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N E U R O S C I E N C E

Genetic estimates of correlation and causality between 
blood-based biomarkers and psychiatric disorders
William R. Reay1,2, Dylan J. Kiltschewskij1,2, Michael P. Geaghan1,2, Joshua R. Atkins1, 
Vaughan J. Carr3,4,5, Melissa J. Green3,4, Murray J. Cairns1,2*

There is a long-standing interest in exploring the relationship between blood-based biomarkers and psychiatric 
disorders, despite their causal role being difficult to resolve in observational studies. In this study, we leverage 
genome-wide association study data for a large panel of heritable serum biochemical traits to refine our under-
standing of causal effect in biochemical-psychiatric trait pairings. We observed widespread positive and negative 
genetic correlation between psychiatric disorders and biochemical traits. Causal inference was then implemented 
to distinguish causation from correlation, with strong evidence that C-reactive protein (CRP) exerts a causal effect 
on psychiatric disorders. Notably, CRP demonstrated both protective and risk-increasing effects on different 
disorders. Multivariable models that conditioned CRP effects on interleukin-6 signaling and body mass index sup-
ported that the CRP-schizophrenia relationship was not driven by these factors. Collectively, these data suggest 
that there are shared pathways that influence both biochemical traits and psychiatric illness.

INTRODUCTION
Psychiatric disorders arise from a complex interplay between genetic 
and environmental risk factors. Twin-based and genome-wide as-
sociation studies’ (GWAS) heritability estimates have demonstrated 
the importance of genetic risk to the spectrum of psychiatric illness 
(1–3). In particular, GWAS has been successful in identifying re-
gions of the genome associated with psychiatric disorders, as well as 
revealing both overlapping and distinct features among the genetic 
architecture of these traits (2–6). For example, our group previously 
demonstrated that several genes associated with schizophrenia (SZ) 
were shared with other psychiatric disorders, along with genes 
that appeared more specifically linked to SZ (4). The challenge for 
psychiatric genetics from here onward is to integrate and expand 
these data such that the biological insights gained may be directly 
relevant for psychiatric practice.

GWAS has proven valuable beyond just gene discovery in psy-
chiatry, in which it allows the study of relationships between sets of 
traits in terms of genetic correlation (7), as well as GWAS informed 
methods for causal inference (8, 9). An area of continued interest 
is the interplay between circulating biochemical factors and the 
pathophysiology of psychiatric disorders (10–13). These studies 
have endeavored to find biochemical traits readily detectable in blood, 
which, in theory, could be diagnostic or prognostic biomarkers for 
a given psychiatric disorder. Many of these hypotheses stem from 
the idea that peripheral biochemical traits may exert an effect on the 
brain, directly or indirectly through their effect on other mediators, 
and that the manifestation of mental illness is, in part, attributed to 
these factors that primarily act in the periphery (11, 12, 14–16). 
Identifying these biochemical-psychiatric relationships would be 
clinically valuable, as many of these traits can be modulated by 
existing drugs and/or lifestyle interventions. However, progress in 

this field has been hampered by small sample size studies, along with 
the fact that most of these studies are observational in nature and, 
thus, likely subject to at least some confounding. Genetics offers an 
attractive prospect for studying biochemical traits in psychiatry as 
many such measures are heavily influenced by genetic factors, with 
germline genetic variants fixed at birth and immune to reverse 
causation in most instances. These features of biochemical-associated 
germline variants can facilitate less-confounded estimates of cor-
relations between traits, as well as provide potential instrumental 
variables (IVs) for causal inference approaches such as Mendelian 
randomization (MR) (7, 8). In this study, we attempt to harmonize 
interstudy variability by using a panel of large sample size (N > 
300,000) biochemical GWAS from a single cohort [UK Biobank 
(UKBB)] to investigate genetic overlap with different psychiatric 
disorders, along with putative causal effects. We found that the ma-
jority of biochemical traits tested were genetically correlated with at 
least one psychiatric trait, with evidence of convergent and divergent 
correlation profiles among the different disorders. We also demon-
strated evidence that there may be a causal relationship on psychiatric 
phenotypes through circulating C-reactive protein (CRP), glucose, 
and urate, which may have direct implications for clinical practice.

RESULTS
Widespread genetic correlation between blood-based 
biomarkers and psychiatric traits
We tested the genetic correlation between a panel of blood-based 
biomarkers from the UKBB and 10 psychiatric GWAS using linkage 
disequilibrium score regression (LDSR). We found that 61% (N = 30) 
of the biochemical traits tested were significantly correlated with at 
least one psychiatric trait after multiple testing correction, with every 
psychiatric trait exhibiting a significantly nonzero biochemical 
correlation after correction, except for Tourette’s syndrome (TS) 
(Fig. 1A and tables S2 to S11). The most significantly correlated bio-
marker for each trait is outlined in Table 1.

There was clear evidence of biomarkers with divergent genetic 
correlations between different psychiatric phenotypes, for instance, 
CRP, alanine aminotransferase (ALT), and sex hormone binding 
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Fig. 1. Genetic correlation between blood-based biomarkers and psychiatric GWAS. (A) Heatmap of LDSR correlation z scores (rg/SE) between each psychiatric trait and 
49 biochemical GWAS. The psychiatric and biochemical traits are grouped on the x and y axes, respectively, by hierachial clustering using Pearson’s distance. (B) Examples 
of biochemical traits with evidence of discordant genetic correlations among the different psychiatric phenotypes. CRP, alanine aminotransferase (ALT), and sex hormone 
binding globulin (SHBG) are presented for illustration. The forest plot denotes the LDSR rg, with its SE representing the confidence bars. Traits highlighted in blue, orange, 
and red for CRP, ALT, and SHBG, respectively, were significantly correlated after the application of multiple testing correction. (C) Correlation matrix (Pearson) of LDSR 
z score between each trait, correlation estimates that survive correction for the number of tests performed are highlighted. (D) Components of biochemical LDSR z scores 
derived using finite Gaussian mixture modeling (GMM)—the optimal parametrization of the variance-covariance matrix was five components with diagonal distribution, 
variable volume, and equal shape (VEI). The components are plotted relative to their contribution to the first and second principal components of the LDSR z score matrix. 
(E) Box-and-whisker plots of the LDSR z scores for each disorder composed of traits assigned to each of the five components derived from the GMM procedure.
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globulin (SHBG; Fig. 1B). In the case of CRP, it displayed a negative 
correlation after correction with obsessive-compulsive disorder (OCD), 
anorexia nervosa (AN), and cognition, as well as a trend toward a 
negative correlation with SZ (P = 1.7 × 10−3), while its correlation 
with post-traumatic stress disorder (PTSD), major depressive dis-
order (MDD), and attention-deficit/hyperactivity disorder (ADHD) 
was strongly positive. These data provide some support to recent 
cohort studies, including lower CRP observed in patients with eat-
ing disorder (17), while elevated CRP was associated with ADHD 
(18). Notably, this contradicts previous observational estimates of 
elevated CRP in SZ (19). Moreover, there were 14 biochemical traits 
that were only correlated after multiple testing correction with two 
or fewer psychiatric GWAS. Some examples of biochemical traits 
correlated with two or fewer psychiatric GWAS were albumin and 
ADHD (rg = −0.151), mean corpuscular volume and AN (rg = 0.087), 
mean sphered cell volume and SZ (rg = 0.06), and creatinine with 
bipolar disorder (BIP) and SZ (SZ: rg = −0.07; BIP: rg = −0.106).

