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coefficient. Data are presented as mean (SD). P, .05 was consid-
ered statistically significant.

RESULTS
Baseline Characteristics
Forty-two participants were included (27 women/15 men). The
NPH group consisted of 10 participants (8 women/2 men); the
HC-M group, 18 participants (11 women/7 men); and the HC-Y
group, 14 participants (8 women/6 men). There was no signifi-
cant difference between the ages of men compared with female
participants for all groups, and there was no significant difference
in age between the NPH and HC-M groups. For patient demo-
graphics, see Table 1; the comorbidities of the study participants
are shown in Table 2. For characteristics of patients with NPH,
see Table 3.

CSFmax from the Brain
The CSFmax was significantly different among the 3 study groups.
Compared with the HC-M group, the mean CSFmax was signifi-
cantly decreased in patients with NPH (NPH, 53 [SD, 40]mL/m,
versus HC-M, 329 [SD, 175] mL/m; P, .01). Moreover, mean
CSFmax was significantly diminished in the HC-M group com-
pared with the HC-Y group (472 [SD, 194] mL/m, versus HC-M,
329 [SD,175]mL/m; P, .05; Fig 2A).

ACBmax

The mean ACBmax was not significantly different among the 3
study groups. ACBmax was 1160 (SD, 404)mL/m for patients
with NPH, 1470 (SD, 381)mL/m for the HC-M group, and 1400
(SD, 254)mL/m for the HC-Y group (each, P. .05; Fig 2B).

CSFmax/ACBmax

To account for a potential impact of ACBmax on CSFmax, we cal-
culated the ratio between both parameters for all study groups
(CSFmax/ACBmax). CSFmax/ACBmax was different among the 3
study groups. The CSFmax/ACBmax was significantly decreased in
patients with NPH compared with the age-matched healthy con-
trols (mean NPH, 0.1 [SD, 0.1], versus HC-M, 0.2 [SD, 0.1];
P, .05). Moreover, the CSFmax/ACBmax was significantly dimin-
ished in the HC-M group compared with the HC-Y group: 0.3
(SD, 0.1), versus HC-M, 0.2 (SD, 0.1); P, .05; Fig 2C).

Minimal Diameter of the Spinal Canal
The minimal midsagittal diameter of the spinal canal (ØC2/C3)
was different among the 3 study groups. Compared with HC-M,
the ØC2/C3 was significantly decreased in patients with NPH
(NPH, 1.25 [SD, 0.16] cm, versus HC-M, 1.36 [SD, 0.12] cm;
P, .05). The minimal diameter of the spinal canal (ØC2/C3) was
significantly larger in HC-Y compared with both HC-M and
patients with NPH (HC-Y, 1.48 [SD, 0.08] cm, versus HC-M,

FIG 1. Measurement of CSF/blood flow and spinal canal width. A, Craniospinal blood and CSF flow (milliliter/minute) during the cardiac cycle
across time (millisecond). The upper panel shows the blood flow. During each systole, arterial blood (red) flows into the cranium and venous
blood flows in a cardiac direction; outflow is too slow to compensate the resulting increase in intracranial pressure. The lower panel shows the
resulting fast CSF outflow (green) from the brain to the spinal CSF spaces to buffer pressure peaks. B, VENC phase-contrast MR images of blood
and CSF. The upper panel demonstrates the blood flow through the internal carotid arteries (arrows) and vertebral arteries (arrowheads), and
the internal jugular veins are represented by the oval white spots (not marked). The lower panel shows the flow of CSF (black dashed arrow)
from the cranium to the spinal canal. Upward flow is black, while downward flow is white. C, Measurement (double-sided arrow) of the maximal
diameter of the spinal canal in a midsagittal MPRAGE image at the level of the intervertebral space between the second and third upper cervical
vertebrae (ØC2/C3) is shown.
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1.36 [SD, 0.12] cm; P, .01; HC-Y, 1.48 [SD, 0.08] cm, versus
NPH, 1.25 [SD, 0.16] cm; P, .001) (Fig 3).

Correlation between Spinal Canal Diameter and Maximal
CSF Outflow
To define the impact of spinal width on CSFmax, we performed a
correlation analysis between CSFmax and ØC2/C3, and a signifi-
cantly positive correlation between CSFmax and ØC2/C3 was
found, showing a lower CSFmax with lower spinal diameter
(R¼ 0.47; P, .05; Fig 4).

DISCUSSION
In this study, we demonstrated a lower CSFmax in patients with
NPH compared with both age-matched and younger controls,
which suggests a lower Windkessel effect and dampening of pul-
sations of the spinal CSF spaces. Physiologically, craniospinal
CSF outflow compensates for systolic intracranial pressure peaks
due to pulsatile arterial inflow.24 Our results support new con-
cepts that attribute the pathophysiology of NPH to abnormal dy-
namics of CSF and blood flow,19–23 especially the concept of a

reduced spinal CSF buffer function, represented by a low cervical
CSF outflow.

