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Neuropeptides are associated with childhood obesity and exploring their regulatory mechanisms may reveal new insights for novel
treatments. Childhood obesity data were downloaded from the GEO database and were used to screen for differentially expressed
neuropeptides in patients with obesity. NPY1R expression was significantly upregulated in children with obesity compared to
children without obesity (p < 0:05). The GEO database was used to filter differentially expressed miRNAs in patients with
obesity. And hsa-mir-4713 and hsa-mir-452 were found significantly downregulated in adipose tissue. The GEO, TRRUST, and
TFacts databases were used to screen all transcription factors for differentially expressed genes (DEGs). The potential
regulatory networks between the differentially expressed miRNAs, TFs, and neuropeptides were mapped. In the constructed
NPY1R regulatory network, the transcription factors TCF4, HEY1, and GATA3 are significantly associated with NPY1R. TCF4
and HEY1 were positively correlated with NPY1R, while GATA3 was negatively correlated with NPY1R. In the clinical
peripheral blood samples, NPY1R, TCF4, and HEY1 were significantly more expressed in the obesity and the obesity with
fracture group compared to the control group, while there was no statistically significant difference between the obesity group
and the obesity with fracture group in terms of expression. The expression of GATA3, miR-452, and miR-4713 was also
significantly lower in the obesity and the obesity with fracture groups when compared to the NC group. Therefore, NPY1R,
TCF4, HEY1, GATA3, miR-452, and miR-4713 may be risk factors for fracture in obese children. The potential NPY1R
regulatory function was exerted by two pathways: positive regulation caused by TCF4 and HEY1 acting on miR-4713 and
negative regulation via GATA3 acting on miR-452. Potential NPY1R-related targets for the treatment of childhood obesity
were provided in this study.

1. Background

According to a recent report by the World Health Organi-
zation (WHO), approximately 41 million children aged 5
and under were overweight or obese worldwide in 2016,
and 18% of young people aged 5 to 19 were overweight
or obese [1]. Childhood obesity has been on the rise world-
wide over the past three decades [2]. Being overweight or
obese is one of the risk factors of premature death. When

childhood obesity persists into adulthood, the risk of devel-
oping chronic diseases increases significantly [3]. There is
growing evidence that obesity affects bone health in chil-
dren, as well as the typical complications of obesity in
adults, including hyperlipidemia, hypercholesterolemia,
hypertension, metabolic syndrome, nonalcoholic fatty liver
disease, and type 2 diabetes [3–6]. Obesity increases the risk
of fractures [7]. Adipocytes and osteoblasts originate
together from mesenchymal stem cells (MSC) in the bone
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marrow [8]. There is an inverse relationship between
increased adipocytes in the bone marrow and bone forma-
tion [1]. Increased adipocytes in the bone marrow can
affect osteoblast differentiation and function, increase oste-
oclast activity, and hinder bone mineralization [9]. Romag-
noli et al. showed that the accumulation of abdominal fat
has a negative effect on the microstructure of bone trabec-
ulae [10]. Adipocytes have an endocrine function and can
also affect bone through the endocrine pathway, leading
to reduced bone mass and even osteoporosis. For example,
leptin inhibits osteoprotegerin and osteoclast nuclear factor
receptor activator ligands at higher concentrations, causing
a decrease in bone mineral density (BMD), which leads to
susceptibility to fragility fractures [11].

Moreover, childhood obesity has become a global public
health problem that affects not only the physical and mental
health of children but also their health and quality of life in
adulthood. Childhood overweight and obesity lead to
increased behavioral health problems in children and can
affect children and adolescents in the long term [12]. There-
fore, it is urgent to develop a feasible program to prevent
and treat childhood obesity as soon as possible. One potential
avenue of treatment would be the regulation of neuropeptides.
Neuropeptides are signaling molecules in the central nervous
system that have been shown to regulate appetite. Neuropep-
tide Y (NPY) is widely distributed in the central and peripheral
nerves and is an important neurotransmitter and a proappetite
factor [13]. NPY acts through its receptors to promote feeding,
energy storage, and adipose tissue accumulation [13–15]. NPY
can thus contribute to obesity by promoting the accumulation
of white adipose tissue (WAT) [16]. In addition, NPY inhibits
the thermogenic activity of the body’s brown adipose tissue
(BAT), thereby decreasing the body’s metabolic rate and
reducing energy expenditure [17].

