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Key Points
� A computable phenotype combines routinely collected data elements from the EHR with logic elements to

identify a condition of interest.
� This validated computable phenotype has strong classification characteristics to identify individuals with pri-

mary nephrotic syndrome.
� This computable phenotype for primary nephrotic syndrome can facilitate future research of these rare diseases.

Abstract
Background Primary nephrotic syndromes are rare diseases which can impede adequate sample size for
observational patient-oriented research and clinical trial enrollment. A computable phenotype may be powerful
in identifying patients with these diseases for research across multiple institutions.

Methods A comprehensive algorithm of inclusion and exclusion ICD-9 and ICD-10 codes to identify patients
with primary nephrotic syndrome was developed. The algorithm was executed against the PCORnet CDM at
three institutions from January 1, 2009 to January 1, 2018, where a random selection of 50 cases and 50 noncases
(individuals not meeting case criteria seen within the same calendar year and within 5 years of age of a case)
were reviewed by a nephrologist, for a total of 150 cases and 150 noncases reviewed. The classification accuracy
(sensitivity, specificity, positive and negative predictive value, F1 score) of the computable phenotype was
determined.

Results The algorithm identified a total of 2708 patients with nephrotic syndrome from 4,305,092 distinct patients
in the CDM at all sites from 2009 to 2018. For all sites, the sensitivity, specificity, and area under the curve of the
algorithm were 99% (95% CI, 97% to 99%), 79% (95% CI, 74% to 85%), and 0.9 (0.84 to 0.97), respectively. The
most common causes of false positive classification were secondary FSGS (nine out of 39) and lupus nephritis
(nine out of 39).

Conclusion This computable phenotype had good classification in identifying both children and adults with
primary nephrotic syndrome utilizing only ICD-9 and ICD-10 codes, which are available across institutions in the
United States. This may facilitate future screening and enrollment for research studies and enable comparative
effectiveness research. Further refinements to the algorithm including use of laboratory data or addition of
natural language processing may help better distinguish primary and secondary causes of nephrotic syndrome.
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Introduction
Nephrotic syndrome is defined as the confluence of
heavy proteinuria (.3.5 g per day), hypoalbumine-
mia, and edema (1). This syndrome is further classi-
fied by kidney histopathologic findings, including

minimal change disease (MCD), FSGS, and membra-
nous nephropathy (MN). It is well recognized that
this syndrome and these histologic findings can occur
secondarily to systemic disorders, viruses, malignan-
cies, or medications, or may occur in isolation, termed
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primary nephrotic syndrome. In addition, even when
excluding presumed secondary causes of nephrotic syn-
drome, those remaining have heterogeneous disease features
spanning their molecular mechanisms (2,3), histopathology
(4), responsiveness to treatment, and outcomes (5,6).
Primary nephrotic syndromes are rare diseases: MCD is

estimated to affect 0.23–15.6 per 100,000 children and 0.06
per 100,000 adults per year, FSGS 0.2–1.1 per 100,000 per
year, and MN 1.2 per 100,000 per year (7). Their rarity and
heterogeneity contribute to sample size limitations, thus
performing rigorous comparative effectiveness and out-
comes research is challenging. However, this work is
important and necessary for patients and their caregivers,
who prioritize outcomes of kidney health and survival,
while articulating that their lived experiences, symptoms,
and functionality remain important in the assessment of
successful disease management (8).
A computable phenotype is a clinical condition, charac-

teristic, or set of clinical features that can be determined
solely from the data in electronic health records (EHRs)
using an algorithm and ancillary data sources without
requiring chart review or interpretation by a clinician (9).
Routinely collected data elements from the EHR combined
with logic elements, such as AND, OR, and IF, are used to
identify a clinical condition or characteristic of interest
from a given data source. Applications of machine learning
models with natural language processing can also develop
probabilistic predictions for phenotyping, which can iden-
tify patients with disease by supervised learning from
example patients (10). Valid computable phenotype algo-
rithms for rare conditions such as nephrotic syndrome
could identify large, robust, and representative retrospec-
tive cohorts that otherwise would be cumbersome to
recruit prospectively. Additionally, this could improve fea-
sibility assessment and site selection for clinical trials. Phe-
notypes can be replicated across data sources and health
care organizations to generate consistent cohort identifica-
tion, which can streamline enrollment in registries and
facilitate comparative effectiveness research.
PCORnet, the National Patient-Centered Clinical Research

