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Summary of the article:

The recognition of pathogen-associated nucleic acid (NA) promotes effective immunity against 

invading pathogens. However, endosomal Toll-like receptor (TLR) activation by self-NA 

also underlies the pathogenesis of systemic autoimmune diseases, such as systemic lupus 

erythematosus (SLE). For this reason, the activation thresholds of NA-sensing TLRs must be 

tightly regulated to balance protective and pathogenic immune responses. In this review, we will 

provide an overview of the evolutionary mechanisms designed to limit the aberrant activation 

of endosomal TLRs by self-ligands, focusing on four broad strategies. These include: 1) the 

production of nucleases able to degrade self-DNA and RNA; 2) the cell-specific regulation of 

endosomal TLR expression; 3) the spatial and temporal control of TLR positioning at a sub-

cellular level; and 4) the modulation of downstream TLR signaling cascades. Given the critical 

role for B cells in lupus pathogenesis, where possible, we will describe evidence for B cell-specific 

induction of these regulatory mechanisms. We will also highlight our own work showing how 

modulation of B cell endolysosomal flux tunes NA-sensing TLR activation signals. In the face of 

inevitable generation of self-NA during normal cellular turnover, these parallel mechanisms are 

vital to protect against pathogenic inflammation.
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Introduction

The COVID19 pandemic continues to exert a devastating toll on human health. As of 

November 2021, a total of >240 million confirmed cases and almost 5 million deaths 

have been attributed to SARS-CoV-2 (severe acute respiratory syndrome coronavirus) 

infection1, with estimates for excess global mortality reaching 17 million2. This potential 

for transmissible pathogens to cause widespread morbidity and mortality emphasizes the 
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importance of robust immune responses to infection. One strategy adopted by the humoral 

arm of the immune system is to integrate B cell receptor (BCR) and endosomal TLR 

signals to drive the rapid activation of virus-specific B cells. Specifically, it has long 

been appreciated that TLR ligands serves as effective vaccine adjuvants. However, whereas 

soluble protein antigens chemically linked to TLR agonist drive dendritic cell (DC)-specific 

activation, intact virus particles (in which viral NA is incorporated within viral capsids) 

promote robust B cell activation via B cell-intrinsic activation of the signaling adaptor 

Myd883. As such, B cells are “hard-wired” to respond vigorously to viral particles as an 

immune defense via engagement of antigen-specific BCR and endosomal TLR recognition 

of pathogen-associated nucleic acid (NA).

Unfortunately, this ability of B cells to recognize nucleic acids via engagement of endosomal 

TLRs acts as a double-edged sword. Despite the wide scope of potential autoantigens, it 

was recognized in the 1950’s that systemic lupus erythematosus (SLE) is characterized by 

relatively restricted autoantibodies targeting nuclear antigens4. The biology underlying this 

observation remained enigmatic until the seminal discovery that nuclear antigens can induce 

similar dual BCR and TLR activation of autoreactive B cells5. Specifically, autoreactive B 

cells recognizing apoptotic particles traffic nucleic acid-containing antigens to endosomal 

compartments resulting in TLR engagement. The Myd88-dependent receptors TLR7 and 

TLR9 are critical in this context, with TLR7 required for the generation of Abs targeting 

RNA and RNA-associated proteins, while TLR9 activation promotes production of Abs 

targeting double-stranded DNA (dsDNA) and chromatin5,6. These data provided a unifying 

model for the generation of anti-nuclear antibodies (ANA), but also highlighted the risks 

inherent in this arrangement. On the one hand, B cell-intrinsic activation by viral DNA/RNA 

markedly increases titers, affinity, and durability of specific antibody, facilitating both viral 

clearance and long-term protection from pathogen rechallenge. On the other hand, B cell 

sensing of self-nucleic acids initiates the development of several humoral autoimmune 

diseases, including SLE.

Endosomal TLR signals exert B cell-intrinsic contributions to lupus 

pathogenesis

As detailed below, limiting the expression of NA-sensing TLRs to specific cell lineages 

serves as a strategy to prevent aberrant activation by self. Of specific relevance to lupus 

pathogenesis, the endosomal receptors TLR7 and TLR9 are expressed by both B cells and 

myeloid lineages, in particular plasmacytoid dendritic cells (pDC). For this reason, each 

lineage might conceivably promote the development of SLE via cell-intrinsic mechanisms. 

The prevailing model holds that dual BCR and TLR engagement promotes anti-nuclear 

antibody production by B cells, while Fc receptor-dependent uptake of circulating immune 

complexes promotes Myd88-dependent pro-inflammatory cytokine and type 1 interferon 

production by pDC7,8. The logical conclusion from this model is that autoreactive B 

cell activation is the initiating event driving breaks in tolerance, since this is required 

for autoantibody:autoantigen immune complex formation. In keeping with this idea, B 

cell-intrinsic deletion of the TLR signaling adaptor Myd88 abrogated autoimmunity in 

independent murine lupus strains9–12. In contrast, dendritic cell (DC)-specific Myd88 
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deletion exerted a more limited impact on dermatitis in MRL.Faslpr mice, without affecting 

ANA production11. These animal studies are consistent with human data derived from pre-

clinical lupus cohorts, in which ANA positivity develops years prior to clinical symptoms, 

but the type 1 IFN signature develops shortly before disease onset13,14. Together, these 

studies highlight a critical role for B cell TLR signals in initiating the inflammatory cascade 

leading to clinical SLE.

