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Abstract

Humans perceive light in the visible spectrum (400-700 nm). Some night vision systems use

infrared light that is not perceptible to humans and the images rendered are transposed to a

digital display presenting a monochromatic image in the visible spectrum. We sought to

develop an imaging algorithm powered by optimized deep learning architectures whereby

infrared spectral illumination of a scene could be used to predict a visible spectrum render-

ing of the scene as if it were perceived by a human with visible spectrum light. This would

make it possible to digitally render a visible spectrum scene to humans when they are other-

wise in complete “darkness” and only illuminated with infrared light. To achieve this goal, we

used a monochromatic camera sensitive to visible and near infrared light to acquire an

image dataset of printed images of faces under multispectral illumination spanning standard

visible red (604 nm), green (529 nm) and blue (447 nm) as well as infrared wavelengths

(718, 777, and 807 nm). We then optimized a convolutional neural network with a U-Net-like

architecture to predict visible spectrum images from only near-infrared images. This study

serves as a first step towards predicting human visible spectrum scenes from imperceptible

near-infrared illumination. Further work can profoundly contribute to a variety of applications

including night vision and studies of biological samples sensitive to visible light.

Introduction

The human eye perceives light in the visible spectrum using opsin proteins bound to a light-

sensitive chromophore in retinal photoreceptors. The peak spectral opsin absorbances with

surrounding Gaussian distributions for rods, S-cones, M-cones, and L-cones are: 498 nm, 420

nm, 534 nm, and 564 nm respectively [1]. Cone photoreceptors perceive color and are respon-

sible for high acuity vision with rapid phototransduction kinetics. Rod photoreceptors are sen-

sitive to low light conditions offering night vision, but with phototransduction kinetics an
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order of magnitude slower than cones [2]. Therefore, cones enable the daytime vision of

quickly or slowly changing visual scenes, and rods provide night vision but with lower tempo-

ral resolution. The peak spectral absorbance for each opsin class defines what is termed the vis-

ible spectrum because humans vision occurs in the range of 400–700 nm. Humans do not

perceive scenes outside the visible spectrum. In this work, we sought to evaluate the ability of

deep learning (DL) [3] coupled with infrared spectroscopy to render visible spectrum images

using infrared light illumination and no visible spectrum light. Night vision systems seek to

illuminate the environment with infrared (IR) light that is detected and visualized by conven-

tional camera sensors and render a scene in the visible spectrum on a digital display. Histori-

cally, night vision systems render scenes as a monochromatic green display. Newer night

vision systems use ultrasensitive cameras to detect and amplify visible light. Computer vision

tasks with low illuminance imaging have employed image enhancement and deep learning to

aid in object detection and characterization from IR spectrum, but not with accurate interpre-

tation of the same scene in the visible spectrum [4]. Conventional cameras acquire blue (B),

green (G), or red (R) pixels of data to produce a color image perceptible to the human eye

(Fig 1 top row). We investigated if a combination of infrared illuminants in the red and near-

infrared (NIR) spectrum could be processed using deep learning to recompose an image with

the same appearance as if it were visualized with visible spectrum light (Fig 1 bottom row). We

established a controlled visual context with limited pigments to test our hypothesis that DL

can render human-visible scenes using NIR illumination that is, otherwise, invisible to the

human eye.

Modern color printers produce color images using 4 ink colors: cyan (C), magenta (M), yel-

low (Y), and black (K). Under broad visible light and human perception, each of these ink col-

ors appears cyan, magenta, yellow or black based on the incident light that they reflect.

Spectral reflectance is the percent of light energy that a compound reflects for each specific

wavelength of illuminating light. Ink dye’s spectral reflectance is determined by systematically

illuminating the dyes across a range of the electromagnetic spectrum and measuring the

Fig 1. Image processing goal. Predict visible spectrum images using infrared illumination alone and deep learning to process NIR data.

https://doi.org/10.1371/journal.pone.0265185.g001
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reflected light. Therefore, printed images from a CMYK printer provide a simplified context to

test our hypothesis that NIR illuminated images can be processed to render visible spectrum

images that match the images illuminated with visible light.