Network, incorporates data from millions of patients across
nine clinical research networks and two health plan
research networks, including more than 300 hospitals.
Data are maintained locally in participating health systems
and have a shared structure (common data model [CDM])
that facilitates application of a computable phenotype
(11). Computable phenotypes developed and utilized for
research within PCORnet include those for type II diabetes
mellitus (12,13) and heart failure (14). Other examples of
computable phenotypes in action include the Chronic Con-
ditions Data Warehouse (15), which utilizes administrative
claims from Centers for Medicare and Medicaid Services,
and the Clinical Classifications Software developed as part
of the Healthcare Cost and Utilization Project (16). Prior
computable phenotypes developed for glomerular dis-
eases have been shown to be reliable and valid, but
focused on the pediatric population and utilized data ele-
ments that are not universally available, including pro-
vider type and Systematized Nomenclature of Medicine
Clinical Terms codes (17).
We sought to develop and validate a computable pheno-

type to identify both adult and pediatric patients with

primary nephrotic syndrome, utilizing universally avail-
able data elements to reliably capture prevalent patients in
the PCORnet CDM.

Materials and Methods
Patient Definition and Computable Phenotype
Development

Electronic medical record data was originally extracted
for 12,233 patients seen for glomerular disease and protein-
uria at the University of Michigan from 2009 to 2014, with
a broad range of diagnoses. A comprehensive list of intelli-
gent medical object (IMO) codes from patient problem lists
and International Classification of Diseases, 9th Revision,
Clinical Modification (ICD-9-CM) codes was generated
from this population, and the list of codes was reviewed by
three investigators. The codes were cross-referenced with
biopsy-proven kidney diseases attributed to primary
nephrotic syndrome, or for patients without biopsy the
clinician’s diagnosis in the chart was reviewed. Preliminary
inclusion codes were established for nephrotic syndrome
utilizing those that are largely defined by the pathologic
lesion determined by kidney biopsy. However, these codes
do not specify if the nephrotic syndrome is idiopathic or
secondary to another underlying condition, thus exclusion
codes were selected for conditions known to cause second-
ary nephrotic syndrome (e.g., diabetes, lupus, viral ill-
nesses). Inclusion and exclusion criteria were refined on the
basis of these codes, existing literature, and clinical ratio-
nale, then the codes and an initial algorithm were itera-
tively revised to optimize sensitivity and specificity in two
health systems. Subsequently, as part of the Renal Collabo-
rative Research Group within PCORnet, these codes were
reviewed by a team of clinician scientists in 2018. Tools for
mapping ICD-9-CM to ICD-10-CM codes were utilized so
that ICD-10-CM codes could be added to facilitate search-
ing beyond 2015 (18). IMO codes were removed to improve
the generalizability of the algorithm, due to lack of univer-
sal availability of IMO codes in EHR warehouses.

The final list of codes and subsequent computable phe-
notype, which defined inclusion to the primary nephrotic
syndrome patients, and those that defined exclusion, are
listed in Supplemental Table 1 and the algorithm scripts
using SQL code logic can be accessed at https://github.
com/AoliverioUM/nephroticsyndrome-computablepheno
type. Patient cases with primary nephrotic syndrome were
defined across all ages as subjects that were seen for at least
one encounter of any kind, had $2 nephrotic syndrome
codes, and did not have exclusion codes for diabetes melli-
tus, systemic lupus erythematosus, amyloidosis, or other
less common causes of secondary nephrotic syndrome,
such as HIV, viral hepatitis, GN, obstructive uropathy, or
mitochondrial metabolism disorders at any time. Two or
more nephrotic syndrome codes were required to minimize
false positives. Additionally, for individuals aged ,20
years, codes of nephrotic syndrome not otherwise specified
were also allowable for inclusion, given the majority of
children with nephrotic syndrome are steroid sensitive,
and consequently a kidney biopsy is pursued less fre-
quently in this demographic. Patient noncases were ran-
domly selected individuals not meeting case criteria who
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were seen within the same calendar year and were within
5 years of age of the cases.