We further investigated the relationship between the profiles of 
49 LDSR biochemical z scores for each psychiatric trait. We ob-
served strong positive and negative correlations between the trait-
wise LDSR biochemical z score for each trait, which we term the 
biochemical correlation profile (Fig. 1C). For instance, the ADHD 
biochemical correlation profile demonstrates large-magnitude pos-
itive correlations with autism spectrum disorder (ASD), MDD, and 
PTSD but negative correlations with

OCD, AN, and cognition. This can be interpreted as traits that 
tend to be positively correlated with ADHD are also positively 
correlated with ASD, MDD, and PTSD and vice versa for OCD, AN, 
and cognition. These relationships were further interrogated by 
subjecting the 10 biochemical correlation profiles to finite Gaussian 
mixture modeling (GMM; Fig. 1D). We observed five components 
(clusters) with diagonal distribution, variable volume, and equal 
shape as the most parsimonious parameterization of the covariance 
matrix (table S12). The biochemical correlation profile LDSR z scores 
within each cluster are plotted in Fig. 1E. Briefly, the first compo-
nent was composed of a series of traits with discordant correlations 

between the disorders, such as CRP, ALT, and glycated hemoglobin 
(HbA1c), while the second and third components were a diverse set 
of biomarkers with more similar LDSR z scores across the psychiatric 
disorders tested. Component four was notable as it was solely com-
posed of reticulocyte (immature erythrocytes)–related traits, which, 
analogous to component one, was quite discordant in its correlation 
profiles. The fifth and final component was composed of other 
erythrocytic-related traits; however, the differences between disor-
ders were less marked than component four. Together, this demon-
strates that groups of biomarkers tend to have similar relationships 
with different psychiatric traits.

Genetically proxied biochemical measures were associated 
with a severe cognitive deficit schizophrenia subtype
We tested the association between 25 genetically proxied biomarkers 
[polygenic scores (PGS), constructed from the UKBB GWAS] that 
were correlated with either the SZ or the general cognitive ability 
GWAS with a severe cognitive deficit (CD) subtype of SZ relative to 
a subset of cases with less-marked impairment [cognitively spared 
(CS)] from the Australian Schizophrenia Research Bank (ASRB) 
cohort (N = 391). As cognitive performance is highly variable among 
SZ cases, a multidimensional grade of membership (GoM) clustering 
of nine cognitive measures was previously applied to derive these 
two subgroups of cognitive performance in the ASRB (20). There 
were two biochemical PGS that displayed a relatively significant 
association with CD status—hematocrit percentage and immature 
reticulocyte faction (Fig. 2 and table S13). Each SD increase in the 
immature reticulocyte fraction PGS was associated with a 35.7% 
[95% confidence interval (CI): 14.5%, 56.9%; P = 4.72 × 10−3, q = 0.07] 
increase in the odds of severe CD. Conversely, genetically proxied 
hematocrit percentage exerted a protective effect: odds ratio (OR) = 
0.744 [95% CI: 0.533, 0.954], P = 5.82 × 10−3, q = 0.07. We empha-
size that these signals only survive multiple testing correction using 
a lenient false discovery rate (FDR) threshold of 10%; however, given 
the small sample size of this cohort, we believe that these findings 
remain noteworthy. Immature reticulocyte fraction was negatively 

Table 1. The most significant genetic correlation between each trait and a biochemical GWAS.  

Biochemical trait Psychiatric trait* rg
† SE P

High light scatter reticulocyte 
percentage

ADHD 0.256 0.033 4.58 × 10–15

High light scatter reticulocyte 
count

OCD −0.212 0.046 3.37 × 10−6

CRP AN −0.286 0.038 9.76 × 10–14

Vitamin D ASD −0.177 0.047 2 × 10–4

Creatinine BIP −0.106 0.027 7.23 × 10–5

Leukocyte count Cognition −0.198 0.024 2.66 × 10–16

Leukocyte count MDD 0.155 0.025 9.77 × 10–10

Leukocyte count PTSD 0.225 0.043 1.37 × 10–7

Lymphocyte count SZ 0.075 0.017 1.52 × 10–5

Lymphocyte count TS −0.093 0.039 0.017

*Psychiatric GWAS: attention-deficit/hyperactivity disorder (ADHD), anorexia nervosa (AN), autism spectrum disorder (ASD), bipolar disorder (BIP), major 
depressive disorder (MDD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), SZ, and TS.   †rg is the estimate of genetic correlation 
from LDSR.
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correlated with cognition, with a trend toward a negative relation-
ship with SZ as well. Hematocrit percentage was also negatively cor-
related with cognition; however, there was a depletion of hematocrit 
percentage alleles among CD versus CS SZ cases, suggesting that 
a more complex relationship may be present. Both the hematocrit 
and reticulocyte fraction PGS explained around 1% of phenotypic 
variance in CD on the liability scale, which is similar to a PGS 
for general cognitive ability (Fig. 2). A model constructed with all 
nominally CD-associated PGS (P < 0.05) explained almost 3% in 
phenotypic variance. There was a nonsignificant trend of enrich-
ment of SZ polygenic risk score (PRS) (P = 0.054) in CD. While 
these values are modest, it does suggest that the genetic architecture 
of biochemical traits is correlated with the severity of cognitive 
impairment in SZ. In addition, these estimates of phenotypic vari-
ance explained are likely inflated relative to that of an external sam-
ple, and, thus, future investigation of the relationship between these 
PGS and cognition in SZ is warranted to test the replicability of 
these findings.

