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Behavioral/Cognitive

Temporal Context Modulates Encoding and Retrieval of
Overlapping Events

Devyn E. Smith, Isabelle L. Moore, and “Nicole M. Long
Department of Psychology, University of Virginia, Charlottesville, Virginia 22904

Overlap between events can lead to interference because of a trade-off between encoding the present event and retrieving the
past event. Temporal context information, “when” something occurred, a defining feature of episodic memory, can cue re-
trieval of a past event. However, the influence of temporal overlap, or proximity in time, on the mechanisms of interference
is unclear. Here, by identifying brain states using scalp EEG from male and female human subjects, we show the extent to
which temporal overlap promotes interference and induces retrieval. In this experiment, subjects were explicitly directed to
either encode the present event or retrieve a past, overlapping event while perceptual input was held constant. We find that
the degree of temporal overlap between events leads to selective interference. Specifically, greater temporal overlap between
two events leads to impaired memory for the past event selectively when the top-down goal is to encode the present event.
Using pattern classification analyses to measure neural evidence for a retrieval state, we find that greater temporal overlap
leads to automatic retrieval of a past event, independent of top-down goals. Critically, the retrieval evidence we observe likely
reflects a general retrieval mode, rather than retrieval success or effort. Collectively, our findings provide insight into the role

of temporal overlap on interference and memory formation.
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Significance Statement

When a present event overlaps with an event from the past, this leads to a trade-off between the tendency to encode the pres-
ent event versus retrieve the past event. Here we show that, when two events are experienced nearby in time, the memory sys-
tem is biased toward a retrieval state and that subsequent memory for the past event is impaired. These findings suggest an
influence of bottom-up temporal factors on both interference and the trade-off between memory states.

Introduction

Overlap between events leads to interference and impairs mem-
ory for those events (McGeoch, 1942; Anderson, 2003). For
example, at a conference you may talk to a colleague whom you
had previously met over Zoom. Later you may have difficulty
remembering either the original Zoom meeting or the subse-
quent conference conversation. The overlap between these events
(e.g., the colleague) promotes retrieval of the past event (the
meeting on Zoom) while you are trying to encode the present
event (your conversation; Kuhl et al, 2010). As retrieval and
encoding recruit distinct neural substrates and cannot be
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engaged in simultaneously (Hasselmo et al., 2002), retrieving the
past comes at the expense of encoding the present (Long and
Kuhl, 2019). Although overlap is a critical factor in retrieval-
mediated interference, two events may overlap along many
dimensions and to varying degrees. Temporal overlap, or prox-
imity in time, has been shown to enhance inference (Zeithamova
and Preston, 2017), but it is unclear how temporal overlap con-
tributes to interference. The aim of this study is to investigate the
extent to which temporal overlap induces retrieval and, in turn,
impacts interference.

Temporal information is a hallmark of episodic memory
(Tulving, 1993) and is well known to impact how events are
encoded and retrieved. The closer two events are in time and/or
space, the more likely they are to be recalled together (Kahana,
1996; Manning et al., 2011) and the greater their neural similarity
(Manns et al.,, 2007; Folkerts et al., 2018). Retrieved context
theory (Howard and Kahana, 2002; Sederberg et al., 2008; Polyn
et al., 2009; Lohnas and Kahana, 2014) provides an account for
these effects whereby spatiotemporal context, an amalgamation
of external stimuli and internal states is bound, via the hippo-
campus, to the present experience (Eichenbaum, 2004; Wang
and Diana, 2017; Long and Kahana, 2019; Yonelinas et al., 2019)
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and is later used by the hippocampus as a cue to retrieve past
experiences (Long et al., 2017). Comparison of activity patterns
between study and test items, a recalled word or recognition
probe, provides support for retrieved context theory in that the
shorter the temporal distance between two items at study, the
greater the pattern similarity between the study pattern of one
item and the test pattern of the other item (Manning et al., 2011;
Howard et al., 2012; El-Kalliny et al., 2019). Although contextu-
ally mediated retrieval is typically considered in relation to the
test phase of an experiment, in principle, contextually mediated
retrieval should occur whenever there is a contextual overlap
between items. Such retrieval may occur automatically or inde-
pendent from top-down demands (Smith et al., 2018). Therefore,
we hypothesized that overlap in temporal context between two
events produces retrieval during study and in turn promotes
interference.

Here, we report a human scalp EEG study in which subjects
studied two sets of object images in which the second set catego-
rically overlapped with the first set. During study of the second
set of object images, subjects were explicitly instructed to either
encode the second (present) object or retrieve the first (past)
object. These instructions were intended to bias subjects toward
either an encoding or retrieval state. A retrieval state, or mode, is
a tonically maintained mental set that is entered when there is
need to engage episodic retrieval (Tulving, 1983; Rugg and
Wilding, 2000). Our critical manipulation was the temporal dis-
tance between the first and second object, whereby the shorter
the temporal distance between two objects, the greater their tem-
poral contextual overlap. Following study, subjects completed a
recognition task to probe their memory for all previously pre-
sented objects. To the extent that temporal contextual overlap
influences interference, we should find that temporal distance
modulates memory performance for the first and/or second
objects. To the extent that temporal contextual overlap promotes
retrieval, we should find that subjects are biased toward a re-
trieval state during second objects that are presented near in time
to a categorically overlapping first object.

Materials and Methods

Subjects

Forty (34 female; age range = 18-37 years, mean age = 20.3 years) right-
handed, native English speakers from the University of Virginia commu-
nity participated. This sample size is based on our previous work in
which we enrolled 40 participants (Long and Kuhl, 2019). All subjects
had normal or corrected-to-normal vision. Informed consent was
obtained in accordance with the University of Virginia Institutional
Review Board for Social and Behavioral Research, and subjects were
compensated for their participation. Three subjects were excluded from
the final dataset: one who previously completed a behavioral version of
the task, one who had poor task performance (recognition accuracy <3
SDs of the mean of the full dataset), and one because of technical issues
resulting in poor signal quality throughout the majority of the session.
Thus, data are reported for the remaining 37 subjects. The raw, deidenti-
fied data and the associated experimental and analysis codes used in this
study can be accessed via the Long Term Memory lab website (https://
longtermmemorylab.com).