Data Extraction
PCORnet data are maintained locally with a shared

structure in the CDM (19,20). The developed computable
phenotype was executed in SQL against the PCORnet
CDM at three academic institutions (University of Michi-
gan, Ann Arbor, MI; The Ohio State University, Columbus,
OH; Mayo Clinic, Rochester, MN, Jacksonville, FL, and
Scottsdale/Phoenix, AZ) from January 1, 2009 to January 1,
2018. From the data extraction, a random selection of 50
cases and 50 noncases was generated at each institution for
chart validation.
Data coordination was conducted at Arbor Research for

Health and the University of Michigan. An independent
review board deemed the study exempt from institutional
review board approval for data coordination. Institutional
review board approval for this study with a waiver of indi-
vidual patient consent was obtained at each individual
study site where charts were abstracted.

Validation
As the gold-standard comparator, a nephrologist at each

institution performed a comprehensive chart review of
each generated case and noncase to determine concordance
with the algorithm. When available, kidney biopsy data
and nephrologist-written documentation were carefully
reviewed for all cases detected by the computable pheno-
type. Covariates collected included date of case capture by
the computable phenotype, ESKD, and transplant status at
time of capture, details of kidney biopsy, and, in patients
with discordance between algorithm-defined and
nephrologist-defined primary nephrotic syndrome, the
potential causes of discordance. After individual chart
review, all three sites participated in consensus conference
to facilitate any necessary additional adjudication to reach
a consensus nephrologist definition.

Statistical Analyses
The classification accuracy including sensitivity, specific-

ity, positive and negative predictive value, and F1 score of
the computable phenotype was determined. Meta-analytic
summary statistics for sensitivity, specificity, and area
under the curve were calculated using a hierarchical sum-
mary receiver operating characteristic model (21). A sensi-
tivity analysis was performed to examine the classification
accuracy of the algorithm in adult patients only ($20 years
of age). Descriptive statistics were used to describe each of
the classification groups (true positives, false positives,
false negatives, true negatives).

Results
At the time of execution of the computable phenotype

against the PCORnet CDM, there were 1,365,050 individual
patients in the University of Michigan CDM, 1,072,626 in
the Ohio State University CDM, and 1,867,416 in the Mayo
Clinic CDM. The algorithm generated 666 patients with
primary nephrotic syndrome at University of Michigan,
321 at Ohio State University, and 1721 at Mayo Clinic.

Classification statistics by study center are shown in Table
1. Of 150 patients identified as having primary nephrotic
syndrome by the computable phenotype, 111 were deter-
mined to be true positives by nephrologist review. Using
meta-analytic summary statistics, the overall sensitivity of
the computable phenotype was 99% (95% confidence inter-
val [95% CI], 97% to 99%), specificity of 79% (95% CI, 74%
to 85%), and area under the curve of 0.9 (95% CI, 0.84 to
0.97). Given a minority of patients captured by our comput-
able phenotype were ,20 years old (n537 across all three
centers) and a computable phenotype for glomerular dis-
eases including nephrotic syndrome in pediatric patients
utilizing PEDSnet is available (17), a sensitivity analysis of
the computable phenotype classification statistics solely in
adults aged $20 years was performed. The performance of
the computable phenotype in adults was similar and is
shown in Supplemental Table 2.
Clinical characteristics and diagnoses for each classifica-

tion category (true positive, false positive, true negative,
false negative are described in more detail in Tables 2 and
3). The most common misclassifications were due to sec-
ondary FSGS and membranous lupus nephritis (World
Health Organization Class V). Compared with patients
with true positive nephrotic syndrome, false positive indi-
viduals were not more likely to be on dialysis (10% versus
10%, respectively) or have a kidney transplant (21% versus
23%, respectively) at the time of capture by the computable
phenotype than those that were correctly classified as hav-
ing primary nephrotic syndrome. The vast majority of both
true positives and false positives were seen by nephrolo-
gists within the health care system queried, 99% and 97%,
respectively. Among the 150 noncases identified by the
computable phenotype, only 8% had seen a nephrologist
within the health care system. The sole false negative gen-
erated by the algorithm was a patient with FSGS and a kid-
ney transplant. Of the 149 true negatives, two patients
were on dialysis at the time of capture and one had
received a kidney transplant.
Of the true positives, 75% (83 out of 111) of patients had

biopsy reports available for review in the medical record,
whereas 25% (28 out of 111) did not. The frequency of each
unique nephrotic syndrome diagnosis, by biopsy status, is
shown in Figure 1. MN was the most commonly identified
diagnosis with a biopsy report available, followed by
FSGS. FSGS was the most common diagnosis when a true
positive primary nephrotic syndrome patient was con-
firmed by chart validation, but a biopsy report was not
available for review.