Related works

The NIR image colorization problem shares some similarities with the general image coloriza-

tion and color transfer problems [5–7] with several significant distinctions. In grayscale-to-

RGB reconstruction, luminance, i.e. the intensity of light emitted from a surface, can be

directly obtained from the grayscale images so only the chrominance needs to be estimated.

This greatly simplifies the reconstruction task. Moreover, in color transfer problems, the input

and output are both three-channel RGB images, whereas NIR images have only a single chan-

nel making the color reconstruction more challenging. Early image colorization techniques

required human input to correctly identify similar neighborhood intensity values and assign

them a similar color, i.e Scribble [8] or Similar images [9, 10]. Other approaches [11–13] auto-

matically matched patches of the input image to patches of reference image via feature extrac-

tion and matching. Despite being fully automatic, these methods require a fitting reference

image database and retrieval mechanism to be implemented. More recent approaches [14, 15]

leveraged deep neural networks to propose a single framework where image colorization can

be learned end-to-end.

Other groups have explored colorizing IR images by several approaches. Toet employed a

look-up-table approach where first order statistics were used to develop a color transfer

method to evaluate luminance distributions in monochromatic images (such as from Infrared

cameras) and assign chromaticity values to each pixel [16, 17]. Liu et al. applied two stages of

DL to first apply textural details to a thermal image acquired using a single IR camera. They

subsequently added color information to the texturalized thermal image [18]. Zheng et al.

studied qualitative and quantitative metrics for night vision colorization and identified compu-

tationally rapid colorization by a combination of histogram matching and statistical matching

between source IR image and a target color image [19]. They identified trade-offs in contrast

and saturation at the expense of computational time. Suarez et al. employed Deep Convolu-

tional Generative Adversarial Network to colorize single-channel near IR images from city

scenery and succeeded in colorization at the expense of image clarity [20]. Mehri et al. pro-

posed a Cycle-Consistent adversarial network to predict color channels from a single NIR

input on unpaired dataset [21]. Each of these infrared to color image techniques rely on single

IR image input for images acquired in the real world. Brown and Susstrunk demonstrated

improved scene category recognition when color images of scenes were supplemented by a

NIR image channel [22]. We, therefore, sought to systematically study infrared colorization

for multiple infrared wavelengths in a controlled imaging context.

Deep neural networks [3], particularly Convolutional Neural Networks (CNNs), have

achieved state-of-the-art performances in a variety of computer vision problems. CNNs, origi-

nally inspired by the seminal work of Hubel and Wiesel [23], were developed by Fukushima

[24], using however the wrong learning algorithm [25]. They were perfected in the 1980s-

1990s using the backpropagation learning algorithm [26, 27] and are used today across most

computer vision tasks [28, 29], including biomedical imaging tasks, with thousands of refer-

ences in the literature (e.g. [30–34] from our group alone). Recognition CNNs convolve the

input image through a hierarchical series of adaptive filters that are learned from the data and

produce increasingly more abstract representations of the data supporting translation invari-

ant recognition. Generative CNNs operate in the reverse direction and both recognition and

generation networks can be combined in various architectures. In particular, in this work we
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use architectures inspired by the U-Net architecture [35] in which a contracting path is com-

bined with an expansive path (yielding a “U” shape architecture). The U-Net architecture has

been used effectively in several tasks, from image segmentation to photoacoustic imaging

reconstruction [35–37].

Materials and methods

Multispectral image acquisition

To learn the spectral reflectance for cyan, magenta and yellow ink, we printed a rainboy color

pallete using a using a Canon office printer with CMYK ink. Examples of the color palette

under multispectral illumination (center wavelengths: 397, 408, 427, 447, 466, 480, 495, 507,

519, 529, 530, 562, 594, 604, 618, 630, 636, 660, 665, 692, 697, 718, 734, 748, 760, 777, 807, 854,

910, 950, 971 nm) is shown in Fig 2. Photographs of each printed image under multispectral

illumination were acquired using a monochromatic camera (Zeiss Axiocam 305, CarlZeiss)

mounted on a dissection microscope focused on the image. To account for diminishing cam-

era quantum efficiency in the red and infrared spectrum, each image channel was normalized

to the white background of the paper upon which the images were printed. For both panels in

Fig 2, the right inset is an image combined by assigning the 447 nm, 529 nm, and 604 nm

images to the red, green, and blue channels respectively. Channel assignment and merging

were performed in imageJ [38]. Spectral reflectance was determined for each C, M, Y printer

dye using a normalized plot profile function (imageJ) for each of the 31 LED illuminants.