Strong evidence of partial genetic causality between 
blood-based biomarkers and neuropsychiatric illness
A latent causal variable (LCV) model was constructed between each 
significantly correlated biochemical-psychiatric trait pair (UKBB 
biochemical GWAS and psychiatric GWAS) to estimate partial ge-
netic causality (9). This approach uses genome-wide single-nucleotide 
polymorphism (SNP) effect estimates for each trait to evaluate 
evidence whether the effect of one trait on the second is larger than 
the reverse direction. Partial genetic causality is expressed by 
this framework as the posterior mean genetic causality proportion 
(  ̂  GCP  ), with |  ̂  GCP  | > 0.6 considered as strong evidence of partial 
genetic causality and its sign related to which trait is postulated as 
partially genetically causal for the other (Materials and Methods). 
We can then also infer the consequence of the partial genetic causal-
ity of one trait on another using the sign of the genetic correlation. 
There were five instances where we found strong evidence of a po-
tential causal relationship, with all of them suggesting an effect of 
the biochemical measure on the psychiatric trait rather than vice 
versa (Table  2 and table S14). These were as follows: glucose on 
ADHD (  ̂  GCP   = 0.64), CRP on AN (  ̂  GCP   = 0.92), urate on cognition 
(  ̂  GCP   = 0.88), CRP on MDD (  ̂  GCP   = 0.62), and CRP on OCD (  ̂  GCP   

= 0.75). It is important to emphasize that these posterior mean   ̂  GCP   
are not magnitudes of causal effect and only imply that there is a 
causal relationship between the biochemical traits and the psychiat-
ric phenotype. Given the sign of the genetic correlation, we can like-
ly infer that glucose may increase the risk of ADHD and urate could 
have a deleterious effect on general cognitive function. As outlined 
in a previous section, CRP has highly divergent correlations, and 
these data coupled with the LDSR further support a protective effect 
on AN and OCD, while it is likely risk increasing for MDD. SZ did 
not quite survive multiple testing correction for a genetic correla-
tion with CRP; however, given previous evidence of a protective 
effect of CRP on SZ from MR studies (21–23), we also constructed 
an LCV model between CRP and SZ and found moderate support 
for this relationship (  ̂  GCP   = 0.56, SE = 0.23, P = 5.11 × 10−6). Given 
that the genetic correlation is only small, it is less likely that previ-
ous MR studies were unduly biased by genetic correlation. In addi-
tion, we also observed an unusual phenomenon in the HbA1c and 
PTSD model, whereby the posterior mean   ̂  GCP   was strongly posi-
tive (  ̂  GCP   = 0.76), implying an effect of HbA1c on PTSD, while its 
z score was negative (z = −6.51), which signifies the opposite. As de-
scribed in the Supplementary Materials and fig. S1, we found that 
these conflicting data were likely attributable to a rare violation of 
the LCV model assumptions, whereby the mixed fourth moments 
had opposite signs to each other and the genetic correlation. This 
could be explained by certain SNPs having highly divergent effects 
from the rest of the genome-wide signal. Moreover, there were 
two other trait pairs that trended toward partial genetic causation 
(|  ̂  GCP  | > 0.5) but did not exceed the stringent 0.6 threshold. These 
were SHBG on cognition (  ̂  GCP   = 0.55) and triglycerides on OCD 
(  ̂  GCP   = 0.55). We then sought to replicate the LCV findings by using 
different previously published GWAS for glucose, urate, CRP, and 
HbA1c. Despite smaller sample sizes, we found relatively consistent 
GCP estimates that supported the above models using the UKBB 
GWAS (table S15). Specifically, CRP → AN and CRP → OCD still 
obtained   ̂  GCP   > 0.6, while CRP → MDD, urate → cognition, and 
glucose → ADHD still trended toward strong evidence of partial 
genetic causality using these smaller biochemical GWAS (  ̂  GCP   > 0.4). 
However, HbA1c did not show strong evidence of partial genetic 
causality (  ̂  GCP   = 0.13) on PTSD using a smaller sample size GWAS 
from Wheeler et al. (24).

Fig. 2. The association between biochemical PGS and a severe CD subtype of SZ. Left: Forest plot of the association (OR with 95% CI) between an SD increase in each 
PGS and severe CD, relative to SZ cases with less marked impairment (CS). Right: Variance explained on the liability scale, assuming a 0.33% CD population prevalence for 
biochemical and a general cognitive ability PGS.
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C-reactive levels exert a direct protective effect on 
schizophrenia conditioned on body mass index and 
interleukin-6 signaling
CRP displayed strong evidence of partial genetic causality on three 
psychiatric disorders, and, thus, we sought to further analyze these 
relationships by estimating the total effects and direct impact of 
CRP using univariable MR and multivariable MR (MVMR), respec-
tively (tables S16 to S22). We included SZ in these analyses, due to 
evidence from previous SZ GWAS that CRP exerts a protective 
effect on SZ liability, as discussed in the previous section. MR meth-
ods differ from the LCV approach in that they leverage specific in-
dependent SNPs strongly associated with trait one (the exposure 
trait) as IVs to estimate a causal effect size of the exposure trait on 
the outcome, given that a variety of assumptions are met (Materials 
and Methods). MR estimates can be biased by genetic correlation, 
which is explicitly modeled by the LCV approach, but they have the 
advantage of facilitating direct causal estimates and the ability to 
construct multivariable models (8, 9, 25). The CRP GWAS used 
here was drawn from a non-UKBB cohort such that there was no 
sample overlap with the AN and MDD GWAS (Supplementary Ma-
terials) (26). Using our primary model [inverse-variance weighted 
(IVW) estimator with multiplicative random effects], we found ev-
idence that a natural log-transformed milligrams per liter increase 
in CRP was associated with a statistically significant reduction in 
the odds of SZ (OR = 0.91 [95% CI: 0.85, 0.98], P = 0.01) and AN 
(OR = 0.91 [95% CI: 0.83, 0.99], P = 0.03), which supports the 
LDSR-inferred direction of the LCV relationship. Using a less- 
conservative IVW estimator with fixed effects yielded a more pre-
cise estimate in both instances, as expected (CRP → SZ: P = 6.29 × 
10−5; CRP → AN: P = 9.79 × 10−3). There was a trend toward an 
odds-increasing effect of CRP on MDD (P = 0.19), while there was 
no indication of a reliable effect in the OCD model (P = 0.82). A 
nonsignificant estimate from MR does not necessarily preclude 
the existence of a causal relationship supported by an LCV model, 
although LCV models with corresponding MR support would per-
haps be viewed as stronger evidence. We discuss the sensitivity 
analyses for each of these univariable models in detail in Supple-
mentary Text. Briefly, the five MR tests deployed with different as-
sumptions regarding IV validity [plurality valid, majority valid, and 
instrument strength independent of direct effect (InSIDE) assump-
tion] had very similar point estimates (OR range: 0.88 to 0.91) and 
were all statistically significant for CRP → SZ with the exception of 
the simple median (P = 0.07). The CRP → AN estimate across the 
different models were also directionally consistent; however, they 