In retrospect, the role for TLR7 and TLR9 in facilitating the production of RNA- and DNA-

associated autoantibodies was consistent with each receptor’s ligand specificity. However, 

despite data linking anti-dsDNA autoantibodies titers with disease activity in human 

SLE15,16, Tlr9 deletion unexpectedly worsened systemic inflammation in murine lupus17–20. 

In contrast, TLR7 is required for the development of lupus-like disease in multiple 

independent mouse models18,19,21, including for accelerated disease in Tlr9−/−.MRLlpr and 

Tlr9−/−.B6.Nba2 mice20,22. While the mechanism underlying these opposing impacts of 

TLR7 and TLR9 on lupus pathogenesis have yet to be adequately explained, an important 

additional question is whether myeloid- or B cell-driven TLR signals explain these effects.

The original description of accelerated autoimmunity in TLR9-deficient lupus implicated 

a myeloid-specific mechanism. Since Tlr9−/−.MRL.Mplpr/lpr lupus-prone mice exhibited 

increased plasmacytoid dendritic cell (pDC) activation and elevated type 1 interferon levels, 

these data suggested that loss of TLR9 promotes myeloid dysregulation18. It was against 

this backdrop that our group sought to directly compare the impact of B cell specific TLR7 

vs. TLR9 deletion during lupus pathogenesis. Using a chimeric model of murine SLE, we 

showed that B cell-intrinsic loss of TLR7 both prevented RNA-associated autoantibody 

production and abated systemic autoimmunity. In contrast, B cell Tlr9 deletion exerted an 

isolated impact on anti-dsDNA/chromatin autoantibodies and exacerbated disease23. Thus, B 

cell-specific TLR7 vs. TLR9 deletion was sufficient to recapitulate the phenotype of global 

knockout models, despite intact expression of endosomal TLRs in the myeloid compartment.

Importantly, these B cell-intrinsic effects for endosomal TLRs in regulating disease severity 

have been confirmed in multiple independent murine models. For example, transgenic 

Tlr7 over-expression exerts a B cell-specific impact on lupus risk24,25, while spontaneous 

germinal centers in C57BL/6 mice depend on TLR7 engagement by B cells19. In contrast, B 

cell-intrinsic Tlr9 deletion in MRL/lpr mice exacerbates lupus nephritis despite loss of anti-

nucleosome antibodies26. In keeping with predominantly B cell focused effects during lupus 

pathogenesis, loss of myeloid TLR9 expression exerted no detectable impact on systemic 

autoimmunity. Most notably, the converse experiment highlighted a critical protective role 

for TLR9 in SLE, since B cell-specific Tlr9 over-expression was able to protect against 

progressive nephritis26. In summary, while not seeking to downplay the important role for 

myeloid TLR signals in driving lupus disease, these combined studies emphasize how tight 

regulation of endosomal TLR signaling in B cells is required to maintain immune tolerance.

Regulation of endosomal TLR signals

Since endosomal TLR signals promote robust immune responses to viral pathogens and 

also drive immune tolerance breaks in humoral immunity, activation thresholds must be 
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finely tuned. To balance protective and pathogenic responses, the nucleic acid (NA)-sensing 

TLRs, like other arms of the immune system, have been shaped by evolutionary forces. 

Specifically, endosomal TLRs employ various mechanisms to reduce the likelihood that 

self-ligand activation promotes pathologic inflammation, in the face of the continuous 

production of billions of apoptotic cells per day. These mechanisms can be categorized 

into two broad classes: those that reduce the likelihood that NA-sensing TLRs will encounter 

self-nucleic acids and those that dampen responses to them. Given the importance of these 

regulatory processes to the pathophysiology of human autoimmunity, significant effort has 

been directed to delineating these cellular mechanisms. However, the bulk of these studies 

have focused on the regulation of myeloid TLR signaling, with less emphasis placed on 

B cell focused studies. For this reason, in addition to providing a general overview of 

endosomal TLR regulation, we will highlight research, including from our own groups, that 

aims to uncover B cell-intrinsic regulatory mechanisms.

As a broad framework, we propose that four major mechanisms limit pathogenic activation 

of NA-sensing TLRs (Figure 1). First, specific nucleases and membrane channels degrade 

or remove self-NA to prevent receptor binding. Second, the expression of NA-sensing 

TLRs is limited to a subset of immune lineages required for effective pathogen response, 

while TLR signals are dampened in tissue macrophages optimized for silent clearance of 

apoptotic material. Third, NA-sensing TLRs are directed to endosomal compartments to 

prevent pathogenic activation by extra-cellular self-NA. Moreover, following ligand binding, 

the induction of endolysosomal trafficking regulates both the amplitude and duration of TLR 

signaling. Finally, genetic variation modulates signaling cascades downstream of endosomal 

TLR ligation, as evidenced by the enrichment of TLR-associated gene polymorphisms in 

subjects with SLE.

1. Degradation of self-nucleic acids by specific nucleases

Given the potential for exposure to ubiquitous self-nucleic acids, various nucleases have 

evolved to remove NA prior to recognition by endosomal TLRs. Most notably, a secreted 

DNA nuclease, DNase I-like 3 (DNASE1L3), acts extracellularly to degrade both cell-free 

DNA and DNA within circulating apoptotic microparticles. In keeping with this enzyme 

acting to prevent autoimmunity, homozygous loss-of-function DNASE1L3 mutations result 

in familial, early-onset SLE27,28, while a hypomorphic variant with reduced enzymatic 

activity has been linked with increased SLE and scleroderma risk29,30. In addition, 

Dnase1l3−/− mice exhibit lupus-like disease characterized by high-titer anti-DNA antibodies 

confirming the degradation of extracellular self-nucleic acid is required to maintain immune 

tolerance31–33. Surprisingly, both TLR7 and TLR9 signals facilitated NA responses in 

Dnase1l3−/− mice, with each receptor partially redundant for autoantibody production. 

