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Abstract

To elucidate the molecular mechanisms underlying genetic variants identified from genome-wide 

association studies (GWAS) for a variety of phenotypic traits encompassing binary, continuous, 

count, and survival outcomes, we propose a novel and flexible method to test for mediation 

that can simultaneously accommodate multiple genetic variants and different types of outcome 

variables. Specifically, we employ the Intersection-union test approach combined with likelihood 

ratio test to detect mediation effect of multiple genetic variants via some mediator (for 

example, the expression of a neighboring gene) on outcome. We fit high-dimensional generalized 

linear mixed models under the mediation framework, separately under the null and alternative 

hypothesis. We leverage Laplace approximation to compute the marginal likelihood of outcome 

and use coordinate descent algorithm to estimate corresponding parameters. Our extensive 

simulations demonstrate the validity of our proposed methods and substantial, up to 97%, power 

gains over alternative methods. Applications to real data for the study of Chlamydia trachomatis 
infection further showcase advantages of our method. We believe our proposed methods will be 

of value and general interest in this post-GWAS era to disentangle the potential causal mechanism 

from DNA to phenotype for new drug discovery and personalized medicine.

1 Introduction

Dissection of mediation pathways underlying genetic association will enhance 

understanding of disease mechanisms and biomarker development. An example is 

Chlamydia trachomatis infection. Chlamydia is the leading bacterial sexually transmitted 

infection in the United States (Centers for Disease Control and Prevention, 2019). Infection 
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is often asymptomatic and after ascending to the upper genital tract may cause severe 

reproductive morbidities in women. Repeated infection leads to worse disease. Host genetics 

shapes susceptibility to chlamydia disease and/or reinfection (Bailey et al., 2009; Taylor et 

al., 2017; Zheng et al., 2018). DNA biomarkers for susceptibility to ascension or risk of 

reinfection are critically needed for targeted screening for women at high risk of disease and 

vaccine development. Genome-wide association studies (GWAS) provide candidate loci, but 

lack mechanistic interpretations. Although expression quantitative trait loci (eQTL) mapping 

can provide mechanistic hypotheses, GWAS and eQTL both only analyze two sources 

of data. There is a significant unmet need for simultaneously modeling all three sources 

of data (namely, genetic variants, gene expression and final outcome) by directly testing 

the mediation effects of multiple correlated single nucleotide polymorphisms (SNPs) via 

the expression of some gene (e.g., eGene associated with the eQTL SNP) on chlamydia 

ascension (binary outcome) and reinfection (time-to-event outcome).

Mediation analysis was firstly proposed by Baron and Kenny to study the association 

between an independent variable and an outcome by adding an intermediate variable, 

which is called the mediator (Baron and Kenny, 1986). In genetics and genomics studies, 

researchers are interested in testing mediation effects of the genetic variant(s), on the 

outcome through a certain mediator (e.g., the expression level of a neighboring gene). Non-

Gaussian outcomes, such as binary, count and time-to-event outcomes (e.g. disease status, 

time until death), are commonly present in mediation analyses but have been under-studied. 

Huang et al developed mixed model based methods that can handle binary and time-to-event 

outcomes, but assume a priori that the genetic variants under testing are eQTLs (Huang et 

al., 2015; Huang, Cai and Kim, 2016).

We have previously proposed a method, SMUT, to assess mediation effect of high-

dimensional genetic variants on any continuous outcome (Zhong et al., 2019). To the best of 

our knowledge, none of the existing methods can jointly test mediation effects of multiple 

correlated SNPs (not necessarily all eQTLs) on a non-Gaussian outcome. Here, we propose 

a generalized multi-SNP mediation intersection-union test to evaluate mediation effects of 

multiple correlated SNPs on a non-Gaussian outcome without prior knowledge of eQTLs. 

Both SMUT and methods proposed in this work are extensions of Baron and Kenny’s 

framework and leverage intersection-union test (IUT) (Berger and Hsu, 1996) to decompose 

mediation into two separate regression models. While our earlier SMUT method handles 

only Gaussian outcome, methods proposed here allow non-Gaussian outcomes by adopting 

the generalized linear mixed model (GLMM) (McCulloch, Searle and Neuhaus, 2008) or 

the mixed effects Cox proportional hazards (PH) model (Vaida and Xu, 2000; Pankratz, De 

Andrade and Therneau, 2005). More details germane to the differences between SMUT and 

methods proposed here are in Supporting Information Section 1. For presentation brevity, we 

hereafter refer to our method for a binary or count outcome as SMUT_GLM; while that for a 

time-to-event outcome as SMUT_PH.