were not statistically significant (except for some contamination 
mixture models with different prespecified SD of invalid IVs), and, 
thus, the total effect of CRP on AN by MR has comparatively weak-
er evidence compared to SZ. The effect of using robust, penalized, 
or robust penalized weights in the median, IVW, and Egger models 
was not marked for each of the CRP to psychiatric models (Fig. 3A 
and table S21). In the CRP → SZ and CRP → AN models, the Egger 
intercept was not significantly different from zero (although there 
was a trend in the AN model; P = 0.07), and, thus, there was no 
strong statistical evidence of confounding pleiotropy using this 
metric. However, there was evidence of heterogeneity between the 
IV ratio estimates for AN and SZ: The MR-PRESSO global test of 
pleiotropy was significant and Cochran’s Q statistic was significant 
for AN and SZ, although both causal estimates remained statistically 
significant in the MR-PRESSO outlier–corrected estimates (table S19). 
Given the biological complexity of these phenotypes, heterogeneity 
does not necessarily imply confounding pleiotropy. Moreover, us-
ing a leave-one-out analysis, we found evidence of one outlier IV in 
the SZ model, while there were three outlier SNPs in the AN model 
(table S20), although the effects of removing these IVs were relatively 
small. The outlier IV in the SZ model was also proximal to the CRP 
gene itself (IVW P = 0.07 when removed), meaning that it is likely 
to influence SZ through CRP rather than being indicative of con-
founding pleiotropy. Specifically, the IV used was the lead SNP for 
the locus mapped to the CRP gene in the GWAS we used and is in 
high LD with putative functional variants within the 3′ untranslated 
region of CRP. Given that the CRP estimates on AN and SZ re-
mained consistent upon removing outliers by MR-PRESSO or 
through iterative single IV exclusion, it is less likely that horizontal 
pleiotropy fully explains these signals. There was also no evidence 
using a reverse MR model that, with the psychiatric disorder as the 
exposure, there were bidirectional effects, although these models 
are inherently underpowered and are best treated as a test of the 
null hypothesis only (table S22).

We sought to investigate the direct effect of circulating CRP on 
the above psychiatric phenotypes using MVMR conditioning on 
interleukin-6 (IL-6) signaling and body mass index (BMI; Materials 
and Methods). These variables were selected as IL-6 signaling is the 
key upstream factor that stimulates hepatic CRP secretion, and, 
thus, genetic IVs for CRP could plausibly operate through IL-6 to 
independently influence the risk of psychiatric illness (27). More-
over, BMI is postulated to be associated with CRP biology and may 
act upstream or even as a mediator of CRP-related effects (28, 29). 
We found that CRP exhibited a robust direct protective effect on SZ 

Table 2. Strong evidence of partial genetic causality of a biochemical measure on a psychiatric trait.  

Biochemical trait Psychiatric trait* GCP† SE P‡ rg

Glucose ADHD 0.64 0.28 0.035 0.134

CRP AN 0.92 0.07 5.95 × 10–56 −0.286

CRP MDD 0.62 0.21 1.57 × 10–12 0.154

CRP OCD 0.75 0.16 2.07 × 10–18 −0.201

Urate Cognition 0.88 0.09 5.27 × 10–114 −0.1047

*Psychiatric GWAS: ADHD, AN, MDD, and OCD.   †The posterior mean GCP with its accompanying posterior SE in the adjacent column.   ‡P value that 
tests whether the GCP estimate is significantly different from zero.
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Fig. 3. Total and direct estimated effect of CRP on psychiatric illness. (A) Total effect of CRP on each psychiatric outcome considered. Each point represents the IV-exposure 
effect versus the IV-outcome effect. Trend lines are indicative of the slope of each MR method used. The outcomes plotted from left to right are AN, MDD, OCD, and SZ. 
(B) Direct effect of CRP in MVMR models—the three models contained the following phenotypes as additional exposures: circulating interleukin-6 (IL-6) and its receptor 
(IL-6R), body mass index (BMI), and IL-6R and BMI.
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conditioned on IL-6 signaling and BMI (table S23 and Fig. 3B). For 
instance, using a multivariable IVW estimator, the direct effect of 
CRP on SZ conditioned on BMI and IL-6 receptor (IL-6R) was 
analogous to the univariable IVW total estimate (OR = 0.88 [95% 
CI: 0.79, 0.98], P = 0.01). There was no evidence of an effect of BMI 
or IL-6 signaling on SZ conditioned on CRP. Similarly, the effect 
size of the CRP → AN MVMR model remained similar to that esti-
mated in the univariable constructs (Fig. 3B); however, these esti-
mates were only statistically significant in a subset of the models 
(table S23). As a result, the MR evidence for the direct protective 
effect of CRP on AN is comparatively weaker than the CRP → SZ 
model, as was seen in the univariable estimates. We also observed 
some evidence to suggest that IL-6 abundance exerts a protective 
effect on AN conditional on CRP and IL-6R, which was nominally 
nonzero in every MVMR model except for the median estimator 
(OR = 0.96 [95% CI: 0.93, 0.99] per unit increase in IL-6, P = 0.037; 
multivariable IVW with multiplicative random effects). While evi-
dence for a direct effect of CRP on MDD conditioned on each vari-
able set was weak (Fig.  3B and table S23), there was consistent 
evidence that elevated IL-6R was associated with increased odds of 
MDD conditioned on CRP and IL-6 or CRP and BMI. For example, 
each unit increase in blood IL-6R protein expression was estimated 
to increase the odds of MDD by 2.7% [95% CI: 0.6%, 4.9%], condi-
tioned on CRP and BMI. Last, there was no evidence in the MVMR 
models to support the protective effect of CRP on OCD; however, 
there was evidence that increased BMI decreases the odds of OCD 
conditioned on CRP and IL-6 signaling (table S23). This BMI → 
OCD effect estimate was quite large, albeit with wide CIs—OCD 
OR per SD increase in BMI conditioned on CRP and IL-6R = 0.52 
[95% CI: 0.14, 0.91], P = 1 × 10−3.