Although the relative importance of B cell vs. myeloid TLRs in Dnase1l3−/− murine 

autoimmunity has not been addressed, genetic ablation of type 1 IFN signaling was 

dispensable for initial tolerance breaks but required for feed-forward amplification of anti-

DNA reactivity33; data consistent with the murine and human studies described above.

While these data indicate that loss of DNASE1L3 activity can drive a familial form of 

early onset SLE, the contribution of this nuclease to the pathogenesis of sporadic SLE 
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was less clear. However, a recent study described anti-DNASE1L3 autoantibodies in ~50% 

of lupus nephritis patients, which inhibited serum nuclease activity resulting in increased 

poly-nucleosomal cell-free DNA (cfDNA) within circulating microparticles. Accumulation 

of these DNASE1L3-sensitive antigens correlated with higher autoantibody titers and 

lupus disease activity, highlighting a novel non-genetic mechanism by which alterations 

in DNASE1L3 function impact lupus pathogenesis34.

Predictably, additional nuclease enzymes evolved to limit pathogenic responses to 

endogenous nucleic acids. For example, lack of the secreted nuclease DNAse I (DNASE1) 

promotes lupus-like disease in both murine models and human subjects35,36. In addition, 

deletion of the endolysosome localized nucleases phospholipase D3 (PLD3), phospholipase 

D4 (PLD4), or DNAse II each result in severe murine autoinflammatory disease 

characterized by lethality in utero or early in life. Disease development in Pld3−/− and 

Pld4−/− animals is predictably driven by TLR9 signals, although autoinflammation in 

Dnase2−/− mice is dependent on activation of the cGAS–STING pathway37–39.

In summary, multiple independent exo- and endonucleases have evolved to prevent 

the otherwise inevitable activation of DNA sensors following normal cellular turnover. 

Surprisingly, similar null mutations in RNAse enzymes have yet to be linked to murine or 

human lupus pathogenesis. Although transgenic RNAse A overexpression protects against 

the development of TLR7-driven murine SLE40, this limited phenotype of RNAse enzyme 

knock-out strains suggests either functional redundancy across RNAse enzymes or the 

existence of alternate mechanisms to limit RNA accumulation. In keeping with this latter 

hypothesis, mutations in Slc29a3, a lysosomal transporter which traffics nucleoside from 

lysosomes to the cytoplasm, promotes TLR7-dependent histiocytosis in mice41. Although 

the predominant clinical phenotypes of human SLC29A3 deficiency include monogenic 

histiocytic disorders such as H syndrome and familial Rosai-Dorfman disease42,43, rather 

than SLE, an intronic polymorphism in SLC29A3 that limited monocyte expression 

was recently identified in an Asian lupus cohort44. Thus, rather than RNA degradation, 

nucleoside removal from the endolysosomal compartment may be the dominant mechanism 

limiting inadvertent TLR7 engagement.

2. Regulation of NA-sensing TLR expression across cell lineages

As an additional strategy to limit inadvertent autoimmune activation, the expression of 

NA-sensing TLRs is restricted to specific cell types. In contrast to broad expression of 

intracellular NA sensors designed to recognize direct cell infection (e.g. MDA5, MAVS, 

STING, RIG-I), high-level expression of NA-sensing TLRs is relatively restricted to 

plasmacytoid dendritic cells (pDCs) and B cells. Low level receptor expression is also 

observed on specific immune (including macrophages and myeloid DCs) and non-immune 

(keratinocytes, epithelial cells, hepatocytes) populations, with the potential for induction 

of TLR7 mRNA in response to inflammatory cytokines45. The evolutionary rationale 

underlying this arrangement is that TLR7 and TLR9 are designed to recognize NA from 

extracellular pathogens. Thus, expression is restricted to cell lineages designed for antigen 

uptake, either by phagocytosis, by Fc-receptor binding in pDCs, or by B cell receptor 

(BCR)-mediated recognition of specific antigen determinants by B cells.
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An additional example of how regulated expression of NA-sensing TLRs prevents 

autoimmune activation includes the development of specific macrophages designed for silent 

clearance of apoptotic material. In a wide range of organs, the phenotype of tissue resident 

macrophages includes expression of receptors specific for apoptotic cells, together with low 

TLR9 expression and limited NA responsiveness46. The importance of this arrangement 

in maintaining homeostasis is supported by the observation that defects in apoptotic cell 

clearance are linked to lupus pathogenesis47.

Finally, even among TLR7/TLR9-expressing immune cells, expression levels are restrained 

as a mechanism to limit aberrant activation. In murine models, increased Tlr7 gene dose 

promotes lupus-like disease48–50. Indeed, Tlr7 over-expression can act in a B cell-intrinsic 

manner to drive SLE, as evidenced by competitive recruitment of TLR7-transgenic B 

cells into autoimmune germinal centers24, and reduced anti-RNA autoantibodies following 

Cre-mediated normalization of B cell TLR7 expression in a low-copy Tlr7 transgenic lupus-

prone strain25. Moreover, an important contributor to female sex predominance of human 

SLE is likely X chromosome dose, based on the observation that disease risk is increased 

in males with Klinefelter syndrome (47,XXY) and Trisomy X (47,XXX) females51,52. 

