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Abstract

Meta-regression analyses usually focus on estimating and testing differences in average effect 

sizes between individual levels of each meta-regression covariate in turn. These metrics are 

useful but have limitations: they consider each covariate individually, rather than in combination, 

and they characterize only the mean of a potentially heterogeneous distribution of effects. We 

propose additional metrics that address both limitations. Given a chosen threshold representing a 

meaningfully strong effect size, these metrics address the questions: “For a given joint level of the 

covariates, what percentage of the population effects are meaningfully strong?” and “For any two 

joint levels of the covariates, what is the difference between these percentages of meaningfully 

strong effects?” We provide semiparametric methods for estimation and inference and assess their 

performance in a simulation study. We apply the proposed methods to meta-regression analyses 

on memory consolidation and on dietary behavior interventions, illustrating how the methods can 

provide more information than standard reporting alone. To facilitate implementing the methods in 

practice, we provide reporting guidelines and simple R code.
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1 ∣ INTRODUCTION

Meta-regression analyses usually focus on estimating and testing differences in average 

effect sizes between individual levels of each meta-regression covariate in turn.1 These 

estimates are certainly useful, but do have limitations as standalone metrics. First, they 

consider each meta-regression covariate individually and do not directly characterize 
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differences in effect sizes associated with combinations of covariates that are of scientific 

interest. For example, if the covariates represent possible components of a behavior 

intervention, it may be useful to consider the strength of effects in studies with a particular 

combination of components rather than only estimating average effects of each component 

individually. This approach could be particularly useful given recent calls to conduct 

meta-analyses that deliberately include studies representing a broad range of interventions, 

populations, and environments.2 Similarly, when meta-regression is used to assess the 

association of studies' risk-of-bias characteristics with their effect sizes,1 it would often 

be useful to consider the strength of effects in studies with low risks of bias on all measures 

jointly, rather than individually (although one can never be certain that all relevant risks of 

bias have been assessed, nor that they have been rated with complete accuracy).

Second, and more fundamentally, the usual estimates of average effect sizes characterize 

only the mean of a potentially heterogeneous distribution of effects. We therefore propose 

additional metrics that supplement standard reporting by directly addressing questions of 

fundamental interest in meta-regression and characterizing the potentially heterogeneous 

distribution of effect sizes conditional on specified levels of the meta-regression covariates. 

Specifically, in a manner we formalize below, the proposed metrics address two questions: 

(1) For a given joint level of the covariates, what percentage of the population effects are 

“meaningfully strong”? (2) For any two joint levels of the covariates, what is the difference 

between these percentages of meaningfully strong effects?

These metrics extend methods we previously proposed for standard meta-analysis.3-5 

Specifically, we had previously recommended choosing a minimum threshold representing 

a meaningfully strong effect size (q) and estimating the percentage or proportion of 

population effects above this threshold. Second, we and others3,6 have suggested estimating 

the percentage of effects below a second, possibly symmetric, threshold in the opposite 

direction from the estimated mean. We discussed a number of methods to choose these 

thresholds, which included considering the size of discrepancies between naturally occurring 

groups of interest, effect sizes produced by well-evidenced interventions, cost-effectiveness 

analyses, or minimum subjectively perceptible thresholds.3 We demonstrated that these 

percentage metrics could help convey evidence strength for meaningfully strong effects 

under effect heterogeneity in a manner that provides more information than meta-analytic 

point estimates alone3 and also that they could sometimes help adjudicate apparent conflicts 

between meta-analyses.7,8 In practice, the metrics have been successfully and informatively 

applied to meta-analyses on a variety of topics.7,9-13

Here, we provide extensions to meta-regression that address the two questions above by 

characterizing, for a chosen level of the meta-regression covariates, the percentage of 

population effects that are above or below the threshold q. This metric helps characterize 

evidence strength for meaningfully strong effects in studies with a particular level of 

the covariates, and it could also be used as a hypothesis-generating method to identify 

which joint levels of the covariates are associated with the largest estimated percentages 

of meaningfully strong effects. Naturally, this metric also allows one to characterize 

the complementary cumulative distribution function of the population effects (i.e., the 

percentage of effects stronger than any arbitrary threshold), which could be displayed 
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graphically. The methods also allow one to estimate the difference in these percentages 

for any two joint levels of the covariates.

We provide methods to estimate these metrics along with inference (Section 2.2). 

The methods involve first fitting a standard meta-regression (e.g., using semiparametric 

methods that do not make assumptions on the distribution of population effects14-16), 

using the resulting estimates to appropriately “shrink” studies' point estimates toward 

the mean, and then estimating the proposed metrics using the empirical distribution of 

these shrunken estimates. We illustrate by reanalyzing data from two previously published 

meta-analyses,13,17 demonstrating that the proposed metrics can provide more information 

than standard reporting alone (Section 4). We assess the methods' performance in a 

simulation study that includes a variety of realistic and challenging scenarios (Section 5) 

and use the results to inform practical reporting guidelines (Section 2.3). The methods are 

straightforward to implement in practice, and we provide simple example R code to do so 

(Supplementary material or https://osf.io/gs7fp/).

2 ∣ METHODS

2.1 ∣ Existing methods for standard meta-analysis

We first briefly review the previously proposed methods3-5 to estimate the percentage of 

meaningfully strong effects, termed “P > q”, in the context of standard meta-analysis. Let 

θi, θ i, and σi respectively denote the population effect size, point estimate, and estimated 

standard error of the ith study. Consider a standard meta-analysis of k independent studies, 

with μ denoting the estimated mean and τ2 denoting the estimated heterogeneity (i.e., the 

estimated variance of the population effects). To estimate P > q, existing methods begin by 

calculating a “calibrated” estimate5 for each meta-analyzed study, defined as

θ i = μ + τ2

τ2 + σi
2 (θ i − μ) (2.1)

Intuitively, the calibrated estimate θ i shrinks the point estimate θ i toward the estimated mean 

μ with a degree of shrinkage that is inversely proportional to the study's precision: relatively 

imprecise estimates θ i (i.e., those with large σi
2) receive strong shrinkage toward μ, while 

relatively precise estimates receive less shrinkage and remain closer to their original values. 

Thus, these calibrated estimates have been appropriately shrunk to correct the overdispersion 

such that their variance is equal to, the estimated variance of the population effects.5 The 

shrinkage factor τ2 ∕ τ2 + σi
2  minimizes the distance between the empirical cumulative 

distribution function of the calibrated estimates and of the population effects,18 which is the 

relevant loss function for estimating P > q. Then, P > q can be easily estimated4 as a sample 

proportion of the calibrated estimates that are stronger than q:

Mathur and VanderWeele Page 3

Res Synth Methods. Author manuscript; available in PMC 2022 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://osf.io/gs7fp/


P > q = ∑i = 1
k 1 μ + τ2

τ2 + σi
2 (θ i − μ) > q (2.2)

Naturally, analogous methods can be used to estimate the proportion of effects below 

another threshold, for example to consider the percentage of effects that are in the direction 

opposite the overall estimated mean.3,6 Inference can be conducted using bias-corrected 

and accelerated (BCa) bootstrapping.4,19,20 If the point estimates are potentially non-

independent because, for example, some articles in the meta-analysis contribute multiple 

estimates from studies with similar study designs or populations, then one should resample 

clusters of estimates (e.g., articles) with replacement while leaving intact the estimates 

within each cluster (Davison and Hinkley21 Section 3.8). We will refer to this as the “cluster 

bootstrap”.