Mnemonic state task experimental design

Stimuli consisted of 576 object pictures, drawn from an image database
with multiple exemplars per object category (Konkle et al., 2010). From
this database, we chose 144 unique object categories and four exemplars
from each category. For each subject, one exemplar in a set of four
served as a List 1 object, one as a List 2 object, and the two remaining
exemplars served as lures for the recognition phase. Object condition
assignment was randomly generated for each subject.
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General overview. In each of eight runs, subjects viewed two lists
containing 18 object images. For the first list, each object was new (List 1
objects). For the second list (List 2 objects), each object was again new
but was categorically related to an object from the first list. For example,
if List 1 contained an image of a bench, List 2 would contain an image of
a different bench (Fig. 1). During List 1, subjects were instructed to
encode each new object. During List 2, however, each trial contained an
instruction to either encode the current object (e.g., the new bench) or to
retrieve the corresponding object from List 1 (the old bench). The critical
manipulation was the distance between the corresponding List 1 and
List 2 objects. We divided each list of 18 objects into thirds according to
serial position (first [1-6], middle [7-12], and last [13-18]). The objects
in the first third of List 1 were “paired” with the objects in the last third
of List 2. For example, if List 1 contained an image of a bench in serial
position 1, List 2 would contain an image of a different bench in serial
position 13-18. The objects in the middle third of List 1 were paired with
the objects in the middle third of List 2. The objects in the last third of
List 1 were paired with the objects in the first third of List 2. We coded
List 1 and List 2 objects as near and far based on the lag, or difference in
serial position, between the two objects in a pair. List 1 and List 2 objects
separated by <18 intervening objects were coded as near; List 1 and List
2 objects separated >18 intervening objects were coded as far. Following
eight runs, subjects completed a two-alternative forced-choice recogni-
tion test that separately assessed memory for List 1 and List 2 objects.

List 1. On each trial, subjects saw a single object presented for
2000ms followed by a 1000ms interstimulus interval. Subjects were
instructed to study the presented object in anticipation for a later mem-
ory test.

List 2. On each trial, subjects saw a cue word, either “OLD” or
“NEW” for 2000 ms. The cue was followed by presentation of an object
for 2000 ms, which was followed by a 1000 ms interstimulus interval. All
objects in List 2 were nonidentical exemplars drawn from the same cate-
gory as the objects presented in the immediately preceding List 1. That
is, if a subject saw a bench and an apple during List 1, a different bench
and a different apple would be presented during List 2. On trials with a
NEW instruction (encode trials), subjects were to encode the presented
object. On trials with an OLD instruction (retrieve trials), subjects tried
to retrieve the categorically related object from the preceding List 1.
Importantly, this design prevented subjects from completely ignoring
List 2 objects following OLD instructions in that they could only identify
the to-be-retrieved object category by processing the List 2 object.

Subjects completed eight runs with two lists in each run (List 1, List
2). Subjects viewed 18 objects per list, yielding a total of 288 object stim-
uli from 144 unique object categories. Subjects did not make a behavioral
response during either List 1 or 2. Following the eight runs, subjects
completed a two-alternative forced-choice recognition test.

Recognition phase. Following the eight runs, subjects completed the
recognition phase. On each trial, subjects saw two exemplars from the
same object category (e.g., two benches; Fig. 1). One object had previ-
ously been encountered either during List 1 or List 2. The other object
was a lure and had not been presented during the experiment. Because
both test probes were from the same object category, subjects could not
rely on familiarity or gist-level information to make their response
(Brainerd and Reyna, 2002). Trials were self-paced, and subjects selected
(via button press) the previously presented object. Trials were separated
by a 1000 ms interstimulus interval. There were a total of 288 recognition
trials (corresponding to the 288 total List 1 and List 2 objects presented
in the experiment). List 1 and List 2 objects never appeared in the same
trial together; thus, subjects never had to choose between two previously
presented objects. List 1 and List 2 objects were presented randomly
throughout the test phase.

EEG data acquisition and preprocessing

EEG recordings were collected using a BrainVision system and an
ActiCap equipped with 64 Ag/AgCl active electrodes positioned accord-
ing to the extended 10-20 system. All electrodes were digitized at a sam-
pling rate of 1000 Hz and were referenced to electrode FCz. Offline,
electrodes were later converted to an average reference. Impedances of
all electrodes were kept to <50 k(). Electrodes that demonstrated high
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Figure 1.

Task design. During List 1, subjects studied individual objects (e.g., bench, apple). During List 2, subjects saw novel objects that were from the same categories as the objects

shown in List 1 (e.g., @ new bench, a new apple). Preceding each List 2 object was an OLD instruction cue or NEW instruction cue. The OLD cue signaled that subjects were to retrieve the corre-
sponding object from List 1 (e.g., the old apple). The NEW cue signaled that subjects were to encode the current object (e.g., the new bench). Each run of the experiment contained a List 1
and List 2; object categories (e.g., bench) were not repeated across runs. List 1 and List 2 objects separated by <18 intervening objects were coded as near, and List 1 and List 2 objects sepa-
rated by >18 intervening objects were coded as far (see Materials and Methods). Lines around the boxes are shown for illustrative purposes and were not present during the actual experi-
ment. After eight runs, subjects completed a two-alternative forced-choice recognition test that tested memory for each List 1 and List 2 object. On each trial, a previously presented object,
either from List 1 or List 2, was shown alongside a novel lure from the same category. The subject’s task was to choose the previously presented object. List T and List 2 objects were never pre-

sented together.

impedance or poor contact with the scalp were excluded from the aver-
age reference. Bad electrodes were determined by voltage thresholding
(see below).

Custom Python codes were used to process the EEG data. We
applied a high pass filter at 0.1 Hz, followed by a notch filter at
60 Hz and harmonics of 60 Hz to each subject’s raw EEG data. We
then performed three preprocessing steps (Nolan et al., 2010) to
identify electrodes with severe artifacts. First, we calculated the
mean correlation between each electrode and all other electrodes
as electrodes should be moderately correlated with other electrodes
because of volume conduction. We z-scored these means across
electrodes and rejected electrodes with z scores <—3. Second, we
calculated the variance for each electrode as electrodes with very
high or low variance across a session are likely dominated by noise
or have poor contact with the scalp. We then z-scored variance
across electrodes and rejected electrodes with a |z|> = 3. Finally,
we expect many electrical signals to be autocorrelated, but signals
generated by the brain versus noise are likely to have different
forms of autocorrelation. Therefore, we calculated the Hurst expo-
nent, a measure of long-range autocorrelation, for each electrode
and rejected electrodes with a |z|> = 3. Electrodes marked as bad
by this procedure were excluded from the average rereference. We
then calculated the average voltage across all remaining electrodes
at each time sample and rereferenced the data by subtracting the
average voltage from the filtered EEG data. We used wavelet-
enhanced independent component analysis (Castellanos and
Makarov, 2006) to remove artifacts from eyeblinks and saccades.