Numerous studies in recent years have found that tran-
scription of neuropeptides is regulated by miRNAs [18,
19]. Recent studies have shown that miRNAs are involved
in various biological processes related to obesity, including
adipocyte differentiation, lipid metabolism, and changes in
insulin sensitivity [20–22]. It has been reported that the
miRNA expression profiles of obese patients and those with
normal Body Mass Index (BMI) differ significantly [23].
miR-143 was the first miRNA reported to be associated with
the development of adipocyte differentiation. Overexpres-
sion of miR-143 promotes adipocyte formation, suggesting
that it is effective in promoting WAT production [24]. The
expression of miR-455 increased significantly with the for-
mation of brown fat cells, suggesting that miR-455 is
involved in energy depletion [25]. Sun et al. identified
miRNA-193b-365 as a key factor in the regulation of brown
fat differentiation [26]. miR-122 is involved in hepatic lipid
metabolism that triggers obesity [27]. A prospective study
of up to 810 people found that high miR-122 levels were
positively associated with obesity [28]. MicroRNAs may
therefore be involved in the pathogenesis of childhood obe-
sity through the regulation of neuropeptides or their associ-
ated transcription factors.

This study is aimed at revealing the neuropeptides asso-
ciated with pediatric obesity, fractures, and their regulatory

network by performing database analyses and collecting
clinical peripheral blood samples for validation.

2. Methods

2.1. Patients. Peripheral blood samples were collected from
10 obese patients with distal radius fracture and 10 obese
patients without fractures, all females aged 5-11 years
attending Wuxi Children’s Hospital of Nanjing Medical
University from 2015 to 2021. The inclusion criteria for chil-
dren with fractures were as follows: (i) a clear history of
trauma, no combined vascular or neurological injuries, and
a confirmed radial diaphysis fracture on X-ray; (ii) con-
firmed obesity; (iii) age < 16 years; and (iv) complete clinical
and imaging data. The following are the exclusion criteria:
(i) pathological fractures, osteogenesis imperfecta, and other
bone metabolic diseases; (ii) combination of other systemic
pathologies that predispose to fracture or affect the healing
process; (iii) recurrent fractures; (iv) congenital ulnar radial
deformity or other neuromuscular bone dysfunction; (v)
multiple fractures or combination of other systemic injuries;
and (vi) incomplete clinical and imaging data and failure to
follow up. Obesity was determined by taking height and
weight data and calculating Body Mass Index (BMI) accord-
ing to the following formula: BMI ðkg/m2Þ = weight ðkgÞ/½
height ðmÞ� [2]. Patients with BMI ≥ 30 were considered
obese, following WHO obesity classification guidelines.
Peripheral blood samples were taken randomly from 10 chil-
dren without fractures from the normal physical examina-
tion population. According to the WHO guidelines, all
patients in this normal group were female, aged 5-10 years,
and had normal BMI (between 18.5 and 25). The inclusion
of the study population was in accordance with the principle
of randomisation and double blinding. All three groups were
free of other diseases and had not received any treatment or
medication 3 months prior to blood sampling. There were
no statistical differences in clinical sample characteristics
between the three groups except for BMI. Informed consent
was obtained from all patients and their guardians after the
purpose of the study was explained. The Ethics Committee
of the Wuxi Children’s Hospital of Nanjing Medical Univer-
sity approved the study.