The rest of this article is organized as follows. In Section 2, we present details of our 

proposed methods SMUT_GLM and SMUT_PH, followed by simulation studies and real 

data application in Section 3 and Section 4, respectively. Finally, Section 5 concludes the 

article with some discussions.
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2 Methods

2.1 Notation

Without loss of generality, we assume that we have four types of data, namely, genotypes 

(as the potential causal variables), gene expression measurements (as the mediator, which 

can be other types of molecular measures such as metabolite levels or protein abundances), 

phenotypic trait (as the final outcome) and other covariates (e.g. age, gender). Let G be the 

n by q genotype matrix, where n is the sample size, q is the number of SNPs and Gij is 

the number of copies of the minor allele for the ith individual at the jth SNP. Let X be the 

n by p covariate matrix and Xij denote the jth covariate variable for the ith individual. Let 

M = (M1, M2,…,Mn)T and Y = (Y1, Y2,…,Yn)T where Mi and Yi denote the mediator and 

the outcome for the ith individual, respectively. If Yi is a binary or count outcome, Yi is 

related to the model in (2); if Yi is a time-to-event outcome, Mi is related to the model in 

(3) and Mi = (Zi, δi) where Zi = min(Ti,Ci) is the observation time, Ti is the failure time 

and Ci is the censoring time, and δi = I(Ti≤Ci) is the failure indicator; δi = 1 indicates that 

the failure is observed and δi = 0 indicates that the response is censored. We apologize for 

abusing notations. Basically, we want to use the same notation Yi to denote different types of 

outcomes.

2.2 SMUT_GLM and SMUT_PH model

SMUT_GLM and SMUT_PH model the effects of SNPs on the outcome mediated by the 

expression level of a single gene via two models, namely a mediator model and an outcome 

model. We assume the expression level is continuous and consider a linear model for the 

mediator model (1). As for the outcome model, we fit GLMM if the outcome conditional on 

SNPs’ effects follows an exponential family distribution (2); we fit mixed effects Cox PH 

model if the outcome is a time-to-event variable (3).

Mi = α1 + ∑j = 1
p XijljM + ∑j = 1

q Gijβj + ϵi Mediator model (1)

g E Y i ∣ γ = α2 + Miθ + ∑j = 1
p Xijlj + ∑j = 1

q Gijγj Exponential Family
Outcome model

(2)

λ ti = λ0 ti exp Miθ + ∑j = 1
p Xijtj + ∑j = 1

q Gijγj Survival Outcome model (3)

Where α1, α2 are fixed intercepts; fixed effects ιM = ι1M, ι2M, …, ιpM
T

 and ι = (ι1, ι2,…,ιp)T 

are vectors of covariates’ effects on the mediator and outcome, respectively; random effects 

β = (β1, β2,…,βq)T is a vector of SNPs’ effects on the mediator; fixed effect θ is the 

mediator’s effect on the outcome. The random effects γ = (γ1, γ2,…,γq)T is a vector of 

SNPs’ effects on the outcome; error terms ϵ1, ϵ2, …, ϵn i . i . d . N 0, σ2 ; g is the link function; 

λ(ti) is the hazard function; λ0(ti) is an unspecified baseline hazard function.

We have showed that the hypotheses H0:βθ = 0 versus H1:βθ = 0 are valid for testing 

mediation effect in Supporting Information Section 8, where βθ ≠ 0 implies that SNPs exert 
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mediation effects on the outcome. Following our previous work (Zhong et al., 2019), we 

employ IUT to decompose the hypothesis testing H0:βθ = 0 versus H1:βθ ≠ 0 into two sub-

hypotheses H0
β:β = 0 versus H1

β:β ≠ 0 and H0
θ:θ = 0 versus H1

θ:θ ≠ 0, such that H0 = H0
θ ∪ H0

β

and H1 = H1
θ ∩ H1

β. Suppose the p values for testing β and θ being zero are p1 and p2, 

respectively. Then the p value for testing βθ being zero, using IUT, is the maximum of p1 

and p2. In the following sections, we provide details regarding how to separately test β and θ 
to obtain p1 and p2

2.3 Testing β in the mediator model and θ in the outcome model

As in (Zhong et al., 2019), we adopt the widely used SKAT method (Wu et al., 2011) to test 

β in the mediator model to accommodate a potentially large number of correlated SNPs.