The observed reduction of spinal CSFmax in patients with
NPH could theoretically be due to a reduced arterial inflow to the
brain during systole. However, our results of a reduced CSFmax in
patients with NPH compared with HC-M and HC-Y remained
significant, even when accounting for the potential effect of
decreased arterial inflow in patients with NPH. The reduction of
CSFmax in patients with NPH, therefore, exceeded the expected
age-related changes. CSFmax could be a direct measure for the
reduced compliance of spinal CSF spaces, ie, a reduced spinal
buffer function orWindkessel effect, with the systolic peaks of in-
tracranial pressure in patients with NPH not being compensated
by CSF outflow. Our results complement the results of earlier
studies on compliance of vessels and craniospinal CSF spaces.30,31

These prior studies attributed the reduction of cervical CSF pulsa-
tions to an arterial loss of pulsatility31 and assumed the reduced
cervical CSF flow to be a consequence of a decreased arterial
expansion due to pathologic changes of arteries and perivascular
spaces.30 Recent investigations were able to show that respiration

FIG 2. CSFmax, ACBmax, and the ratio between both parameters (CSFmax/ACBmax). A, Maximal CSF flow rate (CSFmax) in milliliter/minute. B,
ACBmax in milliliter/minute. C, Ratio between arterial blood inflow and CSF outflow (CSFmax/ACBmax). The asterisk indicates P, .05; double
asterisks, P, .01; n.s., not significant.

FIG 3. Minimal diameter of the spinal canal (ØC2/C3). A, Minimal diameter of the spinal canal (ØC2/C3) in centimeters. B, Representative MR
images (midsagittal T1-weighted image) to measure the minimal diameter of the spinal canal at the level of the intervertebral space between the
second and third upper cervical vertebrae (double-sided arrow). The left panel shows an image of an HC-Y, the middle panel shows an HC-M,
and the right panel shows an image of a patient with NPH. The asterisk indicates P, .05; double asterisks, P, .01; triple asterisks, P, .001.
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and the cardiac cycle affect CSF flow at the cervical level.32-34

Besides these influences, a general variation in the direction and
magnitude of CSF flow is known to occur in both healthy indi-
viduals and patients with NPH,35,36 with a redirectional35 and
mainly retrograde (ie, toward the ventricles) aqueductal flow36

and a cranially directed CSF net flow at the craniocervical junc-
tion36 in patients with NPH.

Another new concept that attributes the pathophysiology of
NPH to abnormal CSF is that of a hyperdynamic CSF flow in the
aqueduct.19-23 Prior studies analyzed the relation between aque-
ductal CSF flow and the clinical response to the shunting proce-
dure,37,38 demonstrating that aqueductal CSF flow was not able to
reliably predict clinical improvement after shunt implantation.39,40

Aqueductal CSF flow seems to be strongly correlated with ventric-
ular morphology,41 showing higher aqueductal CSF oscillations in
patients with NPH.10-12 The lower craniospinal CSFmax in patients
with NPH observed in our study might correspond to a higher
CSF volume in the aqueduct, resulting in a higher oscillatory
flow.10-12 The higher CSF volume in the aqueduct10-12 may be the
consequence of a reduced Windkessel effect of the superior spinal
CSF spaces, with CSF outflow from the brain being inefficient to
buffer systolic intracranial pressure peaks.

Prior studies have investigated the age dependency of CSF
flow values,14,31,42-45 demonstrating age dependence of CSF flow
parameter,14,45 with significantly reduced CSF stroke volumes in
the elderly.31 However, Lokossou et al44 suggested that aging
mainly changes cerebral blood flow but preserves blood and CSF
interactions, with an age-independent positive correlation
between blood and CSF stroke volumes. Our results show a sig-
nificantly lower CSFmax from the brain during systole in older
participants compared with young healthy controls (P, .05),
confirming prior results on age dependency of CSF flow.
Additionally, our results show a lower CSFmax in patients with
NPH compared with age-matched healthy controls, suggesting
that the reduction of maximal craniospinal CSF flow in patients
with NPH exceeds age-related changes. Our results complement
the findings of Abdalla et al,42 who differentiated patients with
NPH from control subjects with mere age-related brain atrophy
based on diverse CSF flow dynamics at the level of the aqueduct.

In our study, the diameter of the spinal canal at the level C2/
C3 (ØC2/C3) was decreased in patients with NPH compared with
both HC-M and HC-Y, and there was a positive correlation
between the craniospinal CSFmax and ØC2/C3. The narrowing of
the spinal canal may lead to a blocked craniospinal CSF flow with
a reduced dampening of pulse pressure waves. This possibility
could explain both the higher aqueductal CSF oscillations in
patients with NPH10–12 and the reduced craniospinal CSFmax.
The spinal canal narrowing in patients with NPHmay be second-
ary to degenerative changes that may involve hypertrophy and
calcification of the ligaments, intervertebral discs, and osseous tis-
sue.46 Further studies are necessary to corroborate our findings
and evaluate degenerative changes and spinal canal narrowing in
patients with NPH.

There are several limitations to our study that need to be con-
sidered when interpreting the data. First, our sample sizes are
limited. This was at least, in part, due to strict inclusion criteria
for the NPH group, requiring at least 2 of the 3 symptoms of the
Hakim triad and positive findings on a lumbar tap test without
any indication for secondary hydrocephalus. We, nevertheless,
were able to demonstrate a significantly reduced CSFmax in
patients with NPH. Further studies with larger sample sizes will
be needed to confirm our results. Second, diagnosing NPH
remains challenging, and even with positive findings on a lumbar
tap test, some risk of erroneously included patients remains.
Finally, we assessed only the diameter of the spinal canal at the
level of C2/C3. Further studies are needed to investigate addi-
tional spinal canal narrowing in lower segments.

CONCLUSIONS
We observed a reduction of maximal craniospinal CSF flow in
patients with NPH compared with HC-M. This effect exceeded
age-related changes of CSF flow and remained significant, even
when accounting for differential arterial blood flow rates. A
reduced compliance of spinal CSF spaces may play an important
role in the etiopathogenesis of NPH. Systolic craniospinal CSF
flow rates are an easily obtainable MR imaging–based measure
that may support the diagnosis of NPH.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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