Of the multiple X-linked genes potentially contributing to this observation, TLR7 evades 

X inactivation in immune cells, including both B cells and pDCs53. Strikingly, naïve 

B cells with biallelic TLR7 expression exhibit a selective advantage during TLR-driven 

activation, providing additional support for a B cell-intrinsic impact of TLR7 during lupus 

pathogenesis.

3. Spatial and temporal regulation of NA-sensing TLR expression

Another strategy limiting aberrant activation of NA-sensing TLRs by self-NA is their 

restricted expression within endosomal compartments. Following internalization and 

degradation of microbial antigens, pathogen-derived NA activate endosomal TLRs to 

promote robust immune responses. In addition to allowing pathogen recognition without 

direct cellular infection, this subcellular localization also sequesters NA-sensing TLRs away 

from extracellular apoptotic or necrotic material. However, engineering signaling-competent 

TLR9 on the cell surface results in lethal systemic inflammation54. These findings are 

consistent with a marked inflammatory potential of mislocalized NA sensors and suggest 

that specific mechanisms must have evolved to deliver NA-sensing TLRs to the appropriate 

subcellular compartments.

Targeting of NA-sensing TLRs to endosomal compartments by UNC93B1—
Individual TLRs differ in their requirements for signaling initiation depending on their 

localization and ligand availability. The endosomal NA-sensing TLRs have a specific 

requirement of translocation to endolysosomal acidic compartment where they are cleaved 

and recognize ligands55,56. The TLR trafficking protein UNC93B1 binds several TLR 

families (including TLR3, TLR7, TLR9, TLR11, TLR12, TLR13) and controls their 

movement from the endoplasmic reticulum (ER) to the endolysosomal compartment 

where they are proteolytically processed to generate signaling-competent receptors. How 

UNC93B1 regulates this trafficking process has not been completely defined, although 

important differences exist between TLR family members. For example, UNC93B1 
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recruitment of adaptor protein complex 2 (AP-2) is required for TLR9 delivery to the 

endosome, whereas other TLRs use different UNC93B1-dependent trafficking pathways57. 

While UNC93B1 is not required for ligand binding or signaling, deficiencies in UNC93B1 

binding leads to TLR trafficking defects and subsequent defective signaling. Consistent 

with these data, loss-of-function Unc93b1 mutations abrogate murine lupus and recessive 

mutations in human UNC93B1 have been identified in children with Herpes simplex virus-1 

(HSV-1) encephalitis (HSE)58,59.

Beyond facilitating endosomal TLR trafficking, UNC93B1 also regulates endosomal TLR 

signaling and likely contributes to differential functional responses to TLR7 vs. TLR9 

activation. For example, the missense mutation Unc93b1D34A prevents TLR9 binding, 

resulting in the preferential export and function of TLR7. In this setting, increased TLR7 

signaling drives lethal systemic inflammation. Although the relative contribution of B 

cell and myeloid signals to this phenotype has not been addressed, it is notable that 

B cell depletion prevents pathogenic CD4+ T cell activation in Unc93b1D34A mice60. 

More recent data have further characterized differential regulation of TLR7 and TLR9 by 

UNC93B1. Whereas UNC93B1 targets both TLR7 and TLR9 to the endosome, TLR9 is 

released within the endosomal compartment and this dissociation is required for normal 

signaling61. In contrast, TLR7 remains bound to UNC93B1 within the endosome which 

allows an additional layer of regulation. Specifically, UNC93B1 promotes the interaction 

of TLR7 with Syntenin-1, which facilitates termination of signaling by trafficking the TLR7-

UNC93B1 complex into multivesicular bodies. In keeping with this mechanism limiting 

dysregulated TLR7 activation, mice expressing mutant UNC93B1 unable to bind Syntenin-1 

develop spontaneous, TLR7-dependent autoimmunity62. As with other Unc93b1-mutant 

murine models, the relative contribution of B cell vs. myeloid lineages to the autoimmune 

phenotype has not been addressed. However, B cells from Unc93b1PKP/PKP mice (unable to 

interact with Syntenin-1) exhibit increased responses to TLR7 ligands ex vivo, implicating 

dysregulated B cell activation in disease pathogenesis.

Regulation of TLR signaling by endolysosomal trafficking—In addition to 

correctly localizing NA-sensing TLRs within the appropriate endosomal compartment for 

signaling, additional trafficking events regulate the type of signals generated upon ligand 

binding. These events are mediated by a series of adaptor proteins, as well as engagement 

of a non-canonical autophagy pathway (Figure 2). Ligand binding to endosomal TLR7 and 

TLR9 leads to activation of transcription factors NFκB and IRF7, required for production 

of proinflammatory cytokines and Type I IFN, respectively. While the adaptor protein 

Myd88 coordinates both signaling pathways, studies in macrophages, plasmacytoid dendritic 

cells (pDCs), DCs, and B cells have indicated that NFκB and IRF7 activation occurs in 

distinct endosomal compartments. For example, stimulating pDCs with CpG DNA designed 

to localize to specific compartments uncovered distinct spatiotemporal regulation of TLR9-

dependent IRF7 and NFκB activation63. Iwasaki and colleagues showed that the adaptor 

protein AP3 is a key regulator controlling this switch from NFκB to IRF7 activation in 

response to TLR9 engagement64. Mechanistically, AP-3 promotes the ordered transition 

of TLR9 though distinct endolysosomal stages, from early endosomes (marked by EEA1 

or Vamp3 expression), to late endosomes, and finally endosomal fusion with LAMP2+ 

Acharya and Jackson Page 7

Immunol Rev. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lysosomes. In this context, NFκB activation occurs within early endosomes (termed 