EEG data analysis

We applied the Morlet wavelet transform (wave number 6) to the entire
EEG time series across electrodes, for each of 46 logarithmically spaced
frequencies (2-100 Hz; Long and Kahana, 2015). After log-transforming

the power, we downsampled the data by taking a moving average across
100 ms time intervals from either 4000 ms preceding to 4000 ms fol-
lowing object presentation during List 1 and List 2 or 0 ms preced-
ing to 1000 ms following probe presentation for the recognition
data. For each phase, we slid the window every 25 ms, resulting in
317 and 37 time intervals, respectively (80 and 10 nonoverlapping).
Power values were then z-transformed by subtracting the mean
and dividing by the SD power. Mean and SD power were calculated
across all List 1 and List 2 objects or all recognition events, across
time points for each frequency, which is analogous to performing a
prestimulus baseline correction. z-transforming or baseline-cor-
recting spectral power is a necessary step to both reduce the 1/f
shape of the power spectrum, lower frequencies inherently have
more power than higher frequencies, and to perform parametric
statistics on the data (Cohen, 2014).

GLM

Trial-specific signals during List 2 were estimated using the GLM imple-
mented via the sklearn linear model module in Python. We ran a sepa-
rate GLM for each trial in which the trial was modeled as the regressor
of interest and all other trials were combined into a single nuisance
regressor (Mumford et al., 2012). Serial position (1-36, corresponding to
List 1 [1-18] and List 2 [19-36]) was included as a single parametric
regressor in each GLM to account for serial position effects. This para-
metric regressor predicts recognition memory accuracy, such that mem-
ory declines as serial position increases (mean = —0.0108, SD =0.0196,
t;36) = —3.3116, p=0.0021), and is consistent with other approaches for
modeling a continuous variable (e.g., Tuladhar et al., 2007; Long et al,,
2010; Spitzer et al., 2014). We fit trial-specific GLMs to the z-scored
spectral power for each time point and frequency for each electrode to
generate trial-level B values. These 8 values were used in all subsequent
analyses.
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Pattern classification analyses

Pattern classification analyses were performed using penalized (12)
logistic regression (penalty parameter = 1), implemented via the sklearn
linear model module in Python. Before pattern classification analyses
were performed on the List 2 data, an additional round of z-scoring was
performed across features (electrodes and frequencies) to eliminate trial-
level differences in spectral power (Kuhl and Chun, 2014; Long and
Kuhl, 2018). Therefore, mean univariate activity was matched precisely
across all conditions and trial types. Classifier performance was assessed
in two ways. “Classification accuracy” represented a binary coding of
whether the classifier successfully guessed the instruction condition. We
used classification accuracy for general assessment of classifier perform-
ance (i.e., whether encode/retrieve instructions could be decoded).
“Classifier evidence” was a continuous value reflecting the logit-trans-
formed probability that the classifier assigned the correct instruction for
each trial. Classifier evidence was used as a trial-specific, continuous
measure of mnemonic state information, which was used to assess the
degree of retrieval evidence present on near and far trials. The logic of
using both classifier accuracy and classifier evidence is that, although ac-
curacy indicates how well the classifier can distinguish encode versus
retrieve trials, accuracy may obscure differences in conditions on which
the classifier was not directly trained, for example, the distance (near,
far) between objects. As an example, the classifier may correctly label
both near encode and far encode trials as “encode”; however, it may
have less confidence on the near compared with far trials, reflecting rela-
tively greater retrieval state evidence on near trials.

We trained within-subject classifiers to discriminate List 2 encode
versus retrieve trials based on a feature space comprised of all 63
electrodes x 46 logarithmically spaced frequencies ranging from 2 to
100 Hz. For each subject, we used leave-one-run-out cross-validated
classification in which the classifier was trained to discriminate encode
from retrieve instructions for seven of the eight runs and tested on the
held-out run. For classification analyses in which we assessed classifier
accuracy, we averaged 3 values over the 2000 ms stimulus interval. For
analyses measuring classifier evidence, we averaged B values over four
separate 500 ms time intervals across the 2000 ms stimulus interval. We
assessed classifier evidence as a function of instruction (encode, retrieve),
temporal distance (near, far), and/or retrieval status (success, failure; see
below).

To measure the ability of the classifier to generalize across temporal
distance, we trained and tested two separate classifiers to distinguish List
2 encode/retrieve trials. One classifier was trained on near trials and
tested on far trials; the other classifier was trained on far trials and tested
on near trials. As there was a slight imbalance in the number of encode
and retrieve trials within each distance, we subsampled trials from the
condition with the greater number of trials to match the condition with
fewer trials. We repeated this procedure for 100 iterations and averaged
the resulting classification accuracy values across the 100 iterations.

Retrieval status analysis

Because we did not explicitly measure retrieval success during the List 2
trials, we generated “retrieval success” and “retrieval failure” templates
based on the recognition phase data. Specifically, we extracted stimulus-
locked z-scored spectral power across 63 electrodes and 46 frequencies
separately for hits (trials in which participants selected the target) and
misses (trials in which participants selected the categorically related
lure). We extracted z-power 500-800 ms following stimulus onset, as this
interval has routinely been linked with retrieval success (Friedman and
Johnson, 2000; Voss and Paller, 2008; Johnson et al., 2015). We averaged
z-power across all subjects to generate a single retrieval success template
and a single retrieval failure template.

After having generated the success/failure templates, we applied
these templates to the List 2 data. Because we were interested in whether
or not the corresponding List 1 object was retrieved at any point within
the List 2 trial, we used the trial-level 8 values averaged across the stim-
ulus interval (2000 ms). We correlated trial-level 8 values with the suc-
cess and failure templates using a Pearson correlation. Each trial was
assigned a label based on its correlation with the success and failure tem-
plates. A trial that was more positively correlated with the success
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template was labeled retrieval success or 1, and a trial that was
more positively correlated with the failure template was labeled re-
trieval failure or 0.

We calculated the average label as a function of distance (near, far)
and instruction (encode, retrieve). An average label value of 0.5 means
that a given condition was no more likely to be labeled retrieval success
than retrieval failure. An average label value >0.5 means that a given
condition was more likely to be labeled retrieval success than retrieval
failure.

Statistical analyses

We used repeated-measures ANOVAs and paired-sample t tests to
assess the effect of instruction (encode, retrieve) and temporal distance
(near, far) on behavioral memory performance.