2.2. Chip Data Selection and Variance Analysis. Childhood
obesity-related datasets were searched in the GEO GeneChip
public database in NCBI (http://www.ncbi.nlm.nih.gov/geo/
). A gene expression data set of 27 samples, GSE9624, was
selected for analysis. Data were collected from adipose tissue
samples taken from 14 obese and 13 nonobese children who
underwent appendectomy [29]. The GSE50574 and
GSE68885 datasets contained information on adipocyte-
derived exosomes from obese and normal populations [30].
Therefore, the GSE50574 and GSE68885 datasets were used
to screen for differentially expressed exosomal miRNAs in
obese patients. The filter criteria used were p value < 0.05
and absolute log-fold change ∣logFC ∣ ≥131 [31, 32].

2.3. Network Construction of TF-miRNA, miRNA-NPY1R,
and TF-NPY1R. miRNAs that bind to NPY targets were
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predicted using miRwalk2.0. miRwalk 2.0 is a dataset for
identifying potential regulatory targets of miRNAs based
on computer prediction. It integrates 12 online databases
to perform this analysis [33]. Therefore, miRwalk2.0 was
used to construct potential miRNA-NPY1R relationship
pairs. TransmiR v2.0 is an efficient database for the study
of regulatory miRNA transcription factors, containing com-
prehensive information on TF-miRNA regulation, showing
the TF-miRNA regulatory rules for each TF and miRNA
or a specific disease [34, 35]. TransmiR v2.0 was used to con-
struct potential TF-miRNA relationship pairs. The JASPAR
database is an open-source, public database containing
information on transcription factors and DNA binding sites
and has been used to analyze potential transcription factors
(TFs) regulating Neuropeptide Y Receptor Y1 (NPY1R)
[36]. TRRUST (Transcriptional Regulatory Relationships
Unraveled by Sentence-based Text mining) is a database of
transcriptional regulatory relationships, including the target
genes of transcription factors and the regulatory relation-
ships between transcription factors [35]. Furthermore,
OncoBinder is a tool for evaluating proteomic interaction
data and was used to identify proteins that potentially inter-
act with NPR1R [37].

2.4. Enrichment Analysis. As per previous research, enrich-
ment analysis was performed with R software (version
3.6.0) [38–40]. The three enrichment analyses Gene oncol-
ogy (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), Gene Set Enrichment Analysis (GSEA) were per-
formed. The clusterProfiler package (version 3.14.3) was
used for enrichment analysis, and the http://org.hs.eg/.db
package (version 3.10.0) was used for gene annotation. A
false discovery rate ðFDRÞ < 0:25 and an adjusted p value
(p.adjust) < 0.05 was defined as significant enrichment.

2.5. Quantitative PCR Assays. Detection of miRNA expres-
sion levels was performed using a reverse transcription kit
(Bioteke) according to the manufacturer’s instructions.
Briefly, 20μL reaction mixtures containing tissue samples
were incubated at 42°C for 60min and 80°C for 5min, then
reverse-transcribed into cDNA and stored at -20°C in the
refrigerator. The reaction was predenatured at 95°C for
2min and 40 cycles at 95°C for 15 s and 60°C for 1min.
The mRNA expression levels were measured by extracting
total RNA from blood using Trizol. Synthesis of cDNA
was then performed according to the instructions detailed
above. The primers were then mixed with cDNA and SYBR
Green dye for real-time quantitative PCR. Expression was
calculated based on the results of three independent experi-
ments using the 2-ΔΔCt method. The PCR parameters were
2min at 95°C, 1 cycle at 95°C for 5 s, and 30 s at 60°C. Cycle
threshold (Ct) values for the PCR reactions were obtained
with a 7500 real-time quantitative fluorescence PCR instru-
ment (ABI, USA).

2.6. Statistical Analysis and Visualization. All experiments
were repeated at least three times. The data were expressed
as the mean ± standard deviation, and the results were ana-
lyzed using R software. Differences were considered signifi-

cant at p < 0:05. Sankey diagrams were drawn to visualize
the interrelationships between molecular markers.