Our strategy for testing θ in the outcome model consists of four steps: (1) formulation of 

the likelihood function based on the nature of the outcome random variable Y, and (2) 

Laplace approximation of the likelihood function, and (3) application of the coordinate 

descent algorithm (Fu, 1998; Daubechies, Defrise and De Mol, 2004) to estimate parameters 

by maximizing the approximated likelihood function, and (4) calculation of the likelihood 

ratio statistic. These four steps allow us to test the mediator effect θ in the outcome model.

2.3.1 Likelihood function for the outcome model—To reduce the dimensionality of 

parameters in the outcome model, we adopted a linear mixed model for continuous outcome 

in our previous work (Zhong et al., 2019). We assume Y1,Y2,…,Yn are independent and 

identically distributed. When the outcome Yi (i = 1,2,…,n) conditional on γ follows an 

exponential family distribution, we adopt the GLMM in equation (2).

γj i . i . d . N 0, σγ2

g μi = ηi = α2 + Miθ + Σj = 1
p Xijtj + Σj = 1

q Gijγj
E Y i ∣ γ = μi

L(y ∣ γ) = Πi = 1
n exp yiτi − b τi

a(ϕ) + C yi, ϕ

(4)

where τi is the canonical parameter; ϕ is the dispersion parameter; (y|γ) is the likelihood 

function of the outcome Y conditional on γ. When the outcome Yi (i = 1,2,…,n) is a 

time-to-event variable, we adopt the mixed effects Cox PH model in equation (3).

γj i . i . d . N 0, σγ2

ηi = Miθ + Σj = 1
p Xijιj + Σj = 1

q Gijγj
λ ti = λ0 ti exp ηi

PL = Πi = 1
n exp ηi

Σk ∈ Riexp ηk

δi

(5)

where Ri = {k:Zk ≥ Zi} is the risk set and PL is the partial likelihood function conditional on 

γ. For the GLMM in (4), ℓ(y|γ) denotes log  L(y|γ) and L(y) denotes the likelihood function 
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of the outcome unconditional on γ; for the mixed effects Cox PH model in (5), ℓ (y|γ) 

denotes log  PL and L(y) denotes the partial likelihood of the outcome unconditional on γ. 

We again apologize for abusing notations. Our basic rationale is to employ the same notation 

ℓ(y|γ) and L(y) to denote different log-likelihood and likelihood functions, respectively, 

for different types of outcomes. Let fγ(γ) be the probability density function of γ, and 

fγ γ = 2πσγ2
− q

2exp − 1
2σγ2

γTγ . Then we have the following.

L y = ∫
Rqexp ℓ y γ fγ γ dγ = 2πσγ2

− q
2∫

Rqexp ℎ γ dγ (6)

where ℎ γ = ℓ y γ − 1
2σγ2

γTγ. Technical details are in Supporting Information Section 2.1.

2.3.2 Laplace approximation—Laplace’s method is widely adopted to approximate 

the likelihood function (Breslow and Clayton, 1993; Raudenbush, Yang and Yosef, 2000; 

Pankratz et al., 2005). The integral in equation (6) can be approximated via Laplace’s 

method by taking Taylor expansion to the second order of h(γ) around its maximum point 

γ. After inserting the Taylor expansion into the integral, and taking logarithm, we have the 

approximated log-likelihood f.

log L y ≈ f = − q
2log σγ2 + ℎ γ − 1

2log −ℎ′′ γ (7)

For the GLMM in (4), we have

ℎ′′ γ = ∂2ℎ
∂γ∂γT = − GTW G + σγ−2Iq (8)

where Iq is a q by q identity matrix, W = diag(w1,w2,…,wn, and wi is recognizable as GLM 

(generalized linear model) iterative weight. For the mixed effects Cox PH model in (5), we 

have

ℎ′′ γ = ∂2ℎ
∂γ∂γT = − U + σγ−2Iq (9)

where U = uj1j2 , uj1j2 = − ∂2 logPL
∂γj1∂γj2

. More details of Laplace approximation are in 

Supporting Information Section 2.2.

2.3.3 Coordinate descent algorithm—We apply the coordinate descent algorithm 

to maximize the approximated log-likelihood in equation (9). Note that γ in equation 

(9) is a function of other parameters ξ = α2, σγ2, ϕ, θ, ι1, ι2, …, ιp . Instead of taking implicit 

differentiation of γ (Raudenbush et al., 2000), we use the approximation strategy proposed 

in (Schelldorfer, Meier and Bühlmann, 2014), which regards γ as fixed when updating ξ. 