C-reactive protein displays overlapping association  
signals with schizophrenia and may have downstream 
impacts on the brain
There were five SZ GWAS lead SNPs (P < 5 × 10−8) that also ob-
tained genome-wide significance in the UKBB CRP GWAS (table 
S24, Supplementary Text, and fig. S2). The signals were investigated 
using colocalization as described more extensively in Supplementa-
ry Text. For three of these loci, colocalization analyses using the 
European-only subset of the SZ GWAS and default prior probabilities 
demonstrated strong evidence for the association of three of these 
loci with both SZ and CRP; however, there was likely a different 
underlying causal variant (table S24). In other words, the posterior 
probability (PP) for the hypothesis termed H3 (locus associated 
with both traits but different underlying causal variant) was greater 
than 80% (table S24). These estimates remained consistent using 
larger prior probabilities for the hypothesis of a shared causal variant 
(H4) as a sensitivity analysis that is visualized in fig. S2. The remain-
ing two loci also did not exhibit strong evidence of colocalization 
(denoting a shared causal variant; PPH4 > 0.8) or any of the other 
tested hypotheses (PP > 0.8). Local genetic correlation estimates 
with -Heritability Estimation from Summary Statistics (HESS) 
demonstrated that 13 of the LD block partitions of the human ge-
nome displayed nonzero local covariance between CRP and SZ (ta-
ble S25 and fig. S3) after Bonferroni correction. Five of these LD 
blocks with strong evidence of local genetic covariance were posi-
tive, and, thus, for these regions of the genome, SZ and CRP were 
positively correlated in contrast to the genome-wide estimate of 
nominal negative correlation.

We also sought to investigate the downstream consequences of 
raised CRP. We estimated the effect of raised CRP on the expres-
sion of 3284 proteins in blood using univariable MR. Using a liberal 
FDR cutoff of 10%, we found that 95 proteins were putatively caus-
ally influenced by elevated CRP, with 45 of these proteins surviving 
a stricter FDR threshold of 5% (table S26). We emphasize that these 
analyses are exploratory in nature, and we treat the effect sizes of the 
CRP effect on each protein largely as a test of the null hypothesis 
that the two are not associated. The vast majority of proteins that 
prioritized using the IVW estimator were directionally consistent in 
the median, mode, and Egger sensitivity analyses (table S27). How-
ever, 20 of the FDR < 0.1 proteins were suggested to act in the oppo-
site direction and causally influence CRP, as the estimated variance 
explained by the IVs was significantly larger in the outcome than 
the CRP exposure, although this does not rule out bidirectional ef-
fects (table S28). We found that these proteins putatively influenced 
by CRP were enriched in several pathways including glycemic sig-
naling and lymphocyte biology (tables S29 to S31). Notably, there 
were neuronal pathways overrepresented with CRP-associated pro-
teins, including axon guidance, dopaminergic synapse, neurogene-
sis, glial cell differentiation, and cholinergic synapse. For example, 
dopaminergic and cholinergic synapse overrepresentations were 
driven by the three genes (AKT1, AKT2, and AKT3) that encode the 
RAC-alpha/beta/gamma serine/threonine-protein kinase complex, 
which was measured as a single entity in the protein study. Collec-
tively, these data provide preliminary evidence that CRP may influ-
ence the expression of neuronally relevant proteins, and subsequent 
studies should seek to investigate these associations and their signif-
icance for different psychiatric phenotypes.

DISCUSSION
In this study, we investigated genetic correlation and causality be-
tween a diverse panel of biochemical traits and psychiatric disor-
ders, as well as general cognitive ability and a cognitive deficit 
subtype of SZ. Our data demonstrated that there is clear evidence 
of genetic overlap between blood-based measures and psychiatric 
phenotypes, as quantified by LDSR, which may indicate shared 
variants and pathways that predispose to these traits. It should be 
noted that the pleiotropic effect of variants on other traits could 
mediate these relationships (7), while some of these trait pairings 
were further shown in this study to be consistent with evidence of 
causality rather than just correlation. The distribution of biochemical- 
psychiatric correlations demonstrated traits that often exhibited 
highly divergent correlations (different signs), as well as clusters of 
biochemical measures that tended to have similar psychiatric 
correlation profiles. For instance, we found that five reticulocyte 
traits clustered together (Fig. 1E), and they tended to have opposing 
psychiatric correlations (strong positive correlation with ADHD, 
MDD, and PTSD, while negative correlations with AN, OCD, SZ, 
and cognition). The genetic architecture of reticulocyte-related 
traits remains relatively uncharacterized; however, it is a highly 
polygenic trait that also has demonstrated genome-wide signifi-
cant associations with rare nonsynonymous variation in genes such 
as SPTA1, E2F4, and IFRD2 (30, 31). Future studies should further 
investigate how the genetic factors that contribute to reticulocyte 
biology may also influence psychiatric traits. Given that the LCV 
posterior mean GCP estimates between the genetically correlated 
reticulocyte traits and each psychiatric phenotype were low, it 
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suggests the existence of horizontal rather than vertical pleiotropy. 
We refer to horizontal pleiotropy as variants affecting both traits 
in a manner whereby their impact on one trait is not mediated by 
that of the other. In contrast, vertical pleiotropy denotes variants 
that causally link the traits in question (32).

A key advantage of our study is that we extended the findings 
from the LDSR models to estimate which biochemical-psychiatric 
trait pairs may represent causal relationships. We caution that all of 
these findings require validation in well-powered, replicated, ran-
domized controlled trials to confirm that the causal effects do in-
deed exist. Trials for these kinds of circulating measures can be 
difficult to conduct due to their transient nature and the likely 
extended length of follow-up required to detect any effect on risk, 
further emphasizing the importance of genetic approaches. The 
putative effect of urate and glucose on cognition and ADHD, re-
spectively, may have direct implications for drug repurposing given 
that compounds that modulate these traits are readily available. 
Both of these relationships are also supported by previous observa-
tional data (33–35). Data from an incident cohort study that treated 
individuals with urate-lowering compounds allopurinol and febuxostat 
demonstrated evidence of a risk-decreasing effect on dementia, 
supporting the deleterious effect of urate on general cognitive func-
tion (36).