3. Results

3.1. Characterization of NPY1R Expression and Function in
Children with Obesity. The results of the analysis of variance
(ANOVA) test in the dataset GSE9624 showed that NPY1R
expression was upregulated in obese children and was statis-
tically significant (p = 0:036) (Figure 1(a)). Next, qPCR was
used to detect the expression of NPY1R mRNA in the three
groups (Figure 1(b)). Consistent with the results of the dif-
ferential analysis of the dataset, the qPCR results of the clin-
ical samples showed that NPY1R was significantly more
highly expressed in the obesity and obesity with fracture
groups relative to the NC group, while there was no statisti-
cally significant difference between the obesity and obesity
with fracture groups. In order to further understand the pri-
mary role of NPY1R in humans, a GSEA enrichment analy-
sis was performed (Figures 1(c) and 1(d)). GSEA results
suggest that NPY1R was associated with DNA infrared dam-
age and cellular response via ATR, cell cycle, reactome
metabolism of amino acids and derivatives, reactome DNA
repair, and cell cycle signaling pathways.

3.2. Potential miRNAs and Transcription Factors Regulating
NPY1R. Comparing the GSE50574 and GSE68885 datasets
revealed 102 and 40 differentially expressed miRNAs in
obese and lean adipocyte-derived exosomes, respectively.
There are five differential miRNAs in the intersection of
the two datasets: hsa-mir-4713, hsa-mir-452, hsa-mir-4517,
hsa-mir-409, and hsa-mir-3156 (Figure 2(a), Table 1). The
miRwalk2.0 database was used to predict the interaction of
these miRNAs with NPY1R. The results showed that hsa-
mir-4713 and hsa-mir-452 interacted with NPY1R. Plotting
the results on a volcano map showed that hsa-mir-4713 and
hsa-mir-452 were significantly downregulated in adipose tis-
sue relative to normal tissue (Figures 2(b) and 2(c)). Tran-
scription factors associated with differentially expressed
genes (DEGs) in adipose tissue of obese patients revealed
with Venn diagrams (Figure 2(d)).

3.3. Construction of a Potential Regulatory Network for
NPY1R. The TransmiR database was used to search and pre-
dict TF-miRNA regulatory relationships. The JASPA and
OncoBinder databases were used to predict potential regula-
tory TFs for NPY1R. Sankey diagrams showing a series of
TFs-miRNAs-NPY1R regulatory networks (Figure 3(a))
and TFs that may regulate NPY1R (Figure 3(b)) were con-
structed based on the findings. In addition, the interaction
factors of NPY1R were also analyzed using the OncoBinder
model to identify functionally relevant interactions. The
scores of the candidate interactors were plotted in a graph,
with all lines indicating statistical significance (p < 0:05;
Figure 3(c)).

3.4. Enrichment Analysis of NPY1R. To complete the regula-
tory network, GO and KEGG enrichment analysis was per-
formed in potential NPY1R-interacting proteins. GO and
KEGG enrichment analysis showed that the functions of
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NPY1R are mainly related to myeloid cell differentiation,
anatomical structure, maturation, neuropeptide signaling
pathway, feeding behavior, transcription factor complex,
nuclear chromatin, neuropeptide hormone activity, RNA
polymerase II distal enhancer sequence-specific DNA bind-
ing, enhancer binding, and enhancer sequence-specific
DNA binding; parathyroid hormone synthesis, secretion,
and action; and regulation of lipolysis in adipocytes and neu-
roactive ligand-receptor interaction (Figure 4(a)). The regu-

latory network between the differentially expressed miRNAs,
TFs, and NPY1R, as well as the enriched signaling pathway,
is shown in Figure 4(b).