NFκB endosomes), while IRF7 is activated in late endosomal compartments (termed IRF7 

endosomes). Whereas initial studies suggested that the order of NF-κB vs. IRF7 activation 

is reversed in plasmacytoid dendritic cells (pDC)63,65, subsequent evidence confirmed that 

TLR-dependent IRF7 signaling requires endolysosomal maturation and occurs after initial 

NF-κB activation64,66. Consistent with this model, AP3 deletion in mice or cell lines limits 

IRF7-dependent type 1 IFN production but promotes a parallel increase in NFκB-driven 

pro-inflammatory cytokines. This spatial regulation of IRF7 is maintained by a requirement 

for the adaptor TRAF3, such that modified TRAF3 able to localize to early endosomal 

compartment was sufficient to induce IRF7 signaling within early endosomes64. This 

location-specific signaling requirement is not specific for the endosomal NA-sensors TLR7 

and TLR9, since even cell surface TLRs, such as TLR4, which activate NF-κB at the plasma 

membrane must relocate to endosomes for IRF3-dependent type 1 IFN production67,68. In 

keeping with this regulatory framework, AP-3 activity is also required for TLR4 trafficking 

to endosomes and induction of type 1 IFN64.

Non-canonical autophagy regulates TLR-dependent endolysosomal trafficking
—In addition to AP-3, more recent studies have identified an important role for autophagy 

proteins in regulating endolysosomal trafficking. Classical autophagy (also termed 

macroautophagy) is the physiologic process whereby cellular components are degraded 

during stress and nutrient starvation. In this “canonical” autophagy pathway, ATG proteins 

orchestrate the formation of a double-membrane “autophagosome” containing cellular debris 

and lipidation of the ubiquitin-like protein LC3 which is recruited to autophagosomes. 

Subsequently, lipidated LC3-I (termed LC3-II) recruitment promotes lysosomal fusion 

and the degradation of cellular constituents69,70. Importantly, key components of the 

autophagy machinery also impact other intracellular processes such as endosomal TLR 

signaling without requiring autophagosome formation. In pDCs, IRF7 activation occurs in 

compartments positive for autophagy proteins such as LC3, such that type 1 IFN production 

depends on the recruitment of autophagy proteins71–73.

This non-canonical form of autophagy, which is termed as LC3 associated phagocytosis 

(LAP) in phagocytic cells, has specific relevance to the pathogenesis of SLE71,74. The 

ingestion of extracellular pathogens by phagocytic cells and the engagement of pathogen-

recognition receptors (e.g. TLRs) results in the recruitment of lipidated LC3-II to 

phagosomes, resulting in lysosomal fusion and the degradation of ingested pathogens75. 

Importantly, in addition to pathogen defense, LAP is also critical for efferocytosis, the 

immunologically silent clearance of dead/dying cells by phagocytes47,76,77. In keeping 

with this model, Martinez et al. demonstrated that mice deficient in non-canonical LAP 

autophagy components, but not canonical autophagy-specific genes, develop spontaneous 

lupus characterized by class-switched antinuclear antibodies and lupus nephritis78. 

Mechanistically, apoptotic cells are appropriately taken up by myeloid cells from LAP 

component-deficient mice, but efficient degradation of engulfed material is perturbed, 

resulting in the production of pro-inflammatory cytokines. Repeated injections of dying 

cells accelerated lupus-like disease in these animals, supporting dysregulated efferocytosis 

as the driver of disease development. These combined studies highlight how distinct TLR 
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signaling programs are induced from separate subcellular compartments, with the regulation 

of endosomal trafficking by adaptor proteins and autophagy components regulating this 

temporal switch. As we will describe in detail below, disruption of non-canonical autophagy 

can also result in B cell-intrinsic dysregulation of endosomal TLRs resulting in breaks in 

immune tolerance.

B cell-intrinsic regulation of TLR signaling thresholds by endolysosomal flux
—Germline deletion of several autophagy components results in embryonic or peri-natal 

lethality. For this reason, Martinez et al. used LysM-Cre mice to conditionally ablate 

relevant non-canonical autophagy genes in macrophages, monocytes, and DC subsets78. 

Thus, by definition, the observed lupus-like features in LAP-deficient animals are attributed 

to myeloid-specific dysregulation of TLR signaling. However, since regulation of B cell 

TLR signaling is critical to maintain immune tolerance, we hypothesized that endolysosomal 

trafficking exerts a parallel B cell-specific impact on autoimmune risk.

We recently identified an important role for a family of integrins and autophagy proteins 

in processing of B cell TLR signals. Integrins are heterodimeric membrane proteins that 

regulate multiple immune functions, including cell adhesion and migration, by linking 

the cytoskeleton with extracellular cues. Less well appreciated, is the fact that integrins 

can also modulate intracellular trafficking events, which prompted us to test whether a 

specific integrin heterodimer αvβ3 from the αv integrin family regulates B cell activation. 