We used paired-sample ¢ tests to compare classification accuracy
across subjects to chance decoding accuracy, as determined by permuta-
tion procedures. Namely, for each subject, we shuffled the condition
labels of interest (e.g., encode and retrieve for the List 2 instruction clas-
sifier) and then calculated classification accuracy. We repeated this pro-
cedure 1000 times for each subject and then averaged the 1000 shuffled
accuracy values for each subject. These mean values were used as sub-
ject-specific empirically derived measures of chance accuracy.

We used repeated-measures ANOVAs and paired-sample ¢ tests to
assess the interaction between instruction (encode, retrieve), temporal
distance (near, far), and time interval on retrieval evidence.

Results

Influence of temporal contextual overlap on interference

We first sought to replicate the finding that subjects are able to
shift between encoding and retrieval states in a goal-directed
manner (Long and Kuhl, 2019), by testing whether instructions
influenced performance on the recognition task. Although
encode/retrieve instructions only appeared during List 2, we also
considered whether memory for List 1 objects was influenced by
List 2 instructions (e.g., whether memory for the old bench was
influenced by whether the new bench was associated with an
encode vs retrieve instruction). A two-way, repeated-measures
ANOVA with factors of list (1, 2) and instruction (encode,
retrieve) revealed a list by instruction interaction (F(; 36) = 6.045,
p=0.0189, 7;12, = 0.14; Fig. 2A). This interaction was driven by
numerically greater recognition for List 2 objects presented with
an encode (mean = 82.88%, SD=8.51%) relative to a retrieve
instruction (mean = 80.52%, SD = 7.79%; difference between List
2 encode vs retrieve: fq = 2.1072, p=0.0421, Bonferroni-cor-
rected a = 0.025, Cohen’s d=0.2938) and numerically greater
recognition for List 1 objects presented with a retrieve (mean =
84.27%, SD =7.7%) relative to an encode instruction (mean =
83.3%, SD =7.03%; difference between List 1 encode vs retrieve:
tae) = —1.7542, p=0.0879, Bonferroni-corrected @ = 0.025,
Cohen’s d=0.1324).

To further demonstrate the impact that encode versus retrieve
instructions have on memory behavior, we conducted an analysis
of recognition phase reaction times. If subjects are able to shift
between encoding and retrieval states, we would expect to find a
list by instruction interaction such that memory responses are
slowed for List 2 objects associated with a retrieve instruction
and List 1 objects associated with an encode instruction. We
assessed reaction times from correct trials only. A two-way,
repeated-measures ANOVA with factors of list (1, 2) and
instruction (encode, retrieve) revealed a significant main effect of
list (F(1 36) = 24.84, p < 0.0001, 7712) = 0.41) driven by faster reac-
tion times for List 1 compared with List 2 objects. There was a
main effect of instruction (F(; 36 = 7.27, p=0.0106, 7;12) =0.17)
driven by faster reaction times for encode compared with
retrieve instructions. There was a significant interaction between
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Figure 2.

Influence of mnemonic instructions on memory behavior. A, We assessed recognition accuracy as a function of list (1, 2) and instruction (orange represents encode; teal represents

retrieve). We find a significant interaction between list and instruction (p = 0.0189) driven by greater accuracy for List 2 objects presented with an encode compared with a retrieve instruction
and numerically greater accuracy for List 1 objects presented with a retrieve compared with an encode instruction. B, We assessed reaction times as a function of list and instruction. We find a
significant interaction between list and instruction (p = 0.0010) driven by faster reaction times for List 2 objects presented with an encode compared with a retrieve instruction. ¢, We assessed
the relationship between List 1 and List 2 object memory on a pair-by-pair basis for cases where either the List 1 object was remembered and the associated List 2 object was forgotten (L1R-
L2F) or the List 1 object was forgotten and the associated List 2 object was remembered (L1F-L2R) separately for encode and retrieve instructions. There was a significant interaction between
condition and instruction (p=0.0189) driven by a greater proportion of L1F-L2R items for encode compared with retrieve trials and a numerically greater proportion of L1R-L2F items for

retrieve compared with encode trials. *p << 0.05, ***p << 0.001, uncorrected.

list and instruction (F136 = 12.9, p=0.0010, 1, = 0.26; Fig.
2B). This interaction was driven by faster reaction times for List
2 objects presented with an encode (mean = 1.6456, SD = 0.4405)
relative to a retrieve instruction (mean = 1.7904, SD = 0.3954; dif-
ference between List 2 encode vs retrieve: f;q = —4.248,
p=0.0001, Bonferroni-corrected a = 0.025, Cohen’s d = 0.346).

We next assessed the relationship between List 1 and List 2
object memory on a pair-by-pair basis to investigate the encod-
ing-retrieval trade-off. We isolated cases in which either the List
1 object was remembered and the associated List 2 object was
forgotten (L1R-L2F) or the List 1 object was forgotten and the
associated List 2 object was remembered (L1F-L2R). To the
extent that retrieval of List 1 objects trades off with encoding of
List 2 objects, the proportion of LIR-L2F should be greater for
retrieve compared with encode instructions and the proportion
of L1F-L2R should be greater for encode compared with retrieve
instructions. To test this hypothesis, we ran a 2 x 2 repeated-
measures ANOVA with factors of instruction (encode, retrieve)
and condition (L1R-L2F, L1F-L2R) and proportion as the de-
pendent variable. There was no main effect of instruction (F; 3¢
= 0471, p=0.497, 7712, = 0.01) and the main effect of condition
did not reach significance (F35 = 3.923, p=0.0553,
1;12, = 0.10). There was a significant interaction between condi-
tion and instruction (F(; 36 = 6.045, p=0.0189, 7712, = 0.14; Fig.
2C). This interaction was driven by a numerically greater propor-
tion of LIF-L2R items when the instruction was to encode
(mean = 0.1288, SD=0.0507) compared with retrieve (mean =
0.1152, SD=0.0569; difference between L1F-L2R encode vs
retrieve: f6 = 2.1733, p=0.0364, Bonferroni-corrected a =
0.025, Cohen’s d=0.2507) and a numerically greater proportion
of LIR-L2F items when the instruction was to retrieve (mean =
0.1528, SD=0.0597) compared with encode (mean = 0.1329,
SD =0.0599; difference between L1R-L2F encode vs retrieve: ¢(3)
= —2.0211, p=0.0508, Bonferroni-corrected a = 0.025, Cohen’s
d=0.3325). Together, these results support the interpretation
that encoding and retrieval processes trade-off.

Having replicated our previous finding that instructions to
encode and retrieve modulate behavior, we next sought to test
the effect of temporal distance on recognition accuracy,
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Figure 3.  List 1 recognition accuracy by instruction and distance. We assessed recognition
accuracy for List 1 objects as a function of instruction (orange represents encode; teal repre-
sents retrieve) and distance (near, far). We find a significant interaction between instruction
and distance (p = 0.0435) driven by greater accuracy for near retrieve trials compared with
near encode trials. *p < 0.05, uncorrected.

specifically for List 1 objects, as shorter temporal distance may
impair List 1 memory specifically for encode trials. The intuition
is that automatically retrieved near List 1 objects may be inhib-
ited or suppressed by virtue of being goal-irrelevant during
encode trials. This outcome would be analogous to the inhibition
that is thought to occur during retrieval-induced forgetting
(Anderson et al., 1994; Anderson, 2003).

We assessed whether the distance between objects, as well as
the instruction given during List 2, influenced recognition mem-
ory of List 1 objects (Fig. 3). A two-way, repeated-measures
ANOVA with factors of instruction (encode, retrieve) and dis-
tance (near, far), revealed a significant main effect of distance
(F(1,36) = 4.916, p=0.0330, 7712) = 0.12) driven by greater recogni-
tion accuracy for far compared with near objects. The main effect
of instruction did not reach significance (F( 35 = 3.769,
p=0.0601, 7]12, =0.09). There was a significant interaction
between instruction and distance (F136 = 4.381, p=0.0435,
*r); = 0.11), driven by greater accuracy for near retrieve trials
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Retrieval state evidence. We trained an L2-logistic regression classifier to discriminate encode versus retrieve trials during List 2. The classifier was trained and tested on averaged

B values across 63 electrodes and 46 frequencies. A, The classifier was trained on average 3 values across the 2000 ms stimulus interval. Mean classification accuracy across all subjects (solid
vertical line) is shown along with a histogram of classification accuracies for individual subjects (gray bars) and mean classification accuracy for permuted data across all subjects (dashed vertical
line). Mean classification accuracy for permuted data ranged from 49.7% to 50.27% across individual subjects (1000 permutations per subject). Mean classification accuracy was 53.32%, which
differed significantly from chance (p = 0.0148). B-D, We trained and tested four classifiers on four 500 ms time intervals within the 2000 ms stimulus interval. B, When we average retrieval evi-
dence over instruction, we find a significant interaction between distance and time interval (p = 0.0018) driven by greater retrieval evidence on near compared with far trials early in the stimu-
lus interval. €, When we average retrieval evidence over distance, we find a significant interaction between instruction and time interval (p=0.0026) driven by greater retrieval evidence on
retrieve compared with encode trials late in the stimulus interval. D, We do not find a three-way interaction between instruction, distance, and time (p = 0.869). Error bars indicate SEM.

*p < 0.05, ***p < 0.001, uncorrected.

(mean = 83.88%, SD=11.11%) relative to near encode trials
(mean = 80.9%, SD =9.17%; difference between near encode vs
near retrieve: ¢35y = —2.6225, p=0.0127, Bonferroni-corrected
= 0.0167, Cohen’s d =0.2964). Notably, recognition accuracy on
near encode trials was significantly worse compared with both
far encode trials (tz6) = —3.3417, p=0.0020, Bonferroni-cor-
rected a = 0.0167, Cohen’s d=0.5561) and far retrieve trials
(tzs) = —3.1204, p=0.0035, Bonferroni-corrected a = 0.0167,
Cohen’s d = 0.4653).

We observed decreased recognition accuracy for List 1 near
objects when subjects attempted to encode the List 2 object com-
pared with when they attempted to retrieve the near List 1 object.
Indeed, near List 1 objects paired with the encode instruction are
remembered worse than all other List 1 objects, strongly suggest-
ing that bottom-up or automatic retrieval of the near List 1
object, when coupled with the top-down demand to encode the
List 2 object, leads to suppression of the near List 1 object.

Influence of temporal contextual overlap on retrieval state
Our first goal was to replicate our previous finding that a pattern
classifier trained on spectral signals can distinguish encode and
retrieve trials (Long and Kuhl, 2019). We conducted a multivari-
ate pattern classification analysis in which we trained a classifier
to discriminate encode versus retrieve List 2 trials based on a fea-
ture space comprised of all 63 electrodes and 46 frequencies
ranging from 2-100 Hz. For this analysis, we averaged 8 values
over the 2000 ms stimulus interval. Using within-subject, leave-
one-run-out classifiers, mean classification accuracy was 53.32%
(SD=7.75%), which was significantly greater than chance, as
determined by permutation tests (fzs = 2.5595, p=0.0148,
Cohen’s d =0.6043; Fig. 4A).

We next sought to investigate the effect of temporal overlap
on retrieval. If greater temporal contextual overlap between two
events promotes retrieval, we would expect to find greater evi-
dence for a retrieval state on near compared with far trials.
Moreover, to the extent that this retrieval occurs automatically,
we would expect to find greater evidence for a retrieval state
early in the stimulus interval. Although temporal distance
could interact with instruction, evidence for a retrieval state
may be particularly strong for near retrieve trials, given that

temporal distance did not enhance memory for near List 1
objects on retrieve trials or impact memory for List 2
objects, we do not anticipate an interaction between tempo-
ral distance and instruction.

To investigate the effect of temporal distance on retrieval state
evidence over time, we trained classifiers to discriminate encode
versus retrieve trials using the average betas from four 500 ms
time intervals across the 2000ms stimulus interval. We con-
ducted a repeated-measures ANOVA in which true (nonper-
muted) retrieval evidence was the dependent variable and with
factors of instruction (encode, retrieve), distance (near, far), and
time interval (four 500 ms time intervals). We find a significant
two-way interaction between distance and time interval (F(3 s
= 5.355, p=0.0018, n; = 0.13) whereby retrieval evidence is
greater for near compared with far trials during the first two
500ms time intervals (near vs far: 0-500, tss) = 2.4899,
p=0.0175, Cohen’s d =0.598; 500-1000, (36, = 4.159, p =0.0002,
Cohen’s d =0.9056; Bonferroni-corrected o = 0.0125). Retrieval
evidence does not differ during the second two 500ms time
intervals (near vs far: 1000-1500, t;s6 = —1.2887, p=0.2057,
Cohen’s d =0.2772; 1500-2000, t35) = 0.9867, p = 0.3304, Cohen’s
d=0.2492; Bonferroni-corrected a = 0.0125). We also find a
main effect of distance (F(;35) = 8.649, p=0.0057, 7, = 0.19;
Fig. 4B), with greater retrieval evidence for near compared with
far trials. We find a significant two-way interaction between
instruction and time interval (Fj0sy = 5.041, p=0.0026,
*r); = 0.12), whereby the largest differences in retrieval evidence
between retrieve and encode trials occur during the last two
500 ms time intervals (encode vs retrieve: 0-500, f(36) = —1.4215,
p=0.1638, Cohen’s d=0.3759; 500-1000, tzs = —1.9205, p=
0.0628, Cohen’s d=0.4996; 1000-1500, tzs) = —4.2349,
p=0.0002, Cohen’s d=1.2395 1500-2000, fis = —4.4573,
p=0.0001, Cohen’s d=1.2841; Bonferroni-corrected « =
0.0125). We find a significant main effect of instruction (F(; 35) =
22.31, p < 0.0001, 7]12, = 0.38; Fig. 4C), consistent with the results
of the classifier trained on the full 2000 ms interval above. The
two-way interaction between instruction and distance was not
significant (F(, 36 = 1.932, p=0.173, nf) = 0.05) nor was the
three-way interaction between instruction, distance, and time
interval (F(s105 = 0239, p=0.869, 12 =0.0066; Fig. 4D).
Together, these results suggest that greater temporal contextual
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(ross distance mnemonic state decoding. We trained two L2-logistic regression classifiers to discriminate encode versus retrieve based on average 3 values over the 2000 ms stim-

ulus interval with 63 electrodes and 46 frequencies used as features. For each classifier, we show mean dlassification accuracy across all subjects (solid vertical line) along with a histogram of
classification accuracies for individual subjects (gray bars) and mean classification accuracy for permuted data across all subjects (dashed vertical line). A, We trained the classifier on only List 2
near trials and tested the classifier on List 2 far trials. Mean dlassification accuracy for permuted data ranged from 49.73% to 50.40% across individual subjects (1000 permutations per subject).
Mean dlassification accuracy was 52.98%, which was significantly greater than chance performance (p = 0.0042). B, We trained the classifier on only List 2 far trials and tested the classifier on
List 2 near trials. Mean classification accuracy for permuted data ranged from 49.27% to 50.46% across individual subjects (1000 permutations per subject). Mean classification accuracy was

52.85%, which was significantly greater than chance performance (p = 0.0038).

overlap induces automatic retrieval independent of the actual
instruction to either encode or retrieve.

Retrieval state mechanisms

We have found an increase in retrieval state evidence when
objects appear closer together in time. Although our hypothesis
is that this dissociation reflects greater instantiation of a retrieval
state, the classifier may be indexing retrieval success or retrieval
effort as opposed to a general retrieval state or mode (Rugg and
Wilding, 2000). Specifically, by virtue of the shorter temporal
distance, retrieval success might be greater for near compared
with far objects. Likewise, by virtue of the longer temporal dis-
tance, retrieval might be more effortful for far compared with
near objects. In our previous classification analysis, the classifier
was trained using data from both near and far trials, meaning
that the dissociation between encode/retrieve trials, and conse-
quently, near/far trials, could be based on information exclu-
sively from either near or far trials. Put another way, the
classifier may have learned to distinguish either encode and re-
trieval success (i.e., near retrieve) trials or encode and retrieval
effort (i.e., far retrieve) trials. Therefore, to demonstrate that a
general retrieval state or mode underlies the dissociation between
near and far trials, we trained two separate classifiers to distin-
guish encode/retrieve using only near or only far trials, and
tested the classifiers on the other held-out distance (far or near)
trials. The logic is that to the extent that the dissociation between
encode/retrieve is supported by the same mechanism on both
near and far trials, classifiers trained on one distance should gen-
eralize, reflected by above chance (50%) performance, to the
other distance. To the extent that the dissociation between
encode/retrieve is driven either by retrieval success or retrieval
effort, the classifiers should fail to generalize to the other
distance.

We conducted a multivariate pattern classification analysis in
which we trained a classifier on only near or far trials to discrimi-
nate encode versus retrieve trials. We averaged 8 values across
the stimulus interval (2000ms) and used leave-one-run-out
cross-validated classification. First, we trained a classifier to dis-
tinguish encode versus retrieve List 2 near trials and tested the
classifier on the List 2 far trials (Fig. 5A). Mean classification ac-
curacy was 52.98% (SD =5.77%), which was significantly greater
than chance performance (¢35) = 3.0602, p=0.0042, Cohen’s

d=0.7225; Fig. 5A). Next, we trained a classifier to distinguish
encode versus retrieve List 2 far trials and tested the classifier on
List 2 near trials (Fig. 5B). Mean classification accuracy was
52.85% (SD =5.48%), which was significantly above chance (¢(¢)
= 3.0933, p=0.0038, Cohen’s d=0.7377; Fig. 5B). The ability of
these classifiers to generalize across distance suggests that neural
signals during encode and retrieve trials are similar across tem-
poral distance.

The cross-distance decoding analysis suggests that a general
retrieval mode is present during both near and far trials.
However, it is possible that the dissociation we observe between
near and far trials in our prior analysis of retrieval state evidence
is still driven in some part by retrieval success. Namely, greater
retrieval state evidence may specifically be tracking near success
trials.

To adjudicate between the possibilities that elevated retrieval
evidence on near trials is because of a retrieval mode versus re-
trieval success, it is necessary to account for retrieval success dur-
ing each List 2 trial. By design, there are no behavioral responses
made during List 2 trials to equate the behavioral output across
instructions. Therefore, we do not have a direct measure of re-
trieval success. However, we can generate a proxy of retrieval
success by leveraging the recognition phase data. Specifically, we
created a retrieval success and a retrieval failure template (Fig.
6A) across all subjects and assigned a retrieval “status” label to
each List 2 trial of either retrieval success (1) or retrieval failure
(0) based on how well a given trial correlated with each template
(see Materials and Methods).

To validate our proxy of retrieval success, we first
assessed whether temporal overlap impacts retrieval suc-
cess. Given that retrieval success should be more likely for
near compared with far objects, we predicted that near tri-
als should be labeled “retrieval success” more often than far
trials, reflected by an average label value closer to 1. We
conducted a two-way, repeated-measures ANOVA with fac-
tors of instruction (encode, retrieve) and distance (near,
far) and the average retrieval status label as the dependent
variable (Fig. 6B). We find a significant main effect of dis-
tance (F(; 36 = 11.32, p=0.0018, 7712, =0.24) driven by
greater assignment of retrieval success for near compared
with far trials. We find no main effect of instruction
(F(1,36) = 0.104, p=0.749, 7712, = 0.0029) and no interaction
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shows an across-subject electrode-frequency spectrogram of z-power during retrieval success (hits; left) and retrieval failure (misses; right) in which red represents z-power increases and blue repre-
sents z-power decreases. B, We assessed average retrieval status label as a function of instruction (orange represents encode; teal represents retrieve) and distance (near, far). We find a significant
main effect of distance (p = 0.0018) driven by greater assignment of retrieval success for near compared with far trials. C, We assessed retrieval state evidence as a function of distance (solid line
represents near; dashed line represents far) and retrieval status (red represents success; blue represents failure). We find a significant interaction between distance and time interval (p = 0.0010)
driven by greater retrieval evidence on near compared with far trials early in the stimulus interval. Error bars indicate SEM. *p << 0.05, **p << 0.01, ***p << 0.001, uncorrected.

between instruction and distance (F(; 36) = 0.351, p=0.557,
7, = 0.0097).

Having established that our proxy for retrieval success
matches our predictions, we next sought to test whether retrieval
state evidence differs as a function of retrieval success. If the out-
put of a classifier trained on all List 2 trials purely reflects a re-
trieval mode, near trials should show greater retrieval state
evidence than far trials regardless of retrieval success. If the clas-
sifier purely reflects retrieval success, retrieval success trials
should show greater retrieval state evidence than retrieval failure
trials regardless of distance. We conducted a repeated-measures
ANOVA in which true (nonpermuted) retrieval evidence was
the dependent variable with factors of retrieval status (success,
failure), distance (near, far), and time interval (four 500 ms time
intervals). We find a significant main effect of distance (F(; 36) =
7.564, p=0.0093, 7712, = 0.17; Fig. 6C) driven by greater retrieval
evidence on near compared with far trials. We find a significant
two-way interaction between distance and time interval
(F3,108) = 5.853, p=0.0010, n; = 0.14) whereby retrieval evi-
dence is greater for near compared with far trials for the first two
500 ms time intervals (near vs far: 0-500, ¢3¢y = 2.579, p=0.0141,
Cohen’s d=0.6058; 500-1000, t¢ = 3.973, p=0.0003, Cohen’s
d = 0.8835; Bonferroni-corrected o = 0.0125). Retrieval evidence
does not differ during the second two 500ms time intervals
(near vs far: 1000-1500, t3s) = —1.5492, p=0.1301, Cohen’s
d=0.3336; 1500-2000, t35 = 0.8985, p=0.3749, Cohen’s
d=0.2254; Bonferroni-corrected a = 0.0125). The three-way
interaction between retrieval status, distance, and time interval
was not significant (F(3 05y = 0.703, p=0.552, 7;12, = 0.02). Bayes
factor analysis revealed that a model without the three-way inter-
action term is preferred to a model with the three-way interac-
tion by a factor of 13.1333. Together, these results suggest that,
although retrieval may be more successful on near compared
with far trials, retrieval success does not influence the dissocia-
tion in retrieval evidence between near and far trials.

Discussion

Here we show that temporal contextual overlap between events
selectively increases interference and induces automatic retrieval.
We used scalp EEG to measure memory brain states in a task

during which subjects were explicitly instructed to either encode
the present event or retrieve a past, overlapping event. We
find behavioral evidence that temporal overlap selectively leads
to interference for past events when the top-down goal is to
encode the present event. We find neural evidence that temporal
overlap induces automatic retrieval independent from top-down
demands to encode or retrieve. Critically, our neural results sug-
gest that the retrieval state we observe is likely the result of a gen-
eral retrieval mode (Rugg and Wilding, 2000), rather than a
reflection of retrieval success or effort. Collectively, these findings
demonstrate a link between temporal context, interference, and
memory brain states.

We find that greater temporal overlap between events leads to
a selective memory deficit for a past event when the top-down
demand is to encode the present event. Overlap between events
can lead to both proactive interference, in which learning about a
past event impairs memory for the present, and retroactive inter-
ference, in which learning about a present event impairs memory
for the past (Underwood, 1948; Crowder, 1976). Here we find
that greater temporal overlap between two events leads to an
increase in retroactive interference; however, this increase is
selective for conditions in which subjects’ top-down goal is to
encode the currently presented stimulus. This result has striking
similarity with retrieval-induced forgetting (Anderson et al,
1994; Anderson and Spellman, 1995). In paradigms that produce
retrieval-induced forgetting, subjects retrieve a target (e.g., straw-
berry) based on a word stem (e.g., s ) and a cue (e.g., food)
that is associated with other nontargets (e.g., tomato).
Researchers theorize that cue-driven retrieval of the nontarget
leads to suppression or inhibition which impairs subsequent
memory for the nontarget (compare Perfect et al., 2004). As the
strength, typically framed in terms of semantic overlap, between
nontarget and cue increases, there is an increase in memory
impairment, putatively because of stronger inhibition (Anderson
et al., 1994). We extend these findings by showing that temporal
overlap can likewise impair memory for nontargets, suggesting
that greater temporal overlap may lead to inhibition of automati-
cally retrieved items that are not goal-relevant.

Although in our study we find that temporal overlap is detri-
mental to later memory, there is evidence that temporal overlap
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between events can facilitate behavior. Participants are better at
associative inference tasks when associated events are studied
close together in time (Zeithamova and Preston, 2017). Events
presented close together in time are often recalled together (tem-
porally clustered; Kahana, 1996; Long and Kahana, 2015) and
overall recall performance increases as more events are tempo-
rally clustered (Sederberg et al, 2010; Healey et al, 2014).
Temporal overlap may promote the integration of two separate
events (Schlichting and Preston, 2015; Richter et al., 2016), which
enables those events to cue one another during a memory test. It
is possible that in our study the explicit instruction to encode
interrupts or prevents integration leading to worse memory for
the past event. Follow-up studies investigating the influence of
temporal overlap in the absence of explicit instructions to encode
or retrieve are needed to test this possibility.

We find induction of a retrieval state early in the stimulus
interval when objects are closer together in time. We anticipated
that greater temporal overlap would lead to increased retrieval
on the basis of retrieved context theory. According to retrieved
context theory (Howard and Kahana, 2002; Sederberg et al,
2008; Polyn et al., 2009; Lohnas and Kahana, 2014), spatiotempo-
ral context is bound to items during study and used as a retrieval
cue during test (Long et al., 2017), enabling items with overlap-
ping spatiotemporal contexts to cue retrieval of one another
(Manning et al., 2011). Consistent with retrieved context theory,
we find more retrieval state evidence for objects with greater
temporal overlap (near compared with far objects). Our observa-
tion of elevated retrieval state evidence on near trials, even when
the instruction is to encode the present (or, conversely, when the
instruction is to not retrieve the past), suggests that the retrieval
we observe is the result of a bottom-up or stimulus-driven prop-
erty of the object (e.g., its temporal contextual overlap with a
past object) rather than the result of top-down or goal-driven
demands. The dissociation in retrieval evidence as a function of
temporal overlap may reflect the engagement of an automatic re-
trieval process, given that automatic retrieval is thought to be a
fast, bottom-up process that can occur without top-down
control (Moscovitch, 1994). That the largest retrieval state
evidence dissociations between near and far trials occur
within the first 1000 ms following stimulus onset is consist-
ent with this interpretation. Collectively, these findings
indicate that memory brain states can be impacted by both
bottom-up and top-down influences.

We interpret the retrieval state effects that we observe as
reflecting a general retrieval mode rather than serial position
effects, retrieval success, or retrieval effort. By design, near and
far objects occurred in systematically distinct serial positions
(primacy and recency, respectively). To address this inherent
confound, we fit a trial-level GLM to the z-transformed spectral
power and included serial position as a parametric regressor
based on a logistic-regression model fit of the behavioral data.
We used this approach to limit the potential contribution of se-
rial position to the observed retrieval state effects as distinct neu-
ral signals are recruited across primacy and nonprimacy
positions (Sederberg et al., 2006). Given that the GLM cannot
completely eliminate serial position effects, lingering primacy-
related signals could contribute to the observed dissociation in
retrieval evidence between near and far trials. However, we note
that, as the pattern classifier is trained on data across all serial
positions, we expect such a contribution to be limited.

The dissociation between near and far trials could be the result
of other retrieval processes rather than a more general retrieval
mode (Tulving, 1985; Rugg and Wilding, 2000). “Retrieval” as it
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stands is a broad concept and can encompass multiple different
subprocesses. We consider a retrieval state or mode as a content-
independent process. Although typically retrieval mode has been
considered within the framework of goal-directed or intentional
remembering, we expect that a retrieval mode can also be
engaged automatically based on bottom-up inputs (as demon-
strated in the current study) and may align or be synonymous
with the internal axis of attention (Chun et al.,, 2011). A retrieval
mode is thought to be distinct from retrieval “orientation” in
which specific cues or features are used to guide memory
(Herron and Wilding, 2004; Hornberger et al., 2006a, b). Finally,
both retrieval mode and orientation are separate from retrieval
success and retrieval effort. After directing attention internally
and orienting to particular cues to guide retrieval, an individual
will either bring to mind the target item (retrieval success) or fail
to bring to mind the target item, leading to effortful retrieval.

The retrieval process that we observe in the current study
likely reflects a retrieval state given that a pattern classifier can
distinguish encoding and retrieval across both near and far trials
and that retrieval state evidence does not differ as a function of
retrieval success. If the processes underlying near and far trials
were entirely the product of retrieval success and retrieval effort,
respectively, the cross-distance pattern classifier would be unable
to distinguish encoding and retrieval across these trials. This is
not to say that there are not potential differences in terms of re-
trieval success or effort between near and far trials, only that
there exist shared mechanisms which enable the pattern classifier
to generalize across these trials. Although we cannot rule out the
potential influence of retrieval effort, the interpretation that ele-
vated retrieval evidence on near compared with far trials reflects
decreased retrieval effort would be inconsistent with our findings
of greater retrieval evidence on retrieve compared with encode
trials, given that one would expect more retrieval effort for
retrieve trials. By leveraging the recognition phase data, we
indexed retrieval success across near and far trials and found that
retrieval state evidence is modulated by distance, but not retrieval
success. It is important to note that our index of retrieval success
is more likely to capture recollection-based as opposed to famili-
arity-based retrieval processes, although given the strong cate-
gorical overlap between the object pairs, we would anticipate
high levels of familiarity for all objects regardless of temporal
overlap. As the content of retrieval varies on every trial, it is
unlikely that retrieval orientation differs systematically across
near and far trials. Thus, the account best supported by these
findings is that the dissociation in retrieval state evidence reflects
a general retrieval mode. These results present an exciting avenue
for future work to further dissociate these different retrieval sub-
processes via multivariate methods and to more generally relate
memory retrieval to internal attention.

Our results add to a growing body of work demonstrating
the presence of neurally dissociable mnemonic states
(Hasselmo et al., 2002; Hasselmo, 2005). Like other brain
states (e.g., Kay and Frank, 2019), mnemonic states likely
reflect sustained brain activity configurations. The shift
between encoding and retrieval can occur on the order of
milliseconds via theta oscillations which drive rapid shifts
in entorhinal-hippocampal connectivity (Hasselmo et al.,
2002). However, these states may operate along slower time-
scales and be mediated by acetylcholine (Hasselmo and
McGaughy, 2004; Meeter et al., 2004). Mnemonic states pre-
dict subsequent memory (Long and Kuhl, 2019), impact the
cortical location of stimulus representations (Long and Kuhl,
2021), and can influence behavior and decision-making
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(Duncan et al., 2012; Duncan and Shohamy, 2016; Patil and
Duncan, 2018). Memory encoding and retrieval may reflect
two states along a continuum within the broader framework
of external and internal attention, respectively (Chun et al,,
2011). Here we show that mnemonic states in the cortex per-
sist for several hundred milliseconds and are influenced by
bottom-up stimulus properties, in addition to explicit top-
down demands. We expect that mnemonic states fluctuate
based on both stimuli and goals; to the extent that events
overlap, there is the potential for automatic retrieval and a
shift into a retrieval state. Tracking mnemonic state fluctua-
tions will be critical for understanding both how these states
are induced and how these states in turn impact behavior.

In conclusion, we show that temporal overlap between
events induces retrieval and selectively impairs memory
performance. These findings are consistent with theoretical
models which propose that temporal information can cue
retrieval (Howard and Kahana, 2002) and behavioral find-
ings that retrieving non-goal-relevant information can lead
to memory impairments (Anderson et al., 1994). More
broadly, these findings point to a role for bottom-up stimu-
lus features in driving mnemonic brain states.
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