Discussion
A good computable phenotype is explicit, reproducible,

reliable, and valid (22). This study demonstrates that a reli-
able and valid computable phenotype for primary
nephrotic syndrome with an overall sensitivity of 99%, spe-
cificity of 79%, and area under the curve of 0.9 can be cre-
ated using data elements from ICD-9-CM and ICD-10-CM
codes alone, which are readily available across health sys-
tems in the United States. This improves the generalizabil-
ity of this computable phenotype when compared with
others, which have relied on IMO or Systematized
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Table 1. Performance characteristics of the computable phenotype at three academic PCORnet centers

Center
True

Positive
False

Positive
False

Negative
True

Negative Sensitivity Specificity

Positive
Predictive
Value

Negative
Predictive
Value Accuracy F1 Score

Area Under
Curve

(95% Confidence
Interval)

University of Michigan 42 8 1 49 0.98 0.86 0.84 0.98 0.91 0.90 0.92
(0.87 to 0.97)

The Ohio State University 35 15 0 50 1.00 0.77 0.70 1.00 0.85 0.82 0.88
(0.83 to 0.94)

Mayo Clinic 34 16 0 50 1.00 0.76 0.68 1.00 0.84 0.81 0.88
(0.83 to 0.93)
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K
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N
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Nomenclature of Medicine Clinical Terms codes as well.
Using three academic institutions in the PCORnet CDM,
this computable phenotype captured a total of 2708
patients with primary nephrotic syndrome; on the basis of
classification statistics determined by this study, this is esti-
mated to represent 559 prevalent patients with true pri-
mary nephrotic syndrome at the University of Michigan,
225 at The Ohio State University, and 1170 patients at
Mayo Clinic over 8 years—a significant achievement, given
the rarity of primary nephrotic syndrome and the fraction
of the CDM that was utilized for validation.
Further refinements to the computable phenotype devel-

oped in our study may also be feasible to improve

specificity. Distinguishing primary and secondary FSGS
can be difficult for clinicians and similarly proved a chal-
lenge to the computable phenotype. Secondary FSGS and
focal global glomerulosclerosis collectively were a signifi-
cant source of misclassification of primary nephrotic syn-
drome by the computable phenotype. In addition, 11
patients who were true positives were validated as primary
FSGS, despite the lack of a biopsy report available for
review. Although degree of foot process effacement may
vary between primary and secondary maladaptive types of
FSGS (e.g., obesity-related FSGS), the clinical history of
overt sudden onset nephrotic syndrome, response to
immunosuppression, and absence of causes of secondary
FSGS allowed reviewers to adequately support a diagnosis
of primary FSGS (23). Similarly, refinement of the comput-
able phenotype for improved specificity may be possible
through incorporating medication data elements, labora-
tory values, or utilizing natural language processing to dis-
tinguish between primary and secondary FSGS. Natural
language processing is a field of computer science and arti-
ficial intelligence that performs computational analysis of
human language and is often used together with machine
learning. It has emerged as a technique that can be used to
identify patients with specific diagnoses by analysis of elec-
tronic medical record documentation and has been used
with success in liver (24) and pulmonary disease (25). This
approach may also be useful in distinguishing MN second-
ary to lupus nephritis. Strengthening our exclusion codes
to include those for diabetes irrespective of the presence of
kidney disease may also help minimize false positives.
However, this may also increase false negatives in patients
with true concurrent disease that could be relevant for
future study (for example, when immunosuppression indu-
ces diabetes mellitus).
One limitation of our computable phenotype validation

study was the inability to selectively draw noncases from
nephrology clinics at the study sites; the CDM at the time
of our analysis did not contain data on specific providers
or clinics within a given institution. Given that primary

Table 2. Diagnosis and demographic characteristics of true
and false positives identified by the computable phenotype

Characteristics

True
Positives
n5111

False
Positives
n539

Nephrologist-validated
diagnosis, n (%)
MCD 18 (16) 0
FSGS 38 (34) 0
MN 45 (41) 0
SSNS/SRNS 4 (4) 0
Othera 6 (5) 0
Secondary FSGS 0 9 (23)
Lupus nephritis 0 9 (23)
Diabetic kidney disease 0 4 (10)
Focal global
glomerulosclerosis

0 2 (5)

Vasculitis 0 2 (5)
Hypertensive
nephrosclerosis

0 1(3)

Other secondary causeb 0 9 (23)
Unknown 0 3 (8)