2.2 ∣ Extension to meta-regression

We now extend the above methods to a meta-regression with the mean model E[θ ∣ Z] 

= β0 + Zβ1, where Z is a k × p matrix of study-level covariates of any type (binary, 

categorical, continuous, etc.) with realized levels in study i of zi and where β1 is a p-vector 

of coefficients. We assume that the residual variance of the population effects, Var(θ ∣ Z), 

is a constant τϵ2. This is a standard estimand in meta-regression and is often simply called 

“τ2” in the literature and in software; here, we adopt the notation “τϵ2” to clarify that this 

is the residual heterogeneity conditional on the meta-regression covariates rather than the 

marginal τ2 of a standard meta-analysis. One would first estimate the parameters (β0, β1, 

τϵ2) via standard meta-regression; in practice, we would recommend using semiparametric 

methods similar to generalized estimating equations that do not require assumptions on the 

distribution of population effects.14-16,22 Asymptotic and finite-sample theory establishing 

that this approach provides consistent coefficient estimates under arbitrary distributions was 

provided elsewhere.14,22

The proportion of population effects above q, conditional on level z of the covariates, is 

P(θ > q ∣ Z = z), termed “P > q(z).” While it may seem intuitive to estimate P > q(z) by 

simply analyzing a subset of the studies and applying the existing methods for standard 

meta-analysis,3,4 that approach would preclude consideration of continuous covariates and 

would be inefficient, especially when considering specific combinations of covariates that 

do not occur frequently in the observed studies. Instead, we propose estimating P > q(z) 

as follows. Define a point estimate for each study that has been “shifted” to the chosen 

covariate level z as θ i(Z = z) = θ i − (zi − z)β1, such that E θ i(Z = z) = β0 + zβ1. An analog 

to the calibrated estimate θ i that has been shifted to Z = z is then:
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θ i(Z = z) = E[θ ∣ Z = z] + τϵ
2

τϵ
2 + σi

2 θ i(Z = z) − E[θ ∣ Z = z]

= β0 + zβ1 + τϵ
2

τϵ
2 + σi

2 θ i − β0 + ziβ1

(2.3)

In the second line, upon canceling the zβ1 terms, the term θ i − β0 + ziβ1  is simply the 

(unshifted) residual of θ i with respect to its estimated expectation conditional on its realized 

Z = zi. Highly imprecise point estimates (i.e., those with a small τϵ
2 ∕ τϵ

2 + σi
2 ) are strongly 

shrunk toward E[θ ∣ Z = z] = β0 + zβ1, while more precise estimates remain close to the 

studies' own residuals, θ i − β0 + ziβ1 .

Analogously to the fact that standard calibrated estimates approximately match the first two 

moments of the marginal distribution of population effects,5 the shifted, calibrated estimates 

θ i(Z = z) approximately match the first two moments of the distribution of the population 

effects conditional on Z = z. That is, E θ i(Z = z) ∣ Z = z = β0 + zβ1 = E[θ ∣ Z = z], and for 

large k:

Var θ i(Z = z) ∣ Z = z ≈
τϵ2

τϵ2 + σi2
Var(θi ∣ Z = z)

≈
τϵ2

τϵ2 + σi2
(τϵ2 + σi2)

= τϵ2
≈ Var(θ ∣ Z = z)

The proportion of meaningfully strong effects can then be estimated as:

P > q(z) = P β0 + zβ1 + τϵ
2

τϵ
2 + σi

2 (θ i − [β0 + ziβ1]) > q

= ∑
i = 1

k
1 β0 + τϵ

2

τϵ
2 + σi

2 (θ i − ziβ1 − β0) > q − zβ1

(2.4)

The estimated difference in these proportions comparing level z to a chosen reference level 

z0 is simply P > q(z) − P > q(z0). Again, analogous methods can be used to estimate the 

proportion of effects below another threshold, or their difference.

To apply Equation (2.4) in practice, one could simply plug in the meta-regression estimates 

β0, β1, and τϵ
2; we call this the “one-stage” method. When considering multiple choices 

of q or z, one can simply compute a single value of β0 + τϵ
2 ∕ τϵ

2 + σi
2 (θ i − ziβ1 − β0) for 

each study and then compare these to various shifted thresholds, q − zβ1. An essentially 
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equivalent method, which we call the “two-stage” method, can further illustrate the 

connection between these methods and the existing methods for standard meta-analysis.4,5 

That is, rather than applying Equation (2.4) directly using the meta-regression estimates 

β0, β1, and τϵ
2, as in the one-stage method, one could instead use only the meta-regression 

estimate β1 to shift the point estimates themselves to Z = 0, that is, θ i(Z = 0) = θ i − ziβ1. 

Because E θ i(Z = 0) ∣ Z = 0 = β0 and Var(θ i(Z = 0) ∣ Z = 0) = τϵ
2 + σi2, one could then 

apply Equation (2.4) by simply fitting a standard intercept-only meta-analysis (without 

covariates) to the θ i(Z = 0) and then using the pooled point estimate and estimated 

heterogeneity from this meta-analysis, τ2, to compute standard calibrated estimates5 (e.g., 

using the R package MetaUtility::calib_ests). These estimates could then be compared to the 

threshold that has also been shifted to Z = 0, that is, q − zβ1. Although these methods are not 

exactly numerically equivalent,* simulation results (Section 5) indicated that they performed 

almost identically in practice. We use the one-stage method for the applied example and 

code example below.

As in standard meta-analysis,4 inference for P > q(z) or P > q(z) − P > q(z0) can proceed 

via bootstrapping. Specifically, one can resample rows of the original sample, (θ i, σi, 

zi, fit a meta-regression model to the resampled datasets to obtain new estimates β0, 

β1, and τϵ
2, and finally estimate P > q(z) via Equation (2.4). Note that meta-regression 

estimation of β0, β1, and τϵ
2 must be included in the bootstrapping process to adequately 

capture the propagation of their sampling errors to the estimates of interest. If the point 

estimates are clustered, the cluster bootstrap should be used, as described in Section 2.1. A 

bias-corrected and accelerated (BCa) confidence interval19,20 can then be constructed from 

the bootstrapped values of P > q(z) or P > q(z) − P > q(z0). Informed by simulation results 

(Section 5), we provide the following four suggested guidelines for reporting P > q(z) or 

P > q(z) − P > q(z0) to help ensure that the metrics will provide accurate and interpretable 

results.

2.3 ∣ Guidelines for applying and reporting these metrics

We developed the guidelines below such that, based on an extensive simulation study 

including both realistic and extreme scenarios (Section 5), the metrics' performances 

conformed to the following thresholds: the bias was within ±5 percentage points in at 

least 90% of simulation scenarios, the coverage was no lower than 90% in at least 90% 

of simulation scenarios, and no more than 2% of simulation scenarios had coverage less 

than 85%. We required these criteria to hold regardless of the number of meta-analyzed 

*In particular, in the two-stage approach, τϵ
2

 is estimated using a moment estimator that uses plug-in estimates of the within-cluster 

variances,14,15 whereas in the second stage of the two-stage method, it is estimated using the classical Dersimonian-Laird moment 
estimator5,23 applied to the shifted point estimates. A simple simulated example available online (https://osf.io/gs7fp/) illustrates 
the methods' non-equivalence in a small meta-analysis with relatively low heterogeneity, in which the second stage of the two-stage 

method estimates τϵ
2 = 0, leading to calibrated estimates that are all exactly equal to the Dersimonian-Laird pooled point estimate, 

whereas the one-stage method estimates τϵ
2

 slightly greater than 0, leading to calibrated estimates that differ slightly from one another.
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studies, subject to the fourth guideline below. Determining criteria for adequate estimator 

performance is inherently somewhat arbitrary; we consider these criteria to represent 

adequate performance based on the performance of existing standard estimators in meta-

regression (Section 5). Meta-analysts who wish to apply the metrics according to more or 

less stringent criteria for the estimators' performance can browse comprehensive results for 

all simulation scenarios in a publicly available, documented dataset (https://osf.io/gs7fp/). 