This strategy is computationally convenient and efficient, at little cost of reduced accuracy. 
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In addition, we take further approximation when taking derivatives of the approximated 

log-likelihood function f. Specifically, for the GLMM in (4), we assume W in equation (10) 

varies slowly as a function of (μ1, μ2,…μn)T (Breslow and Clayton, 1993). For the mixed 

effects Cox PH model in (5), we similarly assume that U in equation (11) varies slowly as 

a function of (η1, η2,…ηn)T. Under the assumption, the term − 1
2 log −ℎ′′ γ  in equation (9) 

is ignored when taking derivatives of the approximated log-likelihood function over (α2, ϕ, 

θ, ι1, ι2,…,ιp). Details of the coordinate descent algorithm are in Supporting Information 

Section 2.3. Finally, we employ the Newton-Raphson algorithm to sequentially update each 

parameter.

2.3.4 Likelihood ratio test—We obtain approximated likelihood under the null and 

the alternative hypothesis separately, denoted by L0 and L2 respectively. For GLMM, the 

likelihood ratio statistic 2(log L1 − logL0) asymptotically follows a chi-square distribution 

with one degree of freedom, and similarly for the partial likelihood ratio statistics for the 

survival outcome.

3 Simulation studies

3.1 Simulation settings

To evaluate the performance of SMUT_GLM and SMUT_PH in comparison with alternative 

methods, we conducted extensive simulations to investigate power and type-I error. 

Following our previous work (Zhong et al., 2019), we simulated a dataset of 10,000 

pseudo-individuals measured at 2,891 SNPs with minor allele frequency (MAF) ≥ 1% 

in a 1Mb region using the COSI coalescent model (Schaffner et al., 2005) to generate 

realistic genetic data. The 10,000 pseudo-individuals were constructed by randomly pairing 

up 20,000 simulated chromosomes without replacement. To evaluate power and type-I error, 

we generated 500 datasets with 1,000 samples each by sampling without replacement from 

the entire pool of 10,000 samples simulated above. We randomly selected a set of causal 

SNPs, which is shared across the 500 simulated datasets, from these 2,891 SNPs. We 

then classified them into three categories: shared SNPs (sSNPs), mediator specific SNPs 

(mSNPs) and outcome specific SNPs (oSNPs). The sSNPs influence both the mediator and 

the outcome, while the mSNPs and oSNPs only contribute to the mediator and outcome, 

respectively.

We considered two scenarios in terms of causal SNP density: sparse and dense (Table 

1). For binary or count outcome, sample size is 1,000 and there are 10 and 500 causal 

SNPs for sparse and dense scenarios, respectively. For time-to-event outcome, sample size 

is 200 and there are 10 and 150 causal SNPs for sparse and dense scenarios, respectively. 

When we fit the model, both the causal and non-causal SNPs (Table 1) are included in the 

model. Thus, the distribution of coefficients of genetic variants is effectively mis-specified 

for all the simulations. Covariates matrix X consists of a continuous variable generated 

from N(0,1) and a binary variable generated from Bernoulli(0.5). We generated the mediator 

via Mi = α1 + Gi
sm Tβ + Xi

T ιM + ϵi, where Gi
sm denotes the vector of genotype data for 

the ith individual from sSNPs and mSNPs, Xi denotes the vector of the covariates for 
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the ith individual, α1 = 1, ιM = (0.5, − 0.5)Y, β ~ cβN(0, Iq) and cβ is a scalar to 

scale the SNPs’ effects; ϵi ~ N(0,1). We generated the binary or count outcome via 

g E Y i γ = α2 + Miθ + Gi
so Tγ + Xi

T ι, where Gi
so denotes the vector of genotype data for 

the ith individual from sSNPs and oSNPs, α2 = 0,, ι = 0.5, − 0.5)T, γ ~ cγN (0, Iq) and cγ 
= 0.2. The link function g was specific to the type of the outcome (Supporting Information 

Section 2.1). We generated the time-to-event outcome based on Weibull baseline hazard via 

ti = − log v

λexp Miθ + Giso Tγ + Xi
Tι

1
ρ
 and ci ~ Exp (0.001), where ti is failure time and ci is 

censoring time, v ~ Unif (0,1), shape ρ = 1, scale parameter λ = 0.01. Note that across the 

500 datasets, error terms ϵ were separately simulated for each dataset, but β and γ were 

fixed.

