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ABSTRACT
Purpose Downregulation of miRNA-22 in triple-negative
breast cancer (TNBC) is associated with upregulation of eu-
karyotic elongation 2 factor kinase (eEF2K) protein, which
regulates tumor growth, chemoresistance, and tumor immu-
nosurveillance. Moreover, exogenous administration of
miRNA-22, loaded in nanoparticles to prevent degradation
and improve tumor delivery (termed miRNA-22 nanother-
apy), to suppress eEF2K production has shown potential as
an investigational therapeutic agent in vivo.
Methods To evaluate the translational potential of miRNA-
22 nanotherapy, we developed a multiscale mechanistic mod-
el, calibrated to published in vivo data and extrapolated to the
human scale, to describe and quantify the pharmacokinetics
and pharmacodynamics of miRNA-22 in virtual patient
populations.
Results Our analysis revealed the dose-response relationship,
suggested optimal treatment frequency for miRNA-22 nano-
therapy, and highlighted key determinants of therapy re-
sponse, from which combination with immune checkpoint
inhibitors was identified as a candidate strategy for improving
treatment outcomes. More importantly, drug synergy was

identified between miRNA-22 and standard-of-care drugs
against TNBC, providing a basis for rational therapeutic com-
binations for improved response
Conclusions The present study highlights the translational
potential of miRNA-22 nanotherapy for TNBC in combina-
tion with standard-of-care drugs.

KEY WORDS allometry . cancer treatment . mathematical
modeling . microRNA . pharmacokinetics and
pharmacodynamics . precisionmedicine . tumor-immune
interaction

INTRODUCTION

Triple-negative breast cancer (TNBC) accounts for up to 10–
12% of all breast cancer cases, and has a 5-year survival that is
8–16% lower than the hormone-receptor positive (HR+) dis-
ease subtype (1). Mechanisms to overcome the aggressiveness,
histopathological heterogeneity, and prevalence of TNBC in
younger women represent major unmet needs in
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contemporary cancer medicine (2). The severity of TNBC is
further aggravated due to the lack of broadly-applicable tar-
geted therapies, and by a high-rate of early metastases to the
central nervous system and lungs (3). PARP inhibitors, such as
olaparib and talazoparib, have been approved for TNBCwith
germline BRCA1 or BRCA2 gene mutations, but these are