The guidelines are:

1. Include confidence intervals when reporting P > q(z) or P > q(z) − P > q(z0). The 

confidence intervals help convey that while these metrics are overall unbiased, 

they may have considerable sampling variability in some settings and then could 

potentially be far from the truth for a given single analysis. For example, if 

P > q(z) is large (e.g., 85%), but its confidence interval also includes small 

values (e.g., [15%, 100%]), or vice versa, investigators should comment on this 

when interpreting the metrics (as we demonstrate in the applied examples).

2. If point estimates are clustered (for example, within articles), investigate whether 

the population effects are also skewed by examining a density or cumulative 

distribution plot of the calibrated estimates (e.g., Section 4). The estimates 

P > q(z) and P > q(z) − P > q(z0) and/or their confidence intervals may not 

perform well when the population effects are both clustered and skewed. In 

such cases, consider eliminating clustering by averaging estimates and variances 

within clusters (Sutton et al.1 Section 15.3) and using these average estimates to 

estimate P > q(z) and P > q(z) − P > q(z0).†

3. When choosing a contrast to examine via P > q(z) − P > q(z0), avoid specifying 

extreme quantiles or rare values of the covariates (as described in Section 5.1.3). 

Choosing extremes can compromise the performance of P > q(z) − P > q(z0), 
though did not appear to compromise P > q(z) or P > q(z0) themselves.

4. Apply the metric P > q(z) only to meta-regressions with at least 10 studies, 

and apply P > q(z) − P > q(z0) only to meta-regressions at least 20 studies. The 

metrics can perform poorly when there are fewer studies than this. In meta-

regressions of 10–20 studies, the metrics show adequate statistical performance 

as defined above but may have substantial sampling variability, such that the 

absolute error for any given sample may be large and the confidence intervals 

may accordingly be highly imprecise.

3 ∣ ADDITIONAL CONSIDERATIONS

3.1 ∣ Types of meta-regression covariates

At least two kinds of meta-regression covariates may be of interest. First, some covariates 

may be scientifically interesting in their own right because they are hypothesized to be 

†This approach would be similar to scenarios in the simulation study with non-clustered exponential effects, which are included in 
Table 4, row 3 and Table 5, row 4.
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associated with a study's true population effect size; for example, the baseline clinical 

characteristics of a study's subjects might be associated with a treatment's effectiveness. 

Second, some covariates may not be of inherent scientific interest, but rather may be 

associated with a study's point estimate because they relate to the bias with which its 

true population effect is estimated; for example, observational studies might have typically 

larger or smaller estimates than randomized trials due to confounding. The proposed 

methods, like meta-regression more broadly, aim only to characterize effect sizes conditional 

on study characteristics; they cannot isolate the causal effect that “changing” a study's 

characteristics would have on its population effect, the bias in its estimate, or both. As 

such, covariates falling into either or both categories can be handled identically in analysis. 

When considering specific biases in causal estimation, such as unmeasured confounding, the 

proposed methods could be combined with sensitivity analysis methods that do focus on 

causal estimation.4,24

3.2 ∣ Choices of effect-size measures

There is a large literature on choosing effect-size measures with which to conduct meta-

analyses; we summarize here only a few points that are not specific to the methods 

we have proposed here. First, analyses of binary outcomes can be conducted on either 

a multiplicative scale (e.g., risk ratios or odds ratios) or an additive scale (e.g., risk 

differences). For modeling purposes, the choice of an additive or multiplicative scale can be 

informed by scientific considerations regarding hypothesized mechanisms of the exposure or 

intervention, by statistical goodness of fit, and by parsimony.25 Multiplicative measures are 

also sometimes used in contexts when converting studies' estimates to a common, additive 

scale would invoke potentially unrealistic distributional assumptions, as was the case in 

the second applied example.13 Additive measures are often more relevant to assessing 

interventions' effects on public health, for example when estimating the “number needed 

to treat” based on a risk difference or when identifying which subgroup to treat based on 

an additive interaction measure.26 When assessing public health effectiveness in this sense, 

then regardless of the scale on which analyses are conducted, the effect measures should 

be converted to public healthrelevant measures before one considers whether effects are 

meaningfully strong.

Second, analyses of continuous outcomes are often conducted on the standardized mean 

difference scale. This scale has limitations: for example, if two interventions produce the 

same absolute change in the same outcome measure, but are studied in different populations 

in which the variability on the outcome differs substantially, the interventions would produce 

different standardized mean differences.27,28 Some meta-analysts argue against the use of 

SMDs27,28 or feel that the scale should never be used in any context (a point raised, for 

example, during the peer review of this paper). Whether and how SMDs should be used is a 

current debate in the field of meta-analysis. Our views are as follows. When meta-analyzing 

studies that measure the outcome on the same scale (e.g., blood pressure in terms of mmHg), 

it may often be preferable to use raw mean differences.28 However, in many scientific 

fields, studies do not measure outcomes on exactly the same scale, as in both applied 

examples provided here; in such cases, using standardized mean differences may enable 

some approximate comparison and synthesis of effect sizes across studies. Additionally, 
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when outcomes use arbitrary or unitless raw measures (e.g., points on a Likert scale), 

expressing effect sizes using standardized mean differences may provide some sense of 

effect sizes relative to variability in that sample, similar to measures of genetic heritability. 

For some outcomes, such as income or grades in high school, absolute changes may in fact 

be less substantively meaningful than effects relative to variability in the population, for 

example expressed by SMDs with appropriately chosen denominators. Alternative metrics 

characterize effect sizes relative to a specified minimally important difference, rather than to 

sample variability,29 and we look forward to other metrics that might be proposed. Similar 

considerations and caveats apply when considering standardized versus absolute contrasts in 

continuous exposures.30

If the meta-analyst chooses to apply the metrics we propose with effect sizes on the SMD 
scale, a few caveats should be kept in mind. Selecting a single threshold representing a 

meaningfully strong effect size across studies makes most sense when either the outcome 

has similar variability across studies or when, as described above, effects relative to the 

population are themselves of substantive interest. Second, population effects that exceed the 

chosen threshold may be those that arise in populations with very limited variability on the 

outcome measure rather than those in which the absolute effect size is very large.

4 ∣ APPLIED EXAMPLES

All data and R code required to reproduce the analyses and plots for both applied examples 

is publicly available and documented (https://osf.io/gs7fp/).

4.1 ∣ Sleeping targeted memory recall

In sleeping targeted memory recall (TMR), a specific sensory cue, such as an odor, 

is first paired with training stimuli during learning, and then the same sensory cue is 

presented again while the learner is sleeping. This is thought to aid natural processes of 

memory reactivation and consolidation during sleep. Hu et al.17 conducted a meta-analysis 

investigating the effects of sleeping TMR on memory consolidation, the process by which 

recent learned experiences are crystallized into long-term memory. They meta-analyzed 

studies that measured memory improvements after a period of sleep during which sleeping 

TMR was either used or not used. They used subset analyses and meta-regression to 

investigate various candidate covariates representing specific sleeping TMR methods and 

types of memory outcomes.