3.5. Screening for Core Transcription Factors Regulating
NPY1R and Expression Analysis of Clinical Samples. Next,
all the regulators in the network in Figure 4 were subjected
to correlation analysis. The results showed that TCF4,
HEY1, GATA3, and NPY1R were significantly correlated.
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Figure 1: Characterization of NPY1R expression and function in children with obesity. The result of analysis of variance tests on the
GSE9624 dataset (a); expression of NPY1R mRNA in the normal control, obesity, and obesity with fracture groups by qPCR (b);
visualization of NPY1R-related GSEA (c, d).
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Figure 2: Potential miRNAs and transcription factors regulating NPY1R. Venn diagram demonstrating common differential miRNAs in the
GSE50574 and GSE68885 datasets (a); volcano map showing that hsa-mir-452 and mir-4713 were found to be upregulated in normal tissues
relative to adipose tissue expression in GSE50574 and GSE68885 (b, c); transcription factors associated with differentially expressed genes
(DEGs) in adipose tissue of obese patients revealed with Venn diagrams (d).
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While TCF4, HEY1, and NPY1R were positively correlated,
GATA3 was negatively correlated with NPY1R
(Figures 5(a) and 5(b)). The mRNAs for the TFs TCF4,
GATA3, and HEY1, as well as miR-452- and miR-4713-
related mRNAs, were detected using qPCR in the clinical
peripheral blood samples, and the results were consistent
with those obtained by our earlier bioinformatics analysis
(Figure 5(c)). Mechanistic map of the TF-miRNA-NPY1R
regulatory network demonstrates two signaling pathways
associated with NPY1R in childhood obesity (Figure 6).

4. Discussion

In this study, we used bioinformatics analyses to investigate
the neuropeptides associated with childhood obesity and
their regulatory mechanisms and collected clinical periph-
eral blood samples for validation. The construction and
study of the regulatory network between differentially-
expressed miRNAs, TFs, and NPY1R and the enriched sig-
naling pathways will further reveal the pathogenesis of child-
hood obesity and guide the clinical management of
childhood obesity and related injuries such as fractures.
Here, we briefly went through the major members of the
network and attempted to elucidate their possible roles.

NPY, a 36-amino acid peptide, is commonly expressed
in the human central and peripheral nervous system and is
involved in various physiological processes, including the
maintenance of bone homeostasis, energy synthesis, and
the feeding reflex [41]. Meanwhile, the NPY receptors are a
family of protein-coupled receptors, including Y1R, Y2R,
Y4R, Y5R, and Y6R [42]. The receptor NPY1R is also known
as the appetite-promoting receptor. It has been shown that
NPY1R mRNA expression is increased in diet-induced
obesity-sensitive rats and decreased in diet-induced resistant
rats, suggesting a correlation between Y1R gene expression
levels and a genetic predisposition to the development of
obesity [43]. Rapid food deprivation experiments also show
a significant reduction in NPY1R expression in the hypotha-
lamic regions [44]. In line with previous studies, we found
that NPY1R expression was significantly more highly
expressed in obese children—the obesity and obesity with
fracture groups—than in nonobese children. Obesity is an
expansion of adipose tissue with chronic low-level systemic
inflammation, which leads to the accumulation of ectopic
fat cells in the bone marrow cavity. This may impair bone
regeneration and lead to osteoporosis, in turn increasing
the susceptibility to fragility fractures [45]. In addition, obese
children are at significantly higher risk of developing type 2
diabetes, coronary heart disease, chronic kidney disease, and
cancer [12, 46, 47]. Therefore, the active search for molecu-

lar mechanisms related to childhood obesity is of great clin-
ical importance for preventing and treating childhood
obesity and the resulting fractures. Previous studies have
found that NPY also plays an important role in the regula-
tion of bone metabolism [48]. NPY binding to Y1R is
directly involved in the differentiation of bone progenitor
cells and the regulation of osteoblast activity [49] and the
differentiation of mesenchymal stem cells into osteoblasts
and bone synthesis in general [50]. Under stress, NPY in
the blood acts directly on the Y1R of osteoblasts to inhibit
osteoblast activity [51]. In contrast to the results of previous
studies, our study found no statistically significant difference
in NPY1R between the children in the obesity and the obe-
sity with fracture groups. However, this may be related to
the small sample size and needs to be further validated in
the future. Despite the small sample size, we successfully val-
idated the network we constructed around NPY1R. This
model shows three TFs (TCF4, HEY1, and GATA3) and
two miRNAs (miR-452 and miR-4713) strongly correlated
to its expression and possible function.