Notably, B cells deficient in either αv or β3 subunits exhibit increased TLR responses 

in vitro and in vivo (Figure 3). Dissecting the underlying mechanisms, we observed that 

in response to CpG stimulation, αvβ3 traffics to early endosomes together with TLR9, 

where it promotes Src/Syk kinase activation and production of reactive oxygen species 

(ROS). This promotes Atg5 activation and the delivery of lipidated LC3 to TLR-containing 

endosomes; events which ultimately facilitate endolysosomal trafficking, a switch from 

NFκB to IRF7 activation, and subsequently endosome-lysosome fusion and the termination 

of TLR signaling79. As predicted by earlier studies, B cells lacking αv or the autophagy 

components LC3 and Atg5 manifested dysregulated endosomal trafficking, with αv-null B 

cells exhibiting increased NFκB and delayed IRF7 signals, and LC3- or Atg5-deficient B 

cells expressing increased TLR-driven NFκB and absent IRF7 induction. Thus, in addition 

to temporally controlling NF-κB vs. IRF7 activation, the rate of endolysosomal flux also 

regulates the duration and intensity of TLR signaling. These findings were strikingly 

reminiscent of earlier experiments using myeloid cells, with the important insight that 

this ordered trafficking of TLRs through endolysosomal compartments via the autophagy 

proteins serves to both regulate TLR signaling thresholds and facilitates termination of TLR 

signaling. After trafficking to late endosomes, lysosomal fusion promotes the degradation of 

internalized cargo and ultimately terminates TLR signaling.

To determine the functional significance of these observations, we quantified TLR-enhanced 

humoral responses in B cell αv-deficient mice. While TLR signals activate both myeloid 

and B cell lineages, the relative contribution of each cell type to TLR-enhanced antibody 

(Ab) titers depends on the physical context of antigen and adjuvant. Specifically, when 

soluble protein antigen is chemically linked to TLR agonist, DC-specific TLR signals 

facilitate increased Ab responses. In contrast, immunization with virus-like particles (VLP) 
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or inactivated influenza virus (where TLR activating nucleic acid is incorporated within viral 

capsid structures) promotes robust B cell activation and GC responses that is dependent 

on B cell-intrinsic Myd88 expression3. For this reason, we immunized B cell-intrinsic αv-

deficient mice with ssRNA-containing Qβ-VLP. Notably, lack of B cell αv integrin resulted 

in a prominent increase in anti-VLP Ab titers, GC B cells, GC B cell affinity maturation 

and somatic hypermutation, and the expansion of memory B cells and long-lived plasma 

cells80. Despite the potential for integrin-mediated extracellular matrix interactions altering 

B cell migration and trafficking within the GC, we attribute the bulk of these phenotypes 

to enhanced endosomal TLR signaling. Evidence in support of this hypothesis includes 

unaffected GC responses after TLR-independent protein immunization in B cell αv-null 

mice (indicating no major impact of αv integrin on humoral immunity) and similar delayed 

endosomal trafficking, enhanced TLR signals, and increased GCs in mice deficient in other 

autophagy genes80. Strikingly, enhanced GC responses in B cell αv-deficient mice were 

sufficient to protect mice from live influenza challenge, raising the possibility that genetic 

polymorphisms in autophagy genes might have been selected during evolution.

Previous studies have demonstrated that the autophagy machinery traffics BCR to the 

endosome following IgM stimulation81, and a switch from canonical to non-canonical 

autophagy in activated GC B cells regulates B cell differentiation and cell fate82. However, 

our studies highlight a new role for integrins and autophagy genes in limiting B cell 

responses following TLR engagement. We predict that this pathway evolved as a tolerance 

mechanism to prevent excessive B cell responses to NA-containing self-antigens. Testing 

this hypothesis in vivo is complicated by the requirement for macroautophagy in plasma 

cell differentiation83,84, confounding assessment of autoantibody titers in lupus-prone mice. 

However, in support of a direct role for non-canonical autophagy in regulating B cell 

tolerance, we recently reported accelerated systemic autoimmunity in lupus-prone mice 

following B cell-specific αv deletion85.

The impact of adaptor proteins and autophagy components on endolysosomal flux is not 

limited to the strength and duration of TLR signaling. Rather, these specialized intracellular 

compartments are also intimately linked with antigen presentation via endolysosomal 

acidification, antigen degradation, and the recruitment of antigen processing machinery. 

The overall outcome for B cell uptake of NA-containing autoantigens thus depends on 

the connection between these two processes. For example, elevated TLR signals following 

B cell-intrinsic αv deletion promotes B cell activation but it is unclear how loss of αv-

mediated intracellular trafficking affects antigen presentation to T cells86 . Similarly, AP-3 

deficiency, which results in defective Type I IFN production and enhanced pro-inflammatory 

cytokine secretion, also affects antigen presentation to cognate T cells making it difficult 

to delineate its exact role in context of autoimmunity87. Further understanding of these 

intracellular trafficking events and their connection with antigen processing machinery will 

be important to understand how aberrant B cell activation promotes the development of 

autoimmunity.

Genetic defects in several autophagy components, including ATG5, ATG7, NCF1 and 

NCF2, have been linked with the development of human SLE88–92. While studies by 

our group and others implicate non-canonical autophagy regulation of endolysosomal 
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flux as the mechanism underlying lupus development, whether these variants act in a B 

cell-intrinsic manner has not been addressed. We speculate that genetic modulation of B 

cell endolysosomal trafficking is an underappreciated contributor to lupus risk. As one 

specific example, gene variants in the phagocytic NADPH oxidase (NOX2) complex are 

linked to the pathogenesis of SLE and other humoral autoimmune diseases. Specifically, 

missense variants in NCF1 (Arg90His; encoding p47phox NOX2) and NCF2 (His389Gln; 

encoding NOX2 p67phox), NCF1 copy number variation, and CYBB haploinsufficiency in 

mothers of boys with X-linked chronic granulomatous disease (CGD), all result in reduced 

ROS production and are associated with an increased risk of SLE91,93–98. While many 

core autophagy components are shared between canonical and non-canonical autophagy, 

activation of the phagocytic NADPH oxidase (NOX2) complex specifically enhances 

LC3-associated phagocytosis (LAP)74,99. A likely mechanism underlying this observation 

is NOX2 dependent activation of LC3-associated phagocytosis (LAP) and the resulting 

attenuation of endosomal TLR signaling. Indeed NOX2-deficient cells are unable to 

undergo LC3-associated phagocytosis (LAP) and NOX2 family gene deletion accelerates 

autoimmunity in independent lupus-prone strains and aged C57BL/6 mice74,78,99–101. 