For our re-analysis, we focused on two candidate covariates: (1) the sleep stage during 

which the sensory cue was presented (dichotomized as slow-wave sleep versus any other 

stage); and (2) the duration in hours that subjects were allowed to sleep between learning 

and testing. We considered effect sizes larger than SMD = 0.20 to be meaningfully strong. 

We informed this choice of threshold by conventional criteria for a “small” effect size31 and 

by comparison to well-evidenced interventions,3 namely conscious mnemonic methods that 

are known to improve memory consolidation. For example, mnemonics such as rehearsal 

and the method of loci produce average effect sizes of approximately SMD = 0.31 compared 

to no training,32 and distributed practice produces effects of approximately SMD = 0.46 

compared to massed practice.33 Sleeping TMR is an unconscious and probably subtler 
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method than these conscious mnemonics, so we selected an effect-size threshold somewhat 

smaller than the SMD = 0.31 to 0.46 seen for the latter. Of course, our choice of threshold 

is arbitrary. In practice, it is often reasonable to consider multiple thresholds or to present a 

plot of the estimated complementary cumulative distribution function of population effects 

conditional on z (i.e., P > q(z) as a function of the threshold q), as we illustrate below. 

A pointwise confidence interval could be constructed by bootstrapping selectively for the 

thresholds at which the value of P > q(z) changes.

We first robustly meta-analyzed k = 208 point estimates from 87 experiments,‡ using 

a working exchangeable correlation structure to model clustering of estimates within 

experiments,14,15 to estimate an overall average effect size on the standardized mean 

difference (SMD) scale of 0.29 (95% CI: [0.19, 0.35]; p <0.0001). We used existing 

methods for standard meta-analysis4 with cluster-bootstrapping to estimate that, overall, 

49% (95% CI: [39%, 58%]) of effects were meaningfully strong by our chosen criterion.§ 

To investigate effect-measure modification using our proposed methods, we conducted a 

robust meta-regression14,15 using the mean model E[θ ∣ Z] = β0 + β1sZs + β1dZd, where 

Z = (Zs, Zd), Zs indicated that the cue was presented during slow-wave sleep versus any 

other sleep stage, and Zd was the duration of sleep in hours. We estimated the percentage 

of meaningfully strong effects when the cue was presented during slow-wave sleep and 

subjects were allowed to sleep for 8 h (i.e., Z = (1, 8)). We also estimated the percentage 

of meaningfully strong effects when the cue was presented during any other sleep stage and 

subjects were allowed to sleep for only 2 h (i.e., Z = (0, 2)), and we estimated the difference 

between these two percentages.

From the meta-regression, the estimated intercept was β0 = 0.10 (95% CI: [−0.16, 0.37]; p = 

0.42), the estimated effect of cue presentation during slow-wave sleep was β1s = 0.13 (95% 

CI: [−0.11, 0.36]; p = 0.27), and the estimated effect of an additional hour of sleep was 

β1d = 0.003 (95% CI: [−0.02, 0.03]; p = 0.80). The estimated heterogeneity was τϵ
2 = 0.07. 

We used these estimated regression coefficients and Equation (2.4) to calculate shifted, 

calibrated estimates (Figure 1) and to estimate that, for cue presentation during slow-wave 

sleep and with 8 h of sleep, 53% of effects were meaningfully strong (95% CI: [34%, 

72%]). Figure 2 shows the estimated complementary cumulative distribution function for 

such studies. In contrast, for cue presentation during any other sleep stage and with only 2 h 

of sleep, we estimated that 38% of effects were meaningfully strong (95% CI: [16%, 73%]). 

The estimated difference in the sleeping TMR effect, comparing these two joint levels of the 

covariates, was thus 15 percentage points (95% CI: [−24, 51]).

Considering these results holistically, the point estimates from the meta-regression suggested 

fairly small, “statistically nonsignificant” average increases in effect sizes associated with 

presentation during slow-wave sleep (β1s = 0.13 (95% CI: [−0.11, 0.36]; p = 0.27) and with 

‡As in the original meta-analysis,17 we excluded four outlying point estimates from an original sample size of 212 estimates, leaving 
k = 208 estimates used in analysis.
§It may seem counterintuitive that this percentage was less than 50% even though the estimated average effect size of SMD = 0.29 
exceeded q = 0.20. This reflects the effect sizes' skewness (Figure 1).
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an additional hour of sleep (β1d = 0.003 (95% CI: [−0.02, 0.03]; p = 0.80). However, using 

our proposed metrics to compare joint levels of these two covariates simultaneously and 

to better characterize heterogeneity, rather than only average effect sizes, suggests that a 

majority of population effects were meaningfully strong when the cue was presented during 

slow-wave sleep and with 8 h of sleep, with the confidence interval bounded above 34%. 

The proposed metrics also suggested that this percentage of meaningfully strong effects may 

have been somewhat larger than when the cue was presented during any other sleep stage 

and with only 2 h of sleep, though the confidence interval was wide.

4.2 ∣ Behavior interventions to reduce meat consumption

Mathur et al.13,34 conducted a meta-analysis to assess the effectiveness of educational 

behavior interventions that attempt to reduce meat consumption by appealing to animal 

welfare. They meta-analyzed 100 studies (from 34 articles) of such interventions, all 

of which measured behavioral or self-reported outcomes related to meat consumption, 

purchase, or related intentions and had a control condition. Mathur et al.13 concluded that 

the interventions appeared to consistently reduce meat consumption, purchase, or related 

intentions at least in the short term with meaningfully large effects (meta-analytic average 

risk ratio [RR] = 1.22; 95% CI: [1.13, 1.33] with 71% of population effects estimated to 

be stronger than RR = 1.1; 95% CI: [59%, 80%]) and additionally used meta-regression 

to assess whether various characteristics regarding interventions' contents were associated 

with their effect sizes. As discussed in Section 3.2, these effect sizes should, when possible, 

also be considered on the risk difference scale before assessing substantive meaningfulness. 

Although not all studies reported sufficient information to calculate risk differences directly, 

most studies for which a risk ratio was extracted used a median split on the outcome in the 

control group, so the pooled RR = 1.22 corresponds approximately to a risk difference [RD] 

of 0.11, and the threshold RR = 1.1 corresponds approximately to RD = 0.05. Mathur et 

al. noted important methodological limitations in this field, including the predominant use 

of outcomes based on self-reported food consumption or intentions, the potential for social 

desirability bias, and the potential for confounding in studies that were not randomized or 

that had differential dropout between intervention arms.