The inferred effect of CRP on different psychiatric disorders was 
particularly interesting given that there was evidence of an odds- 
decreasing effect on AN, OCD, and SZ, while the opposite is true for 
MDD. CRP is traditionally conceptualized as a biomarker of chronic 
inflammation; however, its biology is likely somewhat more com-
plex given that it is also implicated to play a direct role in pathogen 
response (37, 38). Moreover, as reviewed by Del Giudice and 
Gangestad (27), CRP in its hepatically secreted pentameric isoform 
demonstrates some anti-inflammatory effects and may be a marker 
of other noninflammatory states. In our study, we also provide 
evidence that CRP levels may also exert an effect on proteins with 
neurological significance, including proteins enriched in pathways 
relevant to psychiatric illness such as axon guidance. Moreover, we 
show the previously documented protective effect of CRP on SZ 
through MR is not likely attributable to the effect of BMI and 
IL-6 signaling, which are closely related variables to CRP. Data 
from our study and previous examinations of the relationship 
between CRP and SZ through MR seemingly contradict previous 
observational evidence that CRP is elevated in SZ (19, 39). If we 
assume that there is a causal effect, then there are a number of 
explanations that could account for this, although all require further 
investigation. First, previous observational studies that directly 
measured CRP in case/control cohorts could be confounded be-
cause of a variety of variables including lifestyle and general health 
or could even be caused by factors related to psychosis and/or 
SZ itself. While there was no evidence in this study using the LCV 
model or reverse MR that SZ causally influences CRP levels, local 
significant estimates of positive and negative genetic correlation be-
tween SZ and CRP observed for several LD blocks suggest a com-
plex interrelationship between these phenotypes may exist that 
warrants additional study. Second, CRP itself may influence factors 
that affect the brain, directly or indirectly, and these factors may 
play a role in the pathogenesis of psychiatric illness. For instance, 
CRP was postulated in this study to causally up-regulate the expres-
sion of the RAC-alpha/beta/gamma serine/threonine-protein kinase 
complex (AKT1, AKT2, and AKT3), with impaired signaling by these 

serine/threonine kinases implicated to dysregulate dopaminergic 
neurotransmission and down-regulation of genetically predicted 
neuronal AKT3 expression associated with SZ via a transcriptome- 
wide association study (40, 41). Last, given that infection has been 
associated with liability of SZ, the role of CRP in pathogen defense 
may contribute to its putative protective properties. Further study 
on the neurobiological consequences of CRP signaling and its role 
in SZ is warranted, particularly to reconcile the discrepancies be-
tween observational studies and MR.

The putative causal effect of CRP on AN that was demonstrated 
in this study is, to our knowledge, a previously unidentified finding; 
however, it does support data from a recent longitudinal study that 
demonstrated that elevated CRP was associated with a protective 
effect on eating disorders (17), along with decreased measured CRP 
observed specifically in AN (42). It should be noted that, while the 
LCV data supported strong partial genetic causality of CRP on AN, 
the MR evidence was less statistically significant, with some evi-
dence in the MVMR that IL-6 signaling may exert a protective effect 
on AN conditioned on CRP. Inhibition of the IL-6 pathway has been 
associated with weight gain, which may be protective for AN (43). 
Furthermore, CRP likely is intertwined with other metabolic fac-
tors, including insulin signaling, which our group has previously 
shown through MR is also putatively protective for AN (44). In 
MDD, we found some evidence to support that up-regulation of the 
IL-6R may be risk increasing conditioned on CRP and BMI, sup-
porting preliminary data that blockade of IL-6R by agents such as 
tocilizumab may decrease depressive symptoms (45). However, 
data related to the antidepressant qualities of tocilizumab are con-
flicting (46), and randomized control trials are warranted to further 
investigate repurposing opportunities for IL-6 inhibition in MDD.  
Two recent studies also considered the effect of IL-6R signaling on 
the odds of depression via MR using some different GWAS than 
ours in some instances, with one study supporting a risk-increasing 
relationship between elevated IL-6R and depression (47), while the 
other suggested that IL-6R could be more specifically linked to 
suicidality rather than broad depression (48). Last, BMI demon-
strated a quite robust protective effect on OCD conditioned on CRP 
and IL-6 signaling, in accordance with observational data that OCD 
is associated with reduced odds of obesity (49).

There are a number of important limitations that are central to 
the interpretation of the data in this study. Genetic correlations 
from LDSR likely reflect a shared underlying genetic architecture; 
however, this could be mediated by the relationship of the same ge-
netic variants to another variable or variables (7). Despite this lim-
itation, the existence of genetic correlation between traits is still 
informative as identifying genes, which affect both psychiatric and 
biochemical traits, and further insight into the mechanisms would 
likely refine our understanding of both traits. Moreover, the genet-
ically informed causal inference approaches we implement in this 
study are subject to limitations regarding the data they are per-
formed with and any biases therein, including potential effects of 
population stratification (50), selection bias (51), and the assump-
tion of acyclicity, which refers to the lack of feedback loops between 
the exposure and outcome (52). The LCV model is also fixed to be 
bivariate in nature, and, thus, the effects of multiple meditators can-
not be taken into account. We address this by constructing MVMR 
models such that direct effects are estimated, conditioned on likely 
confounders; however, our selection of confounders is not exhaus-
tive, and other unidentified factors may influence our findings. The 
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UKBB sample is also composed of middle-aged to older individuals 
over the age of 40, and, thus, more developmentally sensitive effects 
on the biochemical traits in question could not be assessed. Genetic 
variants are also sometimes claimed to represent a lifetime effect on 
a particular variable, although caution is required in this inference 
given that factors such as age may modulate the effect of a variant 
(53, 54). We assert that, although GWAS-informed causal inference 
has a number of caveats and limitations, it enables an important op-
portunity to prioritize biochemical traits that are putatively clinically 
relevant in psychiatry and to inform future study into these traits.

MATERIALS AND METHODS
Study design
The principal aim of this study was a hypothesis-free test of genetic 
correlation and evidence for causation among a broad panel bio-
chemical traits and psychiatric illness. These data could be used to 
better understand shared genetic architecture between systemic traits 
and psychiatric disorders, with potential opportunities to leverage 
these data for translational approaches such as initiating trials to 
repurpose compounds that modulate the biochemical trait in question. 
Our sample size was not preselected; we used the largest European 
ancestry GWAS of each psychiatric trait publicly available at time of 
analysis, along with a harmonized set of biochemical GWAS from 
the large UKBB cohort to minimize intercohort heterogeneity. The 
inclusion criteria for variants in the analyses are described in detail 
in Materials and Methods and the Supplementary Materials. This 
study leveraged observational data from GWAS; however, we were 
able to use the unique properties of genetic variants to facilitate 
estimates of causal inference.

Psychiatric GWAS
GWAS summary statistics for nine European ancestry cohorts for 
the following disorders were obtained from the Psychiatric Genomics 
Consortium: ADHD (55), AN (56), ASD (57), BIP (58), MDD (59), 
OCD (60), PTSD (61), SZ (40), and TS (62). Given that cognitive 
symptoms are pervasively associated with psychiatric illness, we also 
included a GWAS of general cognitive ability (63). Further infor-
mation regarding these studies is provided in Supplementary Text.