In addition, a recent study demonstrated that a murine knock-in model expressing the 

human NCF1 Arg90His lupus risk allele exhibits increased pristane-induced lupus102. Bone 

marrow-derived macrophages (BMDM) from Ncf1Arg90His knock-in mice exhibit reduced 

phagosomal acidification and maturation following apoptotic cell ingestion, linking the 

NCF1 Arg90His variant with defects in the immunologically silent clearance of dead/dying 

cells by phagocytes47.

Although defects in macrophage efferocytosis likely increases exposure to NA-containing 

autoantigens, we predict that reduced NOX2 activity also promotes lupus pathogenesis in a 

B cell-intrinsic manner. In support of this hypothesis, Nox2−/−.MRL.Faslpr mice exhibit a 

shift towards a speckled ANA pattern and increased anti-ribonucleoprotein (RNP) autoAb 

titers that parallels exacerbated autoimmunity100. Given the critical role for B cell TLRs 

signals in regulating the ANA repertoire, these data suggest that parallel myeloid- and B 

cell-specific mechanisms might underlie the striking increase in lupus risk among NCF1 and 

NCF2 variant carriers; an important topic for future research.

4. Modulation of signals downstream of NA-sensing TLRs

Genome wide association studies (GWAS) have identified >100 polymorphisms impacting 

the risk of developing SLE or other humoral autoimmune diseases. Although our 

understanding of how individual genetic variants contribute to disease risk remains poor, 

risk polymorphisms frequently cluster within specific immune pathways. In this context, 

an increasing number of lupus-associated genetic variants have been identified within 

endosomal TLR signaling pathways. These include TLR7 itself103,104; IRAK1 (within 

the Myddosome complex)90; TNFAIP3, TNIP1 and UBE2L3 (downstream of NF-κB 

activation)90,105; and IRF5 and IRF790,106. A detailed description of each of these variants 

and their contribution to lupus risk is beyond the scope of this review. However, recent 

mechanistic insights into the biology of lupus risk genes SLC15A4 and CXorf21 are 

illustrative of how the functional regulation of endolysosomal trafficking and endosomal 

TLR signaling contributes to lupus pathogenesis107,108. Using interaction proteomics, 
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Heinz et al. demonstrated that the lysosomal proton channel SLC15A4 interacts with 

the CXorf21-encoded protein they name “TLR adaptor interacting with SLC15A4 on the 

lysosome” (TASL)109. Genetic disruption of either SLC15A4 or TASL expression exerted 

no major impact on TLR-dependent NF-κB activation but disrupted IRF-driven transcripts, 

indicating that the SLC15A4/TASL complex functions downstream of initial endosomal 

TLR activation. Additional biochemical analyses demonstrated that TASL selectively 

promotes IRF5 signaling via a functional pLxIS motif in a manner analogous to IRF3 

binding the adaptors STING, MAVS and TRIF110.

The structural interaction with SLC15A4 maintains TASL protein levels and the CXorf21 
lupus risk haplotype results in increased expression levels107,109. Moreover, CXorf21 is 

an X-linked gene that escapes X inactivation suggesting that regulation of TASL protein 

expression might be an additional driver of the female sex bias in SLE107. However, in 

addition to regulating IRF5 phosphorylation, TASL likely imparts biologically significant 

impacts on SLC15A4 function. As a lysosomal protein transporter, SLC15A4 promotes 

the endolysosomal acidification which is required for endosomal TLR7 signaling111. 

Interestingly, TASL promotes SLC15A4-dependent acidification based on the observation 

that B cells from healthy females exhibit lower endosomal pH relatively to healthy males, 

with this pH reduction being dependent on CXorf21 expression112. The mechanism by 

which TASL modulates endolysosomal pH and how changes in endolysosomal acidification 

impacts TLR signals and lupus pathogenesis remains to be addressed. Moreover, whether 

genetic regulation of the SLC15A4/TASL complex facilitates breaks in tolerance via 

modulation of B cell or myeloid endosomal TLR signaling has not been studied. Ultimately, 

these recent data indicate that the lupus risk genes SLC15A4, CXorf21, and IRF5 
functionally converge within the endolysosomal TLR pathway; findings which highlight 

how genetic modulation of downstream signaling cascades serves to modulate TLR 

thresholds and drive lupus risk.

Conclusions and remaining questions

Toll-like receptors are a family of evolutionarily related receptors that induce innate and 

adaptive immunity via the recognition of pathogen-associated molecular patterns (PAMPs). 

In contrast with pathogen-specific molecules (such as the TLR5 agonist flagellin), NA-

sensing TLRs are not specific for foreign NA and carry the risk of autoimmune activation. 