For our re-analysis, we estimated the percentage of meaningfully strong effects in 

interventions that contained graphic visual or verbal depictions of factory farms, a suspected 

effect-measure modifier. This component has been controversial, as it could usefully 

invoke cognitive dissonance35 and harness deep-seated connections between physical and 

moral disgust,36,37 or alternatively might backfire for some individuals.35 We excluded 

two studies for which the meta-analysts had been unable to determine whether the 

intervention contained graphic content, leaving 98 analyzed studies, of which 61 (62%) 

had graphic interventions. We considered effect sizes larger than RD = 0.05 (corresponding 

approximately to RR = 1.1 in this meta-analysis) to be meaningfully large based on the 

effect sizes of similar behavior interventions.¶

¶As in the original meta-analysis, we considered effect sizes larger than RR = 1.1 to be meaningfully large based on the effect sizes 
of other health behavior interventions: for example, general nutritional “nudges” produce average effect sizes38 of approximately RR 
= 1.15, and graphic warnings on cigarette boxes increase short-term intentions to quit by approximately RR = 1.14 upon conversion 
from the odds ratio scale.39-41

Mathur and VanderWeele Page 11

Res Synth Methods. Author manuscript; available in PMC 2022 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We first estimated the percentage of meaningfully strong effects among studies of graphic 

interventions while averaging over the distribution of all other study characteristics; that 

is, we fit a meta-regression with an intercept term and a covariate indicating the use of 

graphic content. We again used cluster bootstrapping when estimating inference for the 

percentage metrics. In this first meta-regression, we estimated that effect sizes in studies 

of graphic interventions were comparable to those in studies of non-graphic interventions 

(effect-measure modification RR = 0.96; 95% CI: [0.79, 1.17]) and that 70% (95% CI: 

[49%, 86%]) of effects in studies of graphic interventions were stronger than RR = 1.1. 

Figure 3 shows the estimated complementary cumulative distribution function for studies of 

graphic interventions.

Second, we estimated the percentage again upon more stringently considering studies that 

not only used graphic interventions, but that were also of relatively high methodological 

quality based on four risk-of-bias covariates. We speculated that these covariates might 

be associated with the bias in studies' estimates, though they could also be associated 

with measured or unmeasured effect-measure modifiers. Specifically, we conditioned on 

studies' having received “low” risk-of-bias ratings13 (i.e., indicating higher methodological 

quality) with respect to the exchangeability of their intervention and control groups, their 

susceptibility to social desirability bias, and the external generalizability of their recruited 

subjects. We also conditioned on studies' use of direct behavioral measures of meat 

consumption (e.g., based on meal purchases at a university dining hall) or self-reports 

(e.g., via food frequency questionnaires) rather than mere intentions. Although a number 

of studies (13–53%) fulfilled each of these risk-of-bias criteria individually, no single study 

of a graphic intervention fulfilled all four simultaneously, which would have precluded 

conducting a subset analysis. However, the proposed meta-regression methods allowed us 

to estimate that, in hypothetical high-quality studies of graphic interventions, the percentage 

of meaningfully strong effects would in fact increase to 97% (95% CI: [18%, 100%]). 

(See the Discussion for important considerations about assuming additive risks of bias.) 

This finding corroborates the meta-analysts' observation that higher-quality studies in fact 

tended to have somewhat larger effect sizes. However, it is also important to note that 

the confidence interval is quite wide given the near-ceiling point estimate of 97% and is 

much wider than the confidence interval we obtained when conditioning only on graphic 

content (i.e., [49%, 86%]). This decrease in precision upon conditioning on risks of bias is 

itself informative: it quantitatively corroborates the meta-analysts' impression that to more 

precisely and confidently characterize these interventions' effects will require that future 

studies prioritize methodological rigor over, perhaps, the introduction of new interventions.

5 ∣ SIMULATION STUDY

5.1 ∣ Simulation methods

We conducted an extensive simulation study to assess the performance of the proposed 

point estimation and inference methods for P > q(z) and the difference P > q(z) − P > q(z0), 
including in scenarios with extreme values of the estimands, skewed population effects, and 

clustering.
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5.1.1 ∣ Data generation—We considered a meta-regression on two covariates, Z = 

(Zc, Zb), in which Zc was a standard normal variable and Zb was a binary variable with 

prevalence 50% that we generated independently of Zc. To generate data, we first assigned 

k total studies (k∈{10, 20, 50, 100, 150}) to M clusters, where M was either equal to 

k (for no clustering) or equal to k/2, such that each cluster contained two estimates.** 

We varied the residual heterogeneity†† τϵ2 ∈ {0.0025, 0.01, 0.04, 0.25, 0.64}. For scenarios with 

clustering, we set the between-cluster variance, Var(ζ), to 0.75 × τϵ2, such that 75% of the 

residual heterogeneity was due to between-cluster heterogeneity and 25% was due to within-

cluster heterogeneity. Within each cluster, studies' random intercepts were either normally 

or exponentially distributed, and the distribution of total sample sizes within each study was 

either Ni ~ Unif (50, 150) or Ni ~ Unif (800, 900).

We generated the population effect for the ith study in the mth cluster from the mean model:

θmi = β0 + β1cZc + β1bZb + ζm + γmi
ζmN(0Var(ζ)) (cluster ‐level random effects)
γmiN(0τϵ2 − Var(ζ)) or γmiExp (τϵ2 − Var(ζ))−1 ∕ 2 (study ‐level random effects)

We fixed the intercept to β0 = 0 and covariate effect strengths to β1c. = 0.5 and β1b = 

1. We held constant these effect sizes for all simulation scenarios but manipulated the 

parameters of interest, namely P >q(z) and the difference P>q(z) − P>q(z0), across a broad 

range by choosing the threshold q appropriately. We considered three choices of covariate 

levels of interest, (Zc, Zb), which are described in Table 1. Within each cluster (suppressing 

the "m" subscript notation) and for each of k meta-analyzed studies, we generated a 

population effect, θi, on the raw mean difference scale from a normal distribution or a 

shifted exponential distribution. We chose each distribution's parameters to provide the 

desired intercept β0 and heterogeneity τϵ2.

We then simulated subject-level data for a control group with mean 0 and for a treatment 

group with mean θi; each group was of size Ni/2 with a standard deviation of 1. Thus, 

the within-study standard error of the estimated mean difference, θ i, was approximately 

σi = 4 ∕ Ni. For the meta-regression, the proportion of the total residual variance 

attributable to residual effect heterogeneity,43,44 I2, was approximately τϵ2 ∕ τϵ2 + 4 ∕ E[N]
(Table 2). We chose values of q to vary the first parameter of interest, P(z), in {0.05, 0.10, 

0.20, 0.50}. We then calculated the parameter P > q(z0) and difference P > q(z) − P > q(z0) 

based on q, β1c, β1b, τϵ2, and the appropriate distributional parameters. Table 3 summarizes 

**For realism, we informed this clustering structure by a corpus of 63 large meta-analyses that were systematically sampled from 
journals representing a variety of disciplines.42 In these metaanalyses, each paper contributed a median of 1.5 studies per cluster 
(mean 2.7).
††For comparison, among the 28 meta-analyses in the aforementioned corpus42 with estimates on the standardized mean difference 

scale and for which τϵ
2

 was statistically estimable,14,15 13 metaanalyses (46%) had τϵ
2 > 0 and hence would be candidates to apply 

our methods. Of these 13, the τϵ
2

 estimates had a mean and median of 1.05 and 0.44 respectively, and 1 meta-analysis had τϵ
2 < 0.01. 

These estimates were from standard meta-analysis rather than meta-regression, so are best viewed as benchmarks for the amount of 
residual heterogeneity that might be expected if any meta-regression covariates explain little of the heterogeneity.
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the full-factorial design of the simulation study. There were 2400 unique sets of parameters, 

each analyzed with all of the estimation methods described below.