Blood-based biomarker GWAS
We obtained GWAS summary statistics for a series of blood-based 
biochemical traits from the large UKBB sample performed by the 
Neale group (www.nealelab.is/uk-biobank). The key advantage of 
these data is its large sample size (N > 300,000) and that the bio-
chemical traits analyzed were obtained from a single large cohort. 
Specifically, we use a panel of 50 biochemical GWAS that had high or 
medium confidence estimates of SNP heritability that were signifi-
cantly different from zero as outlined in table S1 and Supplementary 
Text. These traits included lipids, micronutrients, hormones, metab-
olites, and enzymes.

Genetic correlation
The genetic correlation between each psychiatric and biochemical 
trait was estimated using LDSR (7), with summary statistic cleaned 
(“munged”) to contain around one million HapMap 3 SNPs outside 
the major histocompatibility complex (MHC) with minor allele 
frequency > 0.05 for consistency (https://github.com/bulik/ldsc). 
Briefly, LDSR estimates genetic covariance by regressing SNP-wise 2, 

the product of the marginal SNP effects from both traits (Z1Z2), on 
its LD score, which is an estimate of total LD existing with that 
SNP. Trait hertiabilities are used to normalize the genetic covari-
ance to obtain genetic correlation (rg). A key advantage of LDSR is 
that sample overlap only affects the LDSR intercept and not the 
slope, meaning that we can accurately estimate rg between UKBB 
biochemical GWAS and psychiatric GWAS with UKBB samples in-
cluded. We used the Bonferroni method to correct for the 50 traits 
tested. One biochemical trait was excluded from further analysis, 
apolipoprotein B, as it exhibited negative heritability within the 
block jackknifing procedure to estimate the rg SE in some instances. 
The resulting 49 by 10 matrix of LDSR rg, divided by its SE to obtain 
z score, was subjected to a latent clustering method, finite GMM, 
with the mclust R package version 5.4.6 (64). We selected the most 
parsimonious clustering configuration based on parametrization 
of the covariance matrix using the largest Bayesian information 
criterion value.

Biochemical polygenic scoring in a severe cognitive deficit 
subtype of schizophrenia
We sought to further investigate biochemical traits displaying psy-
chiatric genetic correlation and examine their relevance to the clin-
ical dimensions of psychiatric disorders. Specifically, we considered 
the heterogeneity of cognitive impairment observed in SZ, wherein 
deficits often manifest before the first psychotic episode and are 
highly variable in their presentation throughout clinical course 
(20, 65). We considered biochemical traits that were genetically cor-
related with either SZ or cognition after the application of multiple 
testing correction and interrogated their relationship with severe 
CD in a cohort of SZ cases from the ASRB cohort. The use of these 
data was approved by the University of Newcastle Human Research 
Ethics Committee and the ASRB (20, 30, 65). Previously, Green et al. 
(20) used multidimensional GoM clustering with nine cognitive 
measures to derive subgroups of cognitive performance in the ASRB.  
The most parsimonious configurations were two clusters of SZ 
cases termed CD, with more pervasive cognitive impairment, and 
CS, displaying intermediate cognitive performance relative to CD 
cases and healthy controls. PGS were constructed for the 25 bio-
chemical traits correlated with either SZ or cognitive ability in a 
genotyped subset of the ASRB with SZ cases subtyped as CD or 
CS (N = 391; Supplementary Materials). The full details of this 
cohort and the generation of PGS are described in Supplementary 
Text. We tested the association of each biochemical PGS with 
CD status using binomial logistic regression covaried for sex and 
the first three SNP-derived principal components (Supplementary 
Materials). The variance explained (Nagelkerke’s R2) in the full 
model, with the PGS versus the null (covariates and intercept only) 
model, was converted to the liability scale, assuming a population 
prevalence for CD of 0.33% (67). The population prevalence for CD 
is somewhat arbitrary; however, given that the population preva-
lence of SZ is around 0.7%, and 43% of this portion of the SZ cases 
in the ASRB cohort was subtyped as CD, we believe that this was an 
appropriate value to select. A PGS for general cognitive ability and 
an SZ PRS were also derived in this cohort for comparison (Supple-
mentary Materials).

LCV models
Genetic correlation may reveal important insights into shared biology 
between two traits; however, this should not be interpreted as 

http://www.nealelab.is/uk-biobank
https://github.com/bulik/ldsc
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implying a causal relationship in either direction. To evaluate 
evidence for a causal relationship, we implemented the LCV model to 
estimate genetic causality between traits, as outlined extensively 
elsewhere (9, 25, 68). The LCV framework leverages the bivariate 
genome- wide distribution of marginal SNP effects on both traits to 
estimate partial genetic causality. Specifically, the LCV assumes a 
latent variable, L; mediates the genetic correlation between the 
traits; and tests the strength of the correlation of each trait with 
L. The mixed fourth moments (cokurtosis) of marginal effect sizes 
for each trait (Z1, Z2) are compared to evaluate the proportionality of 
effects on either trait. The main output of the LCV model is the pos-
terior mean   ̂  GCP  , whereby   ̂  GCP   > 0 implies partial genetic causality 
of trait one on trait two and vice versa. In other words, given   ̂  GCP   > 
0, then trait one SNP effects (  Z 1  2  ) tend to be proportionally large on 
trait two (Z1Z2), such that  ∣E( Z 1  2    Z  1    Z  2   ) ∣≥∣E( Z 2  2    Z  1    Z  2   ) ∣ . As in 
LDSR, the LDSR intercept is used here to guard against infla-
tion due to sample overlap. We defined partial genetic causality us-
ing the recommended threshold of a significantly nonzero |  ̂  GCP  
| > 0.6, as this was shown by O’Connor and Price in simulations to 
guard against false positives (9). An LCV model was constructed 
for all genetically correlated psychiatric-biochemical trait pairs. 
Weak GCP estimates close to zero for genetically correlated traits 
imply that their relationship is potentially mediated by horizontal 
pleiotropy, whereby there may be shared genes, but the two traits do 
not likely exhibit vertical pleiotropy, whereby one trait causally influ-
ences another. We also attempted to replicate the observed   ̂  GCP   
using a non-UKBB biochemical GWAS (24, 26, 69, 70). It should 
be noted that the posterior mean   ̂  GCP   is not an estimate of the 
magnitude of any potential causal relationship and should not be 
interpreted as such, rather it evaluates the strength of evidence for a 
putative causal relationship using genome- wide SNP effects. The 
scripts to construct an LCV model are available at https://github.
com/lukejoconnor/LCV.