HEY1 is a member of the basic-helix-loop-helix (bHLH)
transcription factor superfamily HES/HEY, which are
known to play important roles in cell growth, proliferation,
differentiation, and apoptosis [52]. HEY1 is also a common
target of several tumorigenesis-related signaling pathways
such as Notch, TGF-β/BMP, and Smad [53–55]. Previous
studies on HEY1 in obesity are scarce, however. It has been
shown that Notch and its target gene, the HES/HEY family,
are activated in patients with obesity-related liver disease
and may represent a therapeutic target for patients with
obesity-related liver disease [56]. Here, HEY1 was identified
for the first time as a core transcription factor associated
with NPY1R expression and significantly correlated with
high expression of NPY1R in obese patients. This result
was confirmed using clinical peripheral blood samples.
HEY1 expression levels were significantly elevated in chil-
dren with obesity than in those who did not have obesity,
and there was no significant difference between the obesity
and obesity with fracture groups.

TCF4 (T-cell factor 4), a transcription factor with an
HMG-box, is also known as transcription factor E2-2 or
TCF7L2 [57, 58]. TCF4 interacts with β-catenin to form a
transcriptional regulatory complex, which is involved in reg-
ulating the Wnt signaling pathway and downstream-related
gene expression [59]. Wnt/β-catenin is a key negative regu-
latory signaling pathway for adipogenesis. In the Wnt path-
way, stable β-catenin enters the nucleus and binds to the
TCF/LEF (lymphoid enhancer factor) family of transcription
factors, which inhibit the expression of adipogenic transcrip-
tion factors [60]. In addition, the Wnt/β-catenin signaling

Table 1: Exosomal miRNAs potentially regulating NPY1R expression.

miRNA Target Start End Binding Energy Position

hsa-miR-4713-3p NPY1R 1061 1100 1 -23.2 CDS

hsa-miR-4713-3p NPY1R 38 56 0.846153846 -19.6 5UTR

hsa-miR-452-5p NPY1R 1612 1635 0.961538462 -21 3UTR

hsa-miR-452-5p NPY1R 2202 2215 0.846153846 -16.3 3UTR
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pathway has important implications for bone regeneration
and skeletal development [61]. Both β-catenin and TCF pro-
teins regulate the expression of osteoprotegerin, which is
present in osteoblasts and suppresses osteoclast differentia-
tion [62]. Under normal conditions, β-catenin in the classi-

cal Wnt signaling pathway binds to downstream TCF4/
TCF7L2 molecules and promotes bone formation [63, 64].
Our study was the first to identify TCF4 as a core transcrip-
tion factor associated with NPY1R expression and show that
it is significantly and positively correlated with NPY1R. This
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Figure 3: Construction of a potential regulatory network for NPY1R. Sankey diagram demonstrating a series of TFs-miRNAs-NPY1R
regulatory networks (a); Sankey diagram showing potential TFs regulating NPY1R (b); graphs showing potential functionally relevant
interaction factors and their scores, with all connecting lines indicating statistical significance (p < 0:05) (c).
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result was also confirmed in clinical peripheral blood sam-
ples. Compared with the NC group, TCF4 was significantly
more expressed in the obesity group and the obesity with
the fracture group. However, there was no statistically signif-
icant difference between the obesity group and the obesity
with fracture group.