ESKD status, n (%)
Dialysis 11 (10) 4 (10)
Kidney transplant 25 (23) 8 (21)

Age, yr, mean (SD) 43.3 (20.9) 44.9 (19.2)
Nephrology encounter

at site, n (%)
110 (99) 38 (97)

Time from nephrology
encounter to computable
phenotype capture,
days, median (IQR)

396 (0–1792) 543 (16–2279)

Biopsy status, n (%) N/A
Documented and reviewed 83 (75)
Not documented or
not performed

28 (25)

MCD, minimal change disease; MN, membranous nephropathy;
SSNS/SRNS, steroid sensitive nephrotic syndrome, steroid
resistant nephrotic syndrome; IQR, interquartile range.
aOther primary etiologies included four patients with congenital
nephrotic syndrome, one membranoproliferative glomerulone-
phritis, and one lipoprotein glomerulonephropathy.
bOther secondary etiologies included two patients with
interstitial nephritis, and one each of secondary nephrotic
syndrome due to lymphoma, Alport syndrome, obstructive
nephropathy, acute mediated rejection in transplant, immune
complex glomerulonephritis, hemolytic uremic syndrome,
and Kawasaki’s disease.

Table 3. Diagnosis and demographic characteristics of true
and false negatives identified by the computable phenotype

Characteristics

True
Negatives
n5149

False
Negatives

n51

Nephrologist-validated
diagnosis, n (%)
MCD 0 0
FSGS 0 1
MN 0 0
SSNS/SRNS 0 0

ESKD status
Dialysis 2 0
Kidney transplant 1 1

Age, yr, mean (SD) 44.3 (20.3) 29
Nephrology encounter at site, n (%) 11 (7) 1 (100)

MCD, minimal change disease; MN, membranous
nephropathy; SSNS/SRNS: steroid sensitive nephrotic
syndrome, steroid resistant nephrotic syndrome.
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nephrotic syndromes are rare diseases, drawing noncases
from a general health care population likely inflated our
sensitivity and negative predictive value statistics. For this
reason, we also assessed the F1 score of the computable
phenotype. An F1 score is a useful measure in classification
when seeking to balance precision (the share of the pre-
dicted patients who are positive that are correct) and recall
(the share of the actual positive patients that are predicted
correctly) when there is a large number of true negatives,
as expected in this population. The F1 score of the comput-
able phenotype ranged from 0.81 to 0.9 at the individual
study sites; an F1 score of 1 is considered perfect and our
results indicate the computable phenotype has an accept-
able balance of precision and recall. Another limitation is
that our algorithm was also developed initially within two
health systems and then revised and tested specifically for
PCORnet; however, there was some variation in

classification statistics between study sites. This likely rep-
resents differences in coding practices across institutions.
There may also be geographic differences; although all
three primary research sites are located in the Midwest, all
Mayo Clinic clinical sites (Minnesota, Florida, and Arizona)
contributed data to the validation study, which could have
lent greater variation in provider coding practices. Our
study did use ICD-9-CM and ICD-10-CM codes exclusively
to help with generalizability and the PCORnet CDM to
allow implementation across hundreds of hospitals, but we
cannot be certain our computable phenotype will perform
as well in other large datasets or EHRs. Finally, 50 patients
from each site were selected at random from all ages. Given
the low numbers of pediatric patients in our validation set,
we are unable to differentially examine how the comput-
able phenotype compares in adults versus children. How-
ever, a computable phenotype for pediatric glomerular dis-
ease has been rigorously evaluated in PEDSnet previously
and serves as another excellent resource for researchers
(17).

Despite these limitations, the computable phenotype will
improve practitioners’ abilities to identify patients with pri-
mary nephrotic syndrome for clinical trials. This will facili-
tate rapid and realistic assessments of site feasibility and
improve enrollment for much-needed research to improve
health outcomes in these rare diseases. Use of our comput-
able phenotype and EHR data more broadly throughout
PCORnet also has the potential to strengthen pragmatic
comparative effectiveness research and observational
research by using “real-world” data.

In summary, we developed and validated a reliable and
accurate computable phenotype for identification of pri-
mary nephrotic syndromes in children and adults using
ICD-9-CM and ICD-10-CM codes. To better improve our
understanding of these rare diseases, we must utilize all
available tools, from genome to phenome (26), and EHR
data can generate large-scale observational clinical data, a
better understanding of how patients are treated and
respond to treatments, and the complications they face,
augmenting our base of knowledge.
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