Mendelian randomization
CRP exhibited strong evidence of partial genetic causality on multiple 
psychiatric disorders, and, thus, we sought to estimate the magni-
tude of this causal relationship using univariable MR and MVMR. A 
detailed description of the MR methodology in this study is provided 
in the Supplementary Materials, with the theoretical justification 
for using SNPs as IVs also extensively discussed previously (8, 71). 
We estimated the total effect of CRP on each disorder using inde-
pendent genome-wide significant SNPs from a smaller non-UKBB 
GWAS as sample overlap between exposure and outcome that can 
bias MR estimates (Supplementary Materials) (26). The F statistic 
for IVs for this CRP GWAS was sufficiently strong (F > 10), as re-
ported previously (26).

Our primary model was an IVW effect estimator with multipli-
cative random effects, which assumes that all IVs are valid and is less 
biased by heterogeneity than a fixed-effects IVW estimator (8). While 
the IVW estimator is generally considered the most well-powered 
approach, the assumption that all IVs are valid is probably unrealis-
tic in practice. As a result, we implemented a series of models that 
make different underlying assumptions regarding IV validity, spe-
cifically, median-based estimators, which assume that most IVs are 
valid (72); a weighted mode estimator and a contamination mixture 
model, which both assume that, out of groups of IVs having the 
same asymptotic estimate, the largest group will be composed of 
valid IVs (plurality valid) (73, 74); and MR-Egger, which includes a 

nonzero intercept as a test of the average pleiotropic effect and as-
sumes that there is no significant correlation between direct IV ef-
fects on the outcome and genetic association of IVs with the exposure 
(InSIDE assumption) (75). As recommended by Bowden et al. (76), 
we ensured that the I2 statistic of IV-exposure effects exceeded 0.9, 
as this assesses the relative strength of the no-measurement error 
assumption and, thus, the suitability of using an MR-Egger model. We 
also tested the effect of using robust regression and penalized esti-
mates for heterogeneity on the IVW, median, and Egger regression 
estimates (77). Evidence of horizontal pleiotropy and outliers were fur-
ther investigated by testing heterogeneity in the IV/exposure-outcome 
effects (78), performing a leave-one-IV-out analysis (71), and testing 
for a nonzero MR-Egger intercept (75) and an MR- PRESSO test of 
global pleiotropy (also related to heterogeneity) (79). Furthermore, 
we also tested whether there was evidence of a causal effect in the re-
verse direction (psychiatric disorder as exposure), although MR esti-
mates with binary exposures should be treated cautiously, as described 
elsewhere (44, 80). Given that only approximately 2,000,000 SNPs 
were available in the non-UKBB CRP GWAS used, we used the 
more deeply imputed UKBB CRP GWAS as the outcome here, 
although these results could therefore be inflated by the sample 
overlap for AN and MDD.

MVMR was then performed to evaluate the direct effect of CRP 
on each psychiatric outcome tested when conditioned on BMI and 
IL-6 signaling, which are both postulated to be closely functionally 
related to circulating CRP (Supplementary Text) (81, 82). MVMR 
assumes that IVs are strongly associated with at least one exposure, 
and, therefore, SNPs were chosen, which were genome-wide signif-
icant for at least one phenotype. We constructed an IL-6 and BMI 
multivariable model separately—that is, CRP conditioned on circu-
lating IL-6 and its receptor (IL-6R), and CRP conditioned on BMI, 
as well as BMI and IL-6R. The strength of the IVs in each multivariable 
model was assessed using a two-sample conditional F statistic, which 
tests whether the IVs strongly predict each exposure, conditional on 
the other exposures in the model (83, 84). When an F statistic > 
10 could not be achieved, we relaxed the SNP inclusion threshold to 
represent suggestive significance in the GWAS (PGWAS < 1 × 10−5; 
Supplementary Text). We compared direct estimates for each expo-
sure using four different MVMR models—an IVW MVMR estima-
tor, a median-based MVMR estimator, an Egger regression–based 
MVMR estimator, and a regularization approach whereby least ab-
solute shrinkage and selection operator (LASSO)- type penalization 
is applied to shrink intercept terms corresponding to IVs predicted 
as valid (MVMR-LASSO) (85). Given that CRP was genetically 
correlated with several psychiatric GWAS, genetic correlation may 
result in bias in MR estimates (9). However, MR is a valuable exten-
sion to the LCV model as it allows for specification of several differ-
ent assumptions about IV validity and facilitates the estimate of 
total (univariable MR) and direct (MVMR) effects. The MR analyses 
were performed using the following packages in R version 3.6.0: 
TwoSampleMR version 0.5.5 (86), MendelianRandomization ver-
sion 0.5 (87), MR-PRESSO version 1.0 (79), and MVMR version 
0.3 (83).

Genetic overlap between CRP and SZ
We investigated whether any of the lead SNPs (genome-wide signif-
icant) reported in the PGC3 SZ GWAS were also associated with 
CRP (P < 5 × 10−8). For overlapping genome-wide significant 
signals, we tested whether there was a shared causal variant or 

https://github.com/lukejoconnor/LCV
https://github.com/lukejoconnor/LCV
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different causal variants underlying these loci, assuming a single 
causal variant, using the coloc package colocalization method (88). 
Moreover, we used -HESS (https://github.com/huwenboshi/hess) 
to estimate local genetic covariance between SZ and CRP, as 
opposed to a genome-wide estimate by LDSR, with local genetic 
covariance (g, local) calculated for munged HapMap 3 SNPs in 
around 1600 approximately independent LD blocks outside the 
MHC (89, 90). We derived an estimate of genetic correlation (rg, local) 
by dividing g, local by the product of the square roots of CRP and SZ 
local heritability per LD block, respectively.

Downstream effects of CRP
We investigated the downstream effect of CRP on circulating levels 
of 3284 proteins in blood using MR (91). We used the larger UKBB 
CRP GWAS to select IVs to maximize power. The principal MR 
model was the IVW estimator with multiplicative random effects to 
maximize power. Proteins that demonstrated at least nominal asso-
ciation with CRP levels after multiple testing correction (FDR < 0.1) 
were investigated for protein-protein interaction and overrepresen-
tation in biological pathways using STRING version 11.0 (92).

Statistical analysis
All statistical analyses used in this study were fully described in the 
previous sections, with additional information as necessary in the 
Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj8969

View/request a protocol for this paper from Bio-protocol.
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