5.1.2 ∣ Estimation procedures—We assessed both the one-stage and the two-stage 

methods described in Section 2.2. For both methods, for each scenario and iteration, we 

first estimated the metaregression parameters using a meta-regression model with robust 

variance estimation as recommended in Section 2.2; for scenarios with clustering, we 

used a hierarchical working model.14 In this approach, weighted least squares is used to 

estimate the meta-regression coefficients. The heterogeneity τ2 is estimated using a method-

of-moments estimator detailed elsewhere.14 We fit this model using the robumeta package in 

R.15

Then, for the one-stage method, we use the metaregression estimates to directly calculate 

shifted calibrated estimates as in Equation (2.3). For the two-stage method, as described 

in Section 2.2, we shifted the point estimates themselves and then fit a standard intercept-

only meta-analysis (without covariates) to the shifted estimates, thus obtaining calibrated 

estimates in the usual manner for a standard meta-analysis.5 This second-stage meta-analysis 

used the Dersimonian-Laird heterogeneity estimator,23 the usual choice for calculating 

calibrated estimates.5 We fit the second-stage meta-analysis using the R package metafor45 

and obtained the calibrated estimates using MetaUtility.46

To obtain inference, we bootstrapped the meta-regression estimation process as well as, 

for the two-stage method, the standard meta-analysis estimation process. In scenarios with 

clustering, we used the cluster bootstrap and constructed bias-corrected and accelerated 

confidence intervals19,20 as described in Section 2.1. We implemented bootstrapping using 

custom-written code and the R package boot.47

5.1.3 ∣ High-level simulation structure—We ran simulations representing all 

2400 possible combinations of the varying data generation parameters (Table 3). For 

computational convenience, we generated separate datasets for the one-stage and two-stage 

methods, resulting in a total of 4800 “scenarios.” We ran 500 simulation iterates per 

scenario‡‡ and used 1000 bootstrap iterates for all inference.

5.1.4 ∣ Exploration of bootstrap bias corrections—Second, we explored whether 

the bootstrap estimates could be used to correct any bias in the estimation of P > q(z)
and P > q(z) − P > q(z0); we calculated the bias-corrected versions of these estimates by 

subtracting from each original estimate the bootstrapped estimate of its bias (i.e., the 

difference between the mean of the bootstrapped sampling distribution and the estimate 

from the original sample itself; Davison & Hinkley,21 Section 2.1.2). Because the sampling 

distributions of P > q(z) and P > q(z) − P > q(z0) can be highly skewed when their estimands 

are close to 0 or 1, we speculated that applying a variance-stabilizing transformation to 

‡‡We used a relatively small number of iterates per scenario to enable computationally feasible assessment of the 4800 scenarios, 
which required 79 days of parallelized computational time on a high-performance cluster. To provide a sense of the resulting Monte 
Carlo error, we would expect, for example, that 5% of simulation iterates would have estimated coverage percentages of less than 93% 
or more than 97% even if all confidence intervals in fact had exactly nominal coverage.
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the estimates might make the estimators more approximately pivotal and therefore improve 

the fidelity of the bootstrapped sampling distribution.48 Accordingly, we calculated bias-

corrected versions of the estimates with and without first taking the logit of the proportion 

estimates after truncating the proportions to [0.001, 0.999].

5.1.5 ∣ Metrics of estimators' performance—For each scenario, we assessed the 

point estimators' performance and variability in terms of their mean bias and mean absolute 

error, defined as follows for a generic parameter ω:

Bias = 1
500 ∑

r = 1

500
(ωr − ω)

Absolute error = 1
500 ∑

r = 1

500
∣ ωr − ω ∣

where r indexes simulation iterates. Second, to compare of our proposed estimators' 

performance to that of standard estimators from meta-regression (i.e., coefficient estimates 

and heterogeneity estimates), we assessed relative bias, defined for a generic nonnegative 

parameter ω as:

Relative bias = 1
500 ∑

r = 1

500 ωr − ω
ω

For each scenario, we assessed inference in terms of the mean coverage and mean 

width of 95% confidence intervals. When summarizing results across scenarios, we report 

medians because the metrics were often skewed across scenarios. Regarding inference, we 

also report the proportion of scenarios for which coverage was less than 85%. To help 

characterize variability in results across scenarios, we report 10th and/or 90th percentiles of 

the performance metrics across scenarios.§§ Throughout, we collapse over the results of the 

one-stage and two-stage method because they performed comparably.

5.2 ∣ RESULTS

Comprehensive results for all simulation scenarios, including additional performance 

metrics, are publicly available as a dataset (https://osf.io/gs7fp/). A small percentage of 

the 4800 total scenarios (2.5%) proved computationally infeasible to run because their 

data generation parameters consistently produced extreme datasets for which standard meta-

regression estimation failed. We analyzed the remaining 4679 scenarios, representing 2388 

of the 2400 possible combinations of data-generation parameters.

§§We did not focus on minima and maxima across scenarios because, compared to 10th and 90th percentiles, minima and maxima 
across thousands of scenarios are highly unstable metrics, especially when there is some Monte Carlo error. Designing guidelines 
based on the very worst scenario, rather than based on less extreme percentiles as we did, would essentially overfit the characteristics 
of that single scenario, would be excessively dependent on the specific scenarios we chose to study, and would underestimate the 
metrics' actual worst-case performance because of reversion to the mean.49
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5.2.1 ∣ High-level summary of all simulation results—In general, performance was 

better for P > q(z) than for P > q(z) − P > q(z0). Performance was typically better in larger 

meta-analyses (i.e., larger k), those with larger numbers of studies (i.e., larger E[N]), and 

those with normal, independent population effects and was typically worse in meta-analyses 

with other characteristics. Performance for P > q(z) − P > q(z0) declined when the covariate 

contrast involved an extreme quantile of one of the covariates. (In the Supplementary 

material, we more specifically describe results of regressing these performance metrics on 

main effects of the aforementioned six meta-analysis characteristics.)

In the case of P > q, coverage was conservative (> 95%) for small values of k and 

declined somewhat as k increased. Coverage was slightly below nominal for k = 150 (93%; 

10th percentile: 88%); additional diagnostics regarding the bootstrap samples preliminarily 

suggested that this might have reflected infidelity of the bootstrap sampling distribution to 

the actual sampling distribution (Section 5.2.2). Below, we speculate based on statistical 

theory on possible mechanisms for this finding, though precisely testing these proposed 

mechanisms was beyond the scope of the present simulation study. This could be 

investigated in future work.

Figures 4 and 5 are violin plots (i.e., mirrored density plots) showing, for simulation 

scenarios fulfilling the guidelines given in Section 2.3, the distribution of each performance 

metric stratified by k. The Supplementary material contains similar violin plots showing 

the distribution of the performance metrics across all scenarios, as well as stratified by 

additional characteristics of the metaanalysis (k, E[N], the presence of clustering, the 

population effect distribution, the covariate contrast, and the true P > q). The plots are 

provided to illustrate the extent of variability in performance metrics that might be expected 

across datasets (although some of the observed variability represents Monte-Carlo error).

5.2.2 ∣ Results for P > q(z)
Point estimation.: Table 4 shows results for P > q(z). Across all scenarios, P > q(z)
was approximately unbiased (bias = 0.00; 10th percentile: −0.02, 90th percentile: 0.08). 

However, because the estimator had substantial variability in some scenarios, it did have a 

non-negligible absolute error of 0.07 (90th percentile: 0.23). The magnitude of the bias of 

P > q(z) did not seem to differ systematically by characteristics of the simulation scenarios 

that would be observable in practice (i.e., not unobservable parameters).