For this reason, the immune system has evolved overlapping strategies to prevent pathologic 

activation of NA-sensing TLRs. In this review, we have highlighted how these protective 

mechanisms can be divided into two broad categories. First, strategies aimed at reducing the 

likelihood that self-NA will engage NA-sensing TLRs, including production of nucleases 

and the lineage-specific regulation of TLR expression. Second, mechanisms to downregulate 

TLR signaling, such has the induction of endolysosomal trafficking to extinguish TLR 

activation and the modulation of downstream signaling cascades. While the majority of 

studies delineating these processes have focused on myeloid cells, we have sought to 

highlight emerging data implicating B cell-intrinsic contributions to the risk of humoral 

autoimmunity.
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Despite these new insights, several open questions remain which we have noted throughout 

this review. First, whether each regulatory strategy is similarly adopted by different immune 

lineages remains unclear. Our work has focused predominantly on B cell-specific regulatory 

mechanisms, but it is likely that myeloid cells and B cells use distinct strategies to limit 

aberrant activation by self-NA. Second, the contradictory effect of TLR7 vs. TLR9 deletion 

on lupus pathogenesis remains enigmatic. Although TLR7 and TLR9 share a requirement 

for UNC93B1 binding to facilitate appropriate trafficking to the endosomal compartment, 

recent data from the Barton group highlights that these receptors differ with respect to 

structural interactions with UNC93B1, need for UNC93B1 release to allow signaling, and 

the role for UNC93B1 in extinguishing activation signals61,62. These findings suggest 

a more fundamental difference in responses to TLR7 vs. TLR9 engagement than had 

previously been assumed. Importantly, work from our lab and others using B cell-intrinsic 

deletion or over-expression of TLR7/TLR9 suggests that B cells should be the primary focus 

of future investigations in this arena23–26.

Finally, it will be important to address how NA-sensing TLR signaling and endolysosomal 

trafficking impacts antigen presentation. The ability of B cells to acquire, process and 

present antigens is essential not only for receiving T cell help, but also for the expansion 

and maintenance of antigen-specific T cells. Indeed, studies using murine lupus models 

have identified a critical role for B cell antigen presentation and costimulatory signals in 

driving breaks CD4+ T cell tolerance113–115. Studies using DCs have shown that the rate and 

route of endosomal trafficking of phagocytic products are critical steps in determining both 

the type of signaling response as well as the efficiency of antigen presentation. However, 

little is known about these processes in B cells. For example, do B cells differ in their 

ability to extract and degrade specific (auto)antigens and does the rate of antigen processing 

impact the capacity for presentation to T cells? Moreover, does induction of endosomal 

TLR signals impact this process such that modulation of endolysosomal flux either enhances 

or perturbs the presentation of self-ligands? Ultimately, a more detailed understanding of 

these molecular events promises to both inform lupus immunopathogenesis and uncover new 

therapeutic targets for the treatment of human SLE.
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Figure 1: Regulatory mechanisms controlling NA-sensing TLR activation
Schematic detailing the various strategies employed by the immune system to limit 

aberrant activation of NA-sensing TLRs. A. Nucleic acid degradation: Expression of 

specific nucleases, such as DNASE1L3, PLD3, and PLD4, or the lysosomal transporter 

SLC29A3, degrade or remove self-NA prior to recognition by NA-sensing TLRs. This 

regulatory mechanism can be subverted by either genetic defects in specific genes or via 

the development of anti-DNASE1L3 autoantibodies. B. Restricted cellular expression: The 

expression of NA-sensing TLRs is limited to certain immune lineages, such as pDCs 

and B cells, while specifically reduced on tissue macrophages designed for apoptotic 

cell clearance (left). Aberrant activation of NA-sensing TLRs is further controlled via 

regulated mRNA expression, as evidenced by X chromosome gene dosage driving TLR7-

dependent lupus pathogenesis (right). C. Subcellular localization: NA-sensing TLRs traffic 

to endosomal compartments to prevent pathogenic engagement by circulating NA (left). 
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Following endosomal TLR ligation, induction of endolysosomal trafficking serves to both 

control the amplitude of and terminate TLR signaling (right). D. Regulation of downstream 

signaling: Amongst many genetic variants impacting lupus risk, CXorf21 polymorphisms 

increase TASL levels resulting in increased TLR-dependent nuclear translocation of IRF5.
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Figure 2: A B cell-intrinsic non-canonical autophagy pathway promotes endolysosomal flux to 
regulate TLR signaling
Following recognition of apoptotic cells, self-reactive BCRs traffic NA-containing particles 

to early endosomes, initiating TLR7/TLR9-induced NF-κB activation. TLR signaling also 

triggers integrin activation and internalization leading to phosphorylation of Src and Syk 

kinases. The activation of these kinases causes ATG5-dependent lipidation of LC3 through 

a mechanism requiring ROS production. Subsequently, LC3-II recruitment causes transition 

of the TLR containing compartment into a late endosomal compartment permissive for 

IRF7 activation and abolishes NF-κB signals. Ultimately, lysosomal fusion terminates TLR 

signals, in addition to facilitating antigen degradation and MHC Class II-dependent antigen 

presentation. Studies in myeloid cells have revealed additional details in this process such as 

adaptor proteins involved in transition of signaling.
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Figure 3: Impact of non-canonical autophagy gene variants on endosomal TLR signals
We propose a model in which variants in specific genes, such as αvβ3 integrin or non-

canonical autophagy components (ATG5, ATG7, NCF1 and NCF2), result in delayed 

endolysosomal trafficking and consequently enhanced TLR-dependent NF-κB activation 

and delayed termination of TLR signaling. Left panel shows normal physiological context 

in which response to TLR ligands and associated antigens is limited through the integrin 

autophagy pathway. Right panel shows impact of lack of αvβ3 integrin or reduced NADPH 

oxidase-dependent ROS production which may drive enhanced NF-κB/MAPK activation 

and prolong TLR signals, ultimately impacting B cell proliferation, affinity maturation, and 

plasma cell differentiation. It remains to be determined how these changes in TLR signaling 

and lysosomal fusion affect processing and presentation of antigens by B cells.
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