We printed a library of over 200 human faces available from the publicly available “Labeled

Faces in the Wild” repository (http://vis-www.cs.umass.edu/lfw/) [39]. The images were

Fig 2. Sample images from the human portraits library. (top row) Spectral reflectance across 32 channels of printed a Windows color palette with

color photo and merged channels 447, 529, 604. (bottom row) Spectral reflectance for 6 selected illuminant wavelengths and the visible spectrum color a

photo created by merging channels 447, 529, 604.

https://doi.org/10.1371/journal.pone.0265185.g002
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printed using a using a Canon office printer with CMYK ink. We acquired photographs of

each image under different wavelengths of illumination to then be used to train machine learn-

ing models to predict RGB color images from individual or combinations of single wavelength

illuminated images. Each image in the dataset was illuminated with diffuse uniform illumina-

tion by 6 different LED wavelengths spanning the visible and near-infrared spectrum (center

wavelengths: 447, 529, 604, 718, 777, 807 nm). The datasets are available for downloading

(https://dx.doi.org/10.6084/m9.figshare.19291166). The individual pictured in manuscript

Figs 2, 3 and 9 provided written informed consent (as outlined in PLOS consent form) to pub-

lish their image alongside the manuscript.

Baseline and network architectures

To predict RGB color images from individual or combinations of wavelength illuminations,

we evaluated the performance of the following architectures: a baseline linear regression, a

U-Net inspired CNN (UNet), and a U-Net augmented with adversarial loss (UNet-GAN).

Linear regression baseline. We implemented a simple linear regression model as a base-

line to compare the results of the deep neural architectures and assess their performances. As

input to the linear model, we evaluated patches of several sizes and predicted target patches

separately for each color channel (R, G, and B).

Conventional U-Net. A traditional U-Net is a fully convolutional network that consists of

a down-sampling path (encoder) that helps to capture the context and an up-sampling path

(decoder) that is responsible for precise localization. The down-sampling path (left side of

Fig 3) repeatedly applies a series of operations which consists of three 3 × 3 convolutions fol-

lowed by rectified linear unit (ReLU) activation and a 2 × 2 max pooling operation. At the end

of one series of operations, the number of feature maps is doubled and the size of feature maps

Fig 3. U-Net architecture for infrared colorization. The number of channels is reported on the top of the feature maps. The arrows represent different

types of operations.

https://doi.org/10.1371/journal.pone.0265185.g003
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is halved. The up-sampling path (right side of Fig 3) repeatedly performs another series of

operations consisting of an up-convolution operation of the feature maps by a 2 × 2 filter, a

concatenation with the corresponding feature map from the down-sampling path, and two

3 × 3 convolutions, each followed by a ReLU activation. In the output layer, a 3 × 3 convolu-

tion is performed with a logistic activation function to produce the output. Padding is used to

ensure that the size of output matches the size of the input.

VGG network as a U-Net encoder (UNet). VGG neural networks [40], named after the

Visual Geometry Group that first developed and trained them, were initially introduced to

investigate the effect of the convolutional network depth on its accuracy in large-scale image

recognition settings. There are several variants of VGG networks like VGG11, VGG16, and

VGG19, consisting of 11, 16, and 19 layers of depth, respectively. VGG networks process input

images through a stack of convolutional layers with a fixed filter size of 3 × 3 and a stride of 1.

Convolutional layers are alternated with max-pooling filters to down-sample the input repre-

sentation. In [41], using VGG11 with weights pre-trained on ImageNet as U-Net encoder [42]

was reported to improve the performance in binary segmentation. In this study, we tried a

U-Net architecture with a VGG16 encoder [40] using both randomly initialized weights and

weights pre-trained on ImageNet. We refer to this architecture simply as U-Net.