In the simulations, we tested the mediation effects of these SNPs on the binary, count 

or time-to-event outcome using SMUT_GLM and SMUT_PH, as well as other methods 

including SMUT, adapted LASSO (Tibshirani, 1996) and adapted Huang et al.’s method. In 

order to compare the performance of approximations that we adopted, we considered two 

versions of our method, both treating γ as fixed: (1) based on exact derivatives; (2) based 

on approximated derivatives. For a binary or count outcome, we refer to these two versions 

as SMUT_GLM exact and SMUT_GLM approxi. For a time-to-event outcome, we refer to 

the approximated version as SMUT_PH approxi. The exact version of SMUT_PH is not 

employed because it is hard to derive analytically. SMUT is naively applied to binary and 

count outcomes by treating them as continuous variables. The adapted LASSO approach 

adopts SKAT to consider all the genetic variant in the mediator model, while in the outcome 

model, employs LASSO for variable selection on all genetic variants as well as mediator 

and covariates, then refits GLM on the selected genetic variants together with mediator and 

covariates (latter two will be included regardless of LASSO variable selection results), and 

finally combines p values from the mediator and the refitted outcome model via IUT. The 

adapted Huang et al.’s method employs SKAT in the mediator model, adopts the original 

Huang et al.’s method in the outcome model, and then combines p values from the two 

models via IUT. We use adapted LASSO and SKAT + LASSO exchangeably. Similarly, we 

use adapted Huang et al. and SKAT + Huang et al. exchangeably. Details of the adapted 

LASSO and adapted Huang et al.’s method are in Supporting Information Section 3.

To test the robustness and generalizability of the methods, we considered two alternative 

situations where some assumption is violated. The first situation is the violation of the 

assumption that coefficients of genetic variants follow a Gaussian distribution. The second 

situation is when there is an unobserved mediator that is not adjusted in the analysis. Details 

and results of these two simulation studies are in Supporting Information Section 4.

3.2 Type-I error in simulations

We evaluated the validity of SMUT_GLM and SMUT_PH along with alternative methods 

in simulations. SMUT_GLM and SMUT_PH exhibited controlled type-I error rates, at α = 

0.05 level, regardless of causal SNP density and types of outcome, as shown in Figures 1 
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and 2 for binary outcome in sparse and dense scenarios respectively, Figures 3 and 4 for 

time-to-event outcome in sparse and dense scenarios respectively, Web Figures S1 and S2 

for count outcome in sparse and dense scenarios respectively. In each figure, the first panel 

(cβ = 0) and the leftmost point (θ = 0) in other panels (cβ ≠ 0) all correspond to the null of 

no mediation of the SNPs through the mediator. SMUT, adapted LASSO and adapted Huang 

et al.’s method also showed protected type-I error.

3.3 Power in simulations

SMUT_GLM and SMUT_PH demonstrated substantial power gains under both the sparse 

and dense scenarios. We also observed that the approximated version of SMUT_GLM 

demonstrated very similar performance when compared with its exact counterpart. For 

example, for binary outcome and under the scenario of dense causal SNPs when cβ = 0.6, 

θ = 0.1, exact SMUT_GLM, approximated SMUT_GLM, SMUT, adapted LASSO and 

adapted Huang et al. had 97%, 96%, 17%, 54% and 0% power, respectively. Thus, the 

power gain from the exact SMUT_GLM was 80%, 43% and 97% compared with SMUT, 

adapted LASSO and adapted Huang et al., respectively. The approximated SMUT_GLM had 

similar power gains. For time-to-event outcome, under the scenario of dense causal SNPs 

when cβ = 1, θ = 0.075, approximated SMUT_PH and adapted LASSO had 69% and 41% 

power, respectively, leading to a power gain of 28%. In addition, power gains appeared 

more profound with increasing cβ, likely because adapted LASSO and adapted Huang et 

al. becomes more conservative as the pleiotropy effect of SNPs on mediator and outcome 

(measured by cβ) increases.