Exploration of bootstrap bias corrections.: Bias-correcting P > q(z) via the bootstrap 

estimates did not improve and sometimes exacerbated bias, even when first taking the 

logit; we speculate this reflects the estimator's non-pivotality,48 the non-existence of 

an Edgeworth expansion for sample quantiles,21 and potentially a failure to reach the 

appropriate asymptotics regarding the bootstrap sampling distribution in these datasets of 

10 to 150 observations. For these reasons, the slightly below-nominal coverage seen at k = 

150 might reflect what is essentially bias in the bootstrap sampling distribution. Future work 

could consider using a double bootstrap to correct such bias.21
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Coverage.: Across all scenarios, coverage was nominal (95%) on average, though was less 

than 85% in 5% of scenarios. The distribution of population effects and the presence of 

clustering appeared to affect coverage, with normal effects and unclustered effects producing 

the best coverage. Among scenarios with normally distributed population effects, none 

(0%) had coverage less than 85% (Table 4). When considering the scenarios fulfilling the 

reporting guidelines in Section 2.3 (i.e., scenarios whose population effects were not both 
exponentially distributed and clustered), 1% of scenarios had coverage less than 85%. In 

these recommended scenarios, the average confidence interval width was 0.37, and the 

confidence interval was highly imprecise (width >0.90) in 11% of scenarios. Scenarios with 

k ≤ 20 often had average confidence interval widths greater than 0.60, particularly when the 

meta-analyzed studies had average sample sizes of 100 rather than 850. Specifically, with k 
≤ 20, the average width was 0.74 (90th percentile: 0.95), and the confidence intervals were 

highly imprecise in 24% of scenarios.

Diagnostics regarding bootstrapped inference.: The standard deviation of the bootstrap 

sampling distribution typically underestimated the empirical standard error of P > q(z), 
suggesting that when poor coverage occurred, it likely reflected, at least in part, infidelity 

of the bootstrap sampling distribution to the true sampling distribution. We also investigated 

whether characteristics of the bootstrap sampling distribution could be used as diagnostics 

for the confidence interval to perform poorly. However, characteristics such as the bootstrap 

distribution's skewness and the percentage of iterates for which the meta-regression or 

P > q(z) were not estimable were not associated with the performance of the confidence 

interval.

5.2.3 ∣ Results for P > q(z) − P > q(z0)
Point estimation.: Table 5 shows results for P > q(z) − P > q(z0). Across all scenarios, 

P > q(z) − P > q(z0) was approximately unbiased (bias = 0.00; 10th percentile: −0.02; 90th 

percentile: 0.08). Like P > q, this estimator also had considerable sampling variability 

in some scenarios, resulting in an absolute error of 0.08 (90th percentile: 0.24). The 

performance of the point estimate P > q(z) − P > q(z0) did appear somewhat related to 

observable characteristics of the simulation scenarios: as was the case for P > q(z), 
considering only scenarios with normal population effects somewhat improved the absolute 

error to 0.07 (vs. 0.08 in all scenarios). Additionally, avoiding very rare covariate values 

when defining the contrast of interest seemed to improve point estimation: excluding 

scenarios in which the z0 level involved the 98th quantile of the continuous covariate (termed 

“BC-rare scenarios”; Table 1) improved the absolute error to 0.07. Including only scenarios 

fulfilling the reporting guidelines given in Section 2.3 (i.e., scenarios with k ≥ 20 that 

did not use the BC-rare contrast and did not have clustered exponential effects) slightly 

improved the absolute error to 0.06 (90th percentile: 0.17). As with P > q(z), bias-correcting 

P > q(z) − P > q(z0) via the bootstrap estimates was not effective.

Coverage.: Across all scenarios, coverage was somewhat below nominal (92%) on average 

and was less than 85% in 24% of scenarios. When restricting attention to scenarios fulfilling 
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the guidelines, coverage was close to nominal (94%; 10th percentile: 90%), and 2% of 

scenarios had coverage less than 85% (Table 5). As described above, this set of restrictions 

also produced the most improvement in the absolute error. In these scenarios, the average 

confidence interval width was 0.29, and the confidence interval was highly imprecise (width 

> 0.90) in 5% of scenarios. As with P > q(z), and characteristics of the bootstrap sampling 

distribution did not predict confidence interval coverage.

5.3 ∣ Exploratory investigations of other point estimation methods

As noted above, applying a bootstrap bias correction directly to P > q(z) or 

P > q(z) − P > q(z0) was not effective. Given the bias seen in τϵ
2 (Tables 4 and 5), we 

also experimented with using bootstrapping to bias-correct the meta-regression estimates 

τϵ
2 as well as β0, β1c, and β1b before using them to calculate the calibrated estimates via 

Equation (2.4). (The bias in the latter three coefficient estimates was, however, typically 

small and was an order of magnitude smaller than that seen in τϵ
2.) That is, we bootstrapped 

the meta-regression model (again with 1000 iterates) and bias-corrected each of these 

meta-regression estimates by subtracting the bootstrapped estimate of its bias. We then 

calculated our proposed estimators using these bias-corrected estimates. As a benchmark 

representing the best possible bias reduction in P > q(z) and P > q(z) − P > q(z0) that could 

be achieved if, hypothetically, all bias in the meta-regression estimates were eliminated, we 

also calculated calibrated estimates using the actual parameters of the meta-regression rather 

than estimates.

We applied these approaches in the 32 “worst” scenarios from the main simulation, 

defined as the unique scenarios for which the relative bias of P > q(z), the relative bias of 

P > q(z) − P > q(z0), the coverage of the confidence interval for P > q(z), or the coverage 

of the confidence interval for P > q(z) − P > q(z0) were among the 10 worst for that 

performance metric across all scenarios analyzed with the one-stage method and in BC-

rare scenarios. We focused on BC-rare scenarios because, as noted above, these scenarios 

seemed to particularly affect estimation of P > q(z) − P > q(z0); we focused on the one-stage 

method because it performed comparably to the two-stage method. To avoid reversion to the 

mean49 that could arise from comparing results in the worst scenarios to those in the main 

simulations, we analyzed these scenarios via the usual one-stage method again in the newly 

generated datasets (a replication of the main simulation results).

Like the bootstrapped bias corrections applied directly to our proposed estimators in the 

main simulations, bias corrections on the meta-regression estimates did not improve and 

sometimes exacerbated bias in the proposed estimators (Table 6). However, using the meta-

regression parameters rather than estimates improved bias by at least twofold. This suggests 

that for scenarios in which P > q(z) and P > q(z) − P > q(z0) performed poorly, a substantial 

portion, though not all, of their bias was attributable to bias in the standard meta-regression 

estimates that propagated to P > q(z) and P > q(z) − P > q(z0) via the calibrated estimates. 

We return to this point in the Discussion. Because these methods did not improve bias, we 

did not assess their impact on inference.
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6 ∣ DISCUSSION

We have proposed straightforward, easily interpreted statistical metrics for meta-regression 

that characterize the percentage of meaningfully strong population effects for a specified 

level of the covariates and that further enable comparison of these percentages between two 

different levels of the covariates. As such, we believe the proposed metrics could usefully 

supplement standard reporting, which focuses only on average differences between levels 

of each covariate in turn. We provided simple R code to estimate the proposed metrics 

(Supplementary material or https://osf.io/gs7fp/).