U-Net with adversarial objective (U-Net-GAN). To enhance the performance of the

U-Net architecture, we also explored a Conditional Generative Adversarial Network approach

(CGAN). A conventional CGAN consists of two main components: a generator and a discrim-

inator. The task of the generator is to produce an image indistinguishable from a real image

and “fool” the discriminator. The task of the discriminator is to distinguish between real and

fake images produced by the generator, given the reference input images. In this work, we

examined the performances of two U-Net-based architectures: 1) a stand-alone U-Net imple-

mentation as described in the previous section and 2) a CGAN architecture with a U-Net gen-

erator along with an adversarial discriminator. For the second approach, we used a PatchGAN

discriminator as described in [7], which learns to determine whether an image is fake or real

by looking at local patches of 70 × 70 pixels, rather than the entire image. This is advantageous

because a smaller PatchGAN has fewer parameters, runs faster, and can be applied on arbi-

trarily large images. We refer to this latter architecture (U-Net generator and PatchGAN dis-

criminator) as U-Net-GAN.

Experimental settings and training

For all the experiments, following standard machine learning practice, we divided the dataset

into 3 parts and reserved 140 images for training, 40 for validation and 20 for testing. To com-

pare performances between different models, we evaluated several common metrics for image

reconstruction including Mean Square Error (MSE), Structural Similarity Index Measure

(SSIM), Peak Signal-to-Noise Ratio (PSNR), Angular Error (AE), DeltaE and Frechet Incep-

tion Distance (FID). FID is a metric that determines how distant real and generated images are

in terms of feature vectors calculated using the Inception v3 classification model [43]. Lower

FID scores usually indicate higher image quality. FID has been employed in many image gen-

eration tasks including NIR colorization study [21]. However, Mehri et al. used a single-chan-

nel NIR input whereas we feed three stacked images of different NIR wavelengths. Therefore,

we cannot entirely compare FID values between our studies as the settings are different. We

report FID in the main manuscript and comprehensively present additional metrics in the

Supplementary section.

Linear regression baseline. For the linear regression model, the input images were

divided into patches. We explored several patch sizes of 6 × 6, 12 × 12, 24 × 24 and 64 × 64
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pixels. Every patch from the selected input infrared images was used to predict the correspond-

ing R, G, and B patch of the target image. A different linear model was used for each color

channel and the results for one image were computed as the average over the three channels.

U-Net and U-Net-GAN. To train the proposed deep architectures, we divided the input

images into random patches of size 256 × 256. Random cropping of the patches was used as a

data augmentation technique. Both inputs and outputs were normalized to [−1, 1]. The deep

architectures were trained for 100000 iterations with a learning rate starting at 1 × 10−4 and

cosine learning decay. Given the fully convolutional nature of the proposed architectures, the

entire images of size 2048 × 2048 were fed for prediction at inference time. As a loss function

for neural networks, i.e. U-Net and U-Net-GAN, we used mean absolute error (MAE).

Human grader evaluation of model performance. We performed a human evaluation of

model performance. We randomly sampled 10 images (ground truth and the 3 prediction out-

put by UNet-GAN, UNet and Linear regression). We provided a blinded multiple choice test

to 5 graders to select which of the 3 outputs subjectively appeared most similar to the ground

truth image. We subsequently randomly selected 10 patches (portion of images) and asked

graders to compare similarity of predicted patches from UNet-GAN and UNet with the corre-

sponding ground truth patch.

Results

In this section, we first describe our spectral reflectance findings for CMY printed inks imaged

under different illuminant wavelengths and then report and discuss the performances for the

different architectures to accurately predict RGB images from input images acquired by single

and combinations of different wavelength illumination.

CMY spectral reflectance

To identify the range of wavelength with the most distinct reflectance profile, we conducted

CMY spectral reflectance analysis. Inluminant wavelengths with spectral reflectances that are

unique for each ink color were assumed to contain the most valuable information for color

reconstruction.

Spectral reflectance of cyan, magenta, and yellow inks was determined by multispectral illu-

mination and plotted according to the detected grayscale value (Fig 4). The top inset demon-

strates the grayscale reflectance values for each ink with ascending wavelength of illumination

(total of 31 wavelengths of illumination). The plot in Fig 4 is the normalized quantified reflec-

tance across visible and NIR spectra. Cyan and magenta inks have a peak reflectance with the

495 and 660 nm LED illuminants respectively. Yellow ink had a broader reflectance with peak

reflectance for 604 and 697 nm illuminants. Cyan ink demonstrated an isolated reflectance

maximum in the NIR spectrum around 854 nm, while yellow and magenta inks demonstrated

broad reflectance in the NIR spectrum. Spectral reflectance profiles were distinct for each ink

color, but cyan and magenta demonstrated overlapping reflectance profiles above 854 nm.