4 Real data application

We assessed our methods and alternatives in real data from two clinical cohorts, which 

were designed for the study of chlamydia infection. Chlamydia trachomatis can ascend 

from the cervix to the uterus and fallopian tubes in some women, potentially resulting in 

pelvic inflammatory disease (PID) and severe reproductive morbidities, including infertility 

and ectopic pregnancy. Recurrent infection leads to worse disease. We analyzed genotype, 

gene expression and phenotype data of 200 participants combined from two cohorts, the 

Anaerobes and Clearance of Endometritis (ACE) cohort and the T cell Response Against 

Chlamydia (TRAC) cohort (Russell et al., 2015). The Institutional Review Boards for 

Human Subject Research at the University of Pittsburgh and the University of North 

Carolina approved the study and all participants provided written informed consent prior 

to inclusion. Descriptions of the ACE and TRAC cohorts, processing and quality control of 

genotype and gene expression data, and details of eQTL analysis and mediation analysis of 

other genes are in Supporting Information Section 6.

4.1 Binary outcome

The outcome of interest is ascending chlamydia infection, among participants who had 

chlamydia infection at enrollment. The control group is the 71 participants who had 

chlamydia infection restricted to the cervix, and the case group is the 72 participants with 

both cervical and endometrial chlamydia infection at enrollment. We analyzed genotype, 

gene expression and phenotype data from these 143 participants.
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Here we presented SOS1 and CD151 genes, which were biologically related to the outcome, 

to illustrate the application of our proposed methods to a binary outcome. Son of sevenless 

homolog 1 (SOS1) is a guanine nucleotide exchange factor that in humans is encoded 

by the SOS1 gene. The importance of SOS1 for chlamydia invasion of host cells has 

been indicated by multiple biomedical studies (Carabeo et al., 2007; Lane et al., 2008; 

Hackstadt, 2012; Bastidas et al., 2013; Mehlitz and Rudel, 2013; Elwell, Mirrashidi and 

Engel, 2016). The CD151 gene encodes a protein that is known to complex with integrins. It 

promotes cell adhesion and may regulate integrin trafficking and/or function. It is a member 

of the tetraspanin family, which are considered as the gateways for infection (Hauck and 

Meyer, 2003; Hemler, 2008; Hassuna et al., 2009; Join-Lambert et al., 2010; N Monk and 

J Partridge, 2012; Seu et al., 2017). In addition, SNPs annotation database, RegulomeDB 

(Boyle et al., 2012), demonstrates that some SNPs in these two genes are eQTLs with 

experimental evidence. Thus, the presence of mediation effect via the expression of each 

gene is expected.

For the first gene, SOS1, mediation testing encompassed 83 SNPs with MAF ≥ 10% and 

significant eQTL association (with SOS1) at a FDR threshold of 10%, using SMUT_GLM, 

adapted LASSO and adapted Huang et al.’s method. Both SMUT_GLM and adapted Huang 

et al.’s method detected significant mediation effects, while adapted LASSO did not (Table 

2). For the second gene CD151, our mediation (via expression of CD151) testing involved 

40 SNPs with MAF ≥ 10% and significant eQTL (with CD151) at FDR 10%. Only 

SMUT_GLM showed significant mediation effects of these SNPs through the expression 

of CD151 on ascending chlamydia infection (Table 2). Marginal effects of selected SNPs 

on SOS1 and CD151 gene expression and ascending chlamydia infection were visually 

illustrated in Web Figures S19 and S20 respectively.

4.2 Time-to-event outcome

TRAC participants returned for follow-up visits at 1, 4, 8, and 12 months after enrollment.

The outcome of interest we evaluated here is time to the first incident chlamydia infection. 

We analyzed genotype, gene expression and time-to-event data from all 181 participants in 

the TRAC cohort who had both genotype and gene expression data available.

Here we selected BIRC3 gene, which was biologically related to the outcome, to illustrate 

the application of our proposed methods to a time-to-event outcome. The gene BIRC3 
encodes for Baculoviral IAP Repeat Containing 3, a E3 ubiquitin-protein ligase regulating 

NF-kappa-B signaling (Blankenship et al., 2009; Kim et al., 2010; Tan et al., 2013). It acts 

as an important regulator of pathogen recognition receptor signaling (Bertrand et al., 2009), 

which can have profound effects on the development of downstream adaptive immune 

responses (Takeda, Kaisho and Akira, 2003; Palm and Medzhitov, 2009; Kumar, Kawai and 

Akira, 2011). In addition, biological studies suggested that BIRC3 may protect mammalian 

host cells against apoptosis, leading to accommodate chlamydial growth (Bryant et al., 2004; 

Park, Yoon and Lee, 2004; Paland et al., 2006; Ying et al., 2008). Therefore, mediation 

effect via the expression of BIRC3 gene is logical. Our mediation testing involved 4 SNPs 

with MAF ≥ 10% and eQTL (with BIRC3) at FDR 10%, using SMUT_PH, adapted LASSO 

and adapted Huang et al.’s method. All the methods showed significant mediation effects 
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through BIRC3 on incident chlamydia infection (Table 2). Marginal effects of selected SNPs 

on BIRC3 gene expression and time to the first incident chlamydia infection were visually 

illustrated in Web Figures S21.