GATA3 (GATA-binding protein 3) is a member of the
zinc-finger protein transcription factor family and regulates
gene expression in multiple tissues and organs during
embryogenesis, including hematopoietic cells, the skin, kid-
ney, mammary glands, and the central nervous system
[65–67]. GATA3 is mainly found in the preadipocytes of
white adipose tissue and is a marker molecule of preadipo-
cytes. It has been shown that GATA3 can inhibit adipocyte
lipogenesis by suppressing PPAR-α promoter activity. This
causes cells to remain in the preadipocyte stage [68]. Similar
to previous findings, our study found that GATA3 was a
core transcription factor associated with NPY1R expression
and was significantly negatively associated with high NPY1R
expression in patients with obesity. In our clinical samples,
the expression of GATA3 was significantly lower in the obe-
sity group and the obesity with fracture group compared to
the NC group.

MicroRNAs are a class of noncoding RNAs of approxi-
mately 22 nucleotides in length, which have a variety of
functions such as regulating growth and development, apo-
ptosis, cell proliferation, and hematopoietic processes
[69–72]. Previous studies have shown that adipocytes and
macrophages in adipose tissue can influence the expression
of target proteins and regulate the function of target cells
through miRNAs, adipokines, inflammatory mediators,

and other cellular factors, regulating lipid metabolism and
the intracellular environment [73]. Circulating levels of
miRNAs also correlated strongly with the degree of obesity
and its complications [74].

There are few studies on the association of miR-4713
and miR-452 with obesity and fractures. It has been found
that silencing miR-452 in mice or cultured adipocytes
increased lipid uptake in white fat but reduced glucose
uptake and mitochondrial respiration in brown fat. Differen-
tial expression of miR-452 gene has similarly been associated
with adipogenesis, mitochondrial metabolism, and glucose
uptake in white and brown adipose tissue [75]. We discov-
ered here for the first time, through bioinformatics analyses,
that hsa-mir-4713 and hsa-mir-452 were differentially
expressed in obese and normal human adipocyte-derived
exosomes and interacted with NPY1R. The miRNAs hsa-
mir-4713 and hsa-mir-452 were significantly downregulated
in adipose tissue compared to normal tissue. Furthermore,
when compared to the normal group in our clinical valida-
tion, hsa-mir-4713 and hsa-mir-452 were significantly lower
in the obese and the obese with fracture groups, but there
was no statistically significant difference between these two
groups. It can thus be hypothesized that the expression of
hsa-mir-4713 and hsa-mir-452 was associated with obesity
rather than fractures.

Based on these results, we identified two novel NPY1R-
associated signaling pathways in childhood obesity. The first
pathway involves the transcription factors HEY1 and TCF4,
which are positively correlated with NPY1R and are highly
expressed in obese patients. Both act on microRNA 4713,
causing the downregulation of microRNA 4713 expression
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and the upregulation of NPY1R expression. The second
pathway involves GATA3, which has reduced expression in
obese patients, resulting in the downregulation of miR-452
and the upregulation of NPY1R expression. These two path-

ways might be further investigated to yield new therapies for
children with obesity.

There are some limitations to this study. The clinical
part of this study was a retrospective study, comprising only
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female subjects from a narrow age range. The number of
cases was also small, and there was selective bias. As our
findings were based on bioinformatics methods and vali-
dated in the clinical samples, a larger sample size and age
range would be essential to ensure the validity of our find-
ings. Additionally, the mechanisms of each signaling path-
way still need to be further explored in animal models.

5. Conclusion

Based on a bioinformatics approach, we discovered two TF-
miRNA-NPY1R pathways involved in the development of
childhood obesity but were not associated with fractures in
obese children. We predicted the potential mechanisms of
miR-452 and miR-4713 in the regulation of NPY1R in child-
hood obesity, providing a new avenue for potential treat-
ments in this disease. These treatments may then assist in
early clinical intervention and individualized treatment
planning.
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