Spectral reflectance demonstrated no overlap for 718, 777 and 807nm (black box outlines in

Fig 4).

Infrared to RGB reconstruction

RGB reconstruction. Since transfer learning has been widely used to improve deep

model performances and reduce the risk of overfitting, we explored four slight variations of

the main learning architectures. That is, using the three selected wavelengths (718, 777, and

807), we evaluated a UNet-GAN and a UNet architecture, both with or without ImageNet pre-

trained weights. Quantitative results are shown in Fig 5, where the x-axis denotes the number
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of iterations and the y-axis the FID scores. From Fig 5, it is observed that the adverserial objec-

tive enables predictions to reach lower FID scores. Furthermore, the use of ImageNet pretrain-

ing (Fig 5 does not boost the performances, leading in some cases to higher FID scores. A

possible explanation could be the difference in the domain of the ImageNet dataset, which

does not contain a lot of human images, while human portraits are used in the current study.

The experimentation that followed did not include ImageNet pretrained weights. To further

qualitatively assess the difference in performances and to validate the use of the FID as a metric

reflective of human perception, Fig 6 shows the reconstruction of a ground truth RGB patch

(right) by UNet (left) and UNet-GAN (middle). From visual inspection of Fig 6, it is evident

that adopting adverserial loss results in significantly sharper reconstructions which are much

closer to the ground truth both in terms of colors and patterns.

To determine if three input wavelengths (718, 777, and 807) provided benefit over single or

doublet wavelength inputs, we evaluated the UNet-GAN architecture using all the possible

combinations of two wavelengths, three wavelengths, and single infrared illuminations as

Fig 4. Spectral reflection analysis of cyan, magenta, and yellow inks illuminated with 31 LED channels spanning visible to near-infrared

illumination. Images of each dye were captured by a monochromatic camera and grayscale reflectance intensity sequentially arrayed in the top inset.

https://doi.org/10.1371/journal.pone.0265185.g004
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inputs. The quantitative results of these experiments are shown in Fig 7. From Fig 7, it appears

that using single infrared illuminations generally leads to poor reconstructions, while combin-

ing two infrared inputs, like 718 and 777 or 718 and 807, is useful to improve performances.

The use of the three selected wavelengths results in the lowest FID score, which is reached at

80000 iterations. For further evaluations we used the models at 80000 iterations.

To compare the deep architectures with a baseline, we assessed the performances of UNet,

UNet-GAN at 80000th iterations and a linear regression model on the same test set composed

of 20 images. The quantitative results are shown in Fig 8. The simple linear regression baseline

failed to accurately reconstruct the ground truth RGB images and results in the highest FID

scores. Furthermore, as qualitatively presented in Fig 6, the use of adversarial loss allows for

sharper reconstructions and results in a much lower FID score (140.8 vs 87.2). Qualitative

Fig 5. Reconstruction performances for the UNet-based architectures. FID scores and number of iterations for the UNet-based architectures.

https://doi.org/10.1371/journal.pone.0265185.g005

Fig 6. Visualization of the reconstructed RGB patches. (left) Patch generated by the UNet architecture. (middle) Patch generated by the UNet

architecture with adverserial loss. (right) Ground truth RGB patch.

https://doi.org/10.1371/journal.pone.0265185.g006
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comparison of RGB reconstructions are presented in Fig 9. Simple linear regression model

produces images lacking color information seen in ground truth images and in the images pro-

duced by UNet and UNet-GAN architectures. While the UNet and UNet-GAN reconstruc-

tions appear similar upon gross inspection, the patch analysis shown in Fig 6 demonstrates the

qualitatively closer match between the adversarial network and ground truth than the non-

adversarial network and ground truth. The qualitative observations are mirrored by the lower

FID score of 87.2 of the adversarial network (Fig 8).

Finally, human subject comparison of model outputs with ground truth inputs was used to

determine perceived model performance. In all cases, the graders determined that linear

regression had worse performance than UNet-GAN or UNet. In 52% of cases, human graders

determined that UNet outperformed UNet-GAN. However, when zooming into predicted

images at the patch level, UNet-GAN was perceived to out-perform UNet 100% of the time.

UNet patch predictions, while similar in color content, were more blurry than UNet-GAN

patches.

Discussion and conclusion

We have investigated the reconstruction of RGB images, given their representation under

infrared illuminations, using deep neural networks. We have evaluated two slight variations of

deep architectures along with a linear regression baseline model and different weights initiali-

zation techniques using an in-house generated dataset. The deep U-Net-based architectures

proved able to generate visually consistent RGB reconstructions using only three input infra-

red images. These reconstructions were significantly better than the ones produced by the lin-

ear model, both quantitatively and qualitatively through visual inspection. The use of

adversarial training was useful to produce significant improvements, often resulting in lower

FID scores. Human subject evaluation consistently determined that UNet and UNet-GAN

Fig 7. Reconstruction performances with several input illuminations. FID scores and number of iterations for the UNet-based architectures using

different combinations of input wavelengths.

https://doi.org/10.1371/journal.pone.0265185.g007
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Fig 8. Models comparison with a regression baseline. FID scores for the baseline linear regression (FID score: 180.5), UNet (FID score: 140.8) and

UNet-GAN (FID score: 87.2) on the same test set.

https://doi.org/10.1371/journal.pone.0265185.g008

Fig 9. Visualization of the reconstructed RGB images by the deep architectures and baseline regression model. (left) Visible spectrum ground truth

image composed of red, green and blue input images. (right) Predicted reconstructions for UNet-GAN, UNet and linear regression using 3 infrared

input images.

https://doi.org/10.1371/journal.pone.0265185.g009
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models outperformed linear regression, and UNet moderately outperformed UNet-GAN at

colorizing infrared images. This demonstrates the limitations of objective computational met-

rics, like FID, to fully describe human perception.

This work suggests that predicting high-resolution images is more dependent upon training

context than on spectroscopic signatures for each ink. In this work, four compounds (C, M, Y,

K inks) were characterized spectroscopically using a monochromatic camera sensor in the

contexts of rainbow input images and naturally occurring images. One might hypothesize that

larger separation of in spectral reflectance curves for each ink would aid CNNs to predict a

color image with lower error because curve overlap could introduce represent spectroscopi-

cally indistinguishable information. For example, spectral reflectance curves for CMY inks at

718 and 777 nm illumination demonstrate significantly different curve separations (Fig 4). For

718 nm illumination, the reflectance of cyan, magenta, and yellow are 0.1, 0.7, and 0.9 respec-

tively. For the 777 nm illuminant, the spectral reflectances are much closer in value with cyan,

magenta, and yellow inks having normalized reflectances of 0.5, 0.7, and 0.9 respectively.

Another important aspect we aimed to address was the speed of the predictions. To enable

real-time color vision in complete darkness for video data, the inference time should be small

enough so that a sufficient number of frames can be processed each second. The proposed

U-Net architectures are capable of producing three images per second, without using any par-

ticular accelerations. We tried several generator backbones and reported the inference times in

the Supplementary. This provides a starting point for further speed improvements that could

use, for instance, smaller architectures, or multi-threading, or better hardware.

This proof-of-principle study using printed images with a limited optical pigment context

supports the notion that the deep learning approach could be refined and deployed in more

practical scenarios. These scenarios include vision applications where little visible light is pres-

ent either by necessity or by goal. Night vision, for example, has applications in security, mili-

tary operations, and animal observation. Similarly, handling, processing, and studying samples

sensitive to visible light may require a technology that uses no visible light. Studying the light-

sensitive retinal tissue, for example, may require processing the sample in darkness to avoid

altering its biochemistry and function [44, 45]. Likewise, performing eye surgery benefits from

low light exposure to avoid retinal damage [46]. Similarly, handling restoration of light-sensi-

tive artifacts may benefit from minimizing exposure to visible light.

In short, this study suggests that CNNs are capable of producing color reconstructions

starting from infrared-illuminated images, taken at different infrared wavelengths invisible to

humans. Thus, it supports the impetus to develop infrared visualization systems to aid in a

variety of applications where visible light is absent or not suitable.
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