5 Discussion

Our proposed methods, SMUT_GLM and SMUT_PH, extend our previous work (Zhong 

et al., 2019) to test mediation effect of multiple correlated genetic variants on a non-

Gaussian outcome through a mediator. We adopt a mixed model based approach to handle 

high dimension of genetic variants and do not apply any variable selection of genetic 

variants. Our proposed methods are statistically more powerful than alternative methods 

including SMUT, adapted LASSO and adapted Huang et al.’s method. Analysis and 

discussions of possible reasons underlying alternative methods’ power loss are in Supporting 

Information Section 5. The approximated version of SMUT_GLM and SMUT_PH are also 

computationally efficient (Supporting Information Section 7.2).

One limitation of our proposed methods is that we assume the effects of genetic variants 

follow a Gaussian distribution. This may not be correct when there are non-causal SNPs 

in the model and in this case, a mixture distribution might be more appropriate. It is 

reassuring to observe protected type-I error from our simulation studies, which included a 

large number of non-causal SNPs in all scenarios considered. In addition, supplementary 

simulation studies (Supporting Information Section 4) further demonstrate controlled type-I 

error when the effects of genetic variants follow a mixture of two Gaussian distributions. 

More properly modeling the effects of genetic variants may further increase the statistical 

power under the alternative hypotheses but due to modeling complexity and subsequently 

inevitable computational costs, we decide not to further pursue this in our current work.

Our proposed methods can be further extended to handle multiple correlated outcomes for 

additional power gains as well as to accommodate multiple potentially correlated mediators 

to jointly assess their mediation effects. Besides, we could adopt nonparametric methods to 

handle the mediator model and outcome model with more flexibility. Details germane to 

possible methodological extensions are in Supporting Information Section 7.1. We anticipate 

our proposed methods will become a powerful tool to bridge the gap in terms of molecular 

mechanisms between various types of phenotypes and the corresponding associated genetic 

variant(s) identified in recent literature.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
For binary outcome, power and type-I error under sparse causal SNPs scenario. The x-axis 

is the true mediator effect (θ) on the outcome. The y-axis is the power or type-I error. 

Sub-figures vary in cβ value. cβ = 0 (top-left sub-figure) or θ = 0 (left-most points in each 

sub-figure) are null settings where y-axis represents the corresponding type-I error. When 

cβ ≠ 0 and θ ≠ 0, it is under alternative hypothesis and y-axis represents the corresponding 

power. Line for the approximated version of SMUT_GLM is overlapped with the exact 

version.
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Figure 2. 
For binary outcome, power and type-I error under dense causal SNPs scenario. X-axis and 

y-axis are the same as in Figure 1. Line for the approximated version of SMUT_GLM is 

overlapped with the exact version.
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Figure 3. 
For time-to-event outcome, power and type-I error under sparse causal SNPs scenario. 

X-axis and y-axis are the same as in Figure 1.
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Figure 4. 
For time-to-event outcome, power and type-I error under dense causal SNPs scenario. X-axis 

and y-axis are the same as in Figure 1.
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Table 1.

Causal SNP composition in the two simulated scenarios.

Type of outcome Sample size Sparse or dense # causal SNPs # sSNPs # mSNPs # oSNPs # non-causal SNPs

Binary or Count 1000 Sparse 10 4 3 3 890

Dense 500 300 100 100 400

Time-to-event 200 Sparse 10 4 3 3 190

Dense 150 90 30 30 50
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Table 2.

Real data application

P values

Type of outcome Gene Probesets #SNPs SMUT_GLM LASSO Huang et al.

Binary SOS1 2140519 83 0.0235 0.0691 0.0229

Binary CD151 1940132 40 0.0245 0.1192 0.2289

SMUT_PH LASSO Huang et al.

Time-to-event BIRC3 7210154 4 0.001 0.001 0.002
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