These methods have limitations, including those inherent to meta-regression.50 For example, 

even when the meta-analyzed studies are randomized, the covariates are not randomized 

across studies, so their effects on the outcome may be confounded.50,51 That is, it might not 

be the covariate itself that causally affects the study's primary exposure effect size, but rather 

another variable associated with it. The difference P > q(z) − P > q(z0) therefore represents 

an average difference between studies with covariates z versus those with z0, not the causal 

effect of “changing” a study's covariates from z0 to z. Similar considerations apply if 

using the proposed metrics to consider effect sizes in a hypothetical target population.52 

Meta-regression and our proposed metrics allow consideration of combinations of covariates 

that do not occur in the data, but one should not extrapolate unreasonably beyond the 

observed data. Our proposed methods could validly be used to estimate which levels of the 

covariates have the largest P > q(z); but if doing so, P > q(z) for the apparently “best” levels 

may then be biased upward due to statistical reversion to the mean,49 as is the case more 

generally with point estimation after conditioning on the size of the estimate. In relatively 

small meta-regressions, the BCa bootstrap (particularly for P > q(z) − P > q(z0)) may fail 

to converge or may yield wide confidence intervals spanning most or all of the possible 

range [0, 1], which should instill appropriate circumspection about what can be learned from 

a relatively small meta-regression. Finally, as in meta-analysis more broadly, limitations 

in the statistics reported in the meta-analyzed papers often hampers extracting effect sizes 

on a scale that is comparable across studies and is substantively meaningful (Section 3.2); 

this problem would be mitigated if authors of original research were to publicly release 

deidentified datasets at the individual participant level.

The simulation results suggested that P > q(z) and P > q(z) − P > q(z0) were approximately 

unbiased on average. However, it is important to note that due to the estimators' variability, 

they did show non-negligible absolute errors of 0.07 and 0.06. When we specifically 

investigated the scenarios in which the estimators showed the most bias, almost all of 

the bias in P > q(z) and P > q(z) − P > q(z0) appeared to propagate to the estimators from 

the standard meta-regression estimate τϵ
2, which itself showed non-negligible bias (e.g., 

relative bias = 0.35) and perhaps to a lesser extent from the meta-regression coefficient 

estimates (Table 6). We used a moment-type estimator that accommodates clustering;14,15 

future work could investigate whether other heterogeneity estimators, such as the restricted 

maximum likelihood estimator, would perform better in this context.53 Heterogeneity 

estimation is indeed a longstanding challenge in meta-analysis,16,53 and developing methods 
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to allow robust and more efficient heterogeneity estimation is an active research area. As 

methods continue to improve, we expect that their use will also naturally propagate to 

the performance of the proposed estimators. When using current heterogeneity estimation 

methods,14 we provided practical guidelines informed by the simulation results regarding 

performance across numerous scenarios with varying characteristics.

The simulation study itself was limited in scope for computational reasons: the 4800 

scenarios we considered certainly do not represent the entire range of population effect 

distributions, sample sizes, and other characteristics that could potentially affect the 

estimators' performance. It would be useful to conduct more extensive simulation studies, 

for example assessing many more distributions of population effects, types of covariates 

(including clustered or correlated covariates), and choices of contrast.

As we have noted, our proposed methods are semiparametric in that, when the meta-

regression is itself fit using semiparametric methods,14 the mean model must be correctly 

specified. If the mean model is misspecified, the meta-regression estimates themselves may 

be biased,14 and this bias may also propagate to our proposed estimators. In particular, 

meta-regression specifications usually include only main effects of the covariates; estimating 

interactions among the covariates with reasonable precision would typically be infeasible 

without quite large numbers of studies.26 By omitting potential interactions from the mean 

model, for example, any covariates representing risks of bias are assumed to operate 

additively on the effect size scale on which the meta-analysis is conducted. Similarly 

to the applied example regarding dietary interventions, we might meta-regress studies' 

log-RR estimates on main effects of external generalizability and of susceptibility to 

social desirability bias, without including an interaction between the two covariates. This 

model assumes that the average biases produced by a lack of generalizability and by the 

susceptibility to social desirability bias are additive on the log-RR scale and multiplicative 

on the RR scale. However, in principle, the biases might in fact interact: subjects who were 

recruited because they were already highly motivated to change their behavior (representing 

poor generalizability) might be more likely to lie about their behavior to reduce cognitive 

dissonance or to conform to perceived pressure from the experimenters (representing a 

particularly pronounced social desirability bias effect), whereas a general sample of subjects 

who were not already motivated to change their behavior may report their behavior with less 

regard to perceived social desirability. Such effects would not be captured by a model with 

only main effects. However, with these caveats in mind, we hope that these methods will 

help investigators better understand how results from meta-analyses might vary across study 

characteristics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

What is already known

• Meta-regression analyses usually focus on differences in average effects 

between levels of each covariate.

• While useful, these metrics have limitations: they consider each covariate 

individually, rather than in combination, and they characterize only the mean 

of a potentially heterogeneous distribution of effects.

What is new

• We propose new metrics that address the questions: “For a given joint level of 

the meta-regression covariates, what percentage of the population effects are 

meaningfully strong?” and “For any two joint levels of the covariates, what is 

the difference between these percentages of meaningfully strong effects?”

• These metrics characterize the heterogeneous distribution of effects 

conditional on the covariates (not just the distribution's mean), and they 

enable direct comparison of joint levels of covariates.

• The first and second metrics above can be applied to meta-regressions with at 

least 10 and at least 20 studies, respectively. The metrics should be reported 

along with confidence intervals. Caution is warranted if the point estimates 

are both clustered and skewed. When using the second metric, the specified 

contrast should not use extreme covariate values.

Potential impact for RSM readers outside the authors' field

• These metrics could facilitate assessing and communicating how evidence 

strength differs for studies with different sets of characteristics.
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FIGURE 1. 
For the applied example on memory consolidation, a smoothed density estimate for standard 

calibrated estimates5 that do not condition on covariates (black curve) and for calibrated 

estimates that have been shifted to covariate level Z = 0 (orange curve), as in Equation 2.4. 

Solid red line: the shifted threshold q − zβ1 for q = 0.20 and for covariate level z = (1,8). 

Dashed red line: the shifted threshold q − z0β1 for reference covariate level z0 = (0,2)
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FIGURE 2. 
For the applied example on memory consolidation, the estimated complementary cumulative 

distribution function of population effects in studies with z = (1,8). The black dashed 

line represents the null. Shaded bands are 95% cluster-bootstrapped pointwise confidence 

intervals
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FIGURE 3. 
For the applied example on meat consumption, the estimated complementary cumulative 

distribution function of population effects in studies whose interventions contained graphic 

content, regardless of risks of bias. The black dashed line represents the null. Shaded bands 

are 95% cluster-bootstrapped pointwise confidence intervals
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FIGURE 4. 
For P > q(z), violin plots showing the number of meta-analyzed studies (k) versus (a) bias, 

(b) absolute error, (c) 95% confidence interval coverage, and (d) 95% confidence interval 

width. White boxplots display the median, 25th percentile, and 75th percentile. Horizontal 

dashed reference lines represent perfect performance
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FIGURE 5. 
For P > q(z) − P > q(z0), violin plots showing the number of meta-analyzed studies (k) 

versus (a) bias, (b) absolute error, (c) 95% confidence interval coverage, and (d) 95% 

confidence interval width. White boxplots display the median, 25th percentile, and 75th 

percentile. Horizontal dashed reference lines represent perfect performance
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TABLE 2

Approximate values of relative residual heterogeneity (I2) for each combination of simulation parameters 

pertaining to the mean within-study sample size (E[N]) and residual heterogeneity (τϵ2)

τϵ2 = 0 . 0025 τϵ2 = 0 . 01 τϵ2 = 0 . 04 τϵ2 = 0 . 25 τϵ2 = 0 . 64
E[N] = 100 0.06 0.20 0.50 0.86 0.94

E[N] = 850 0.25 0.68 0.89 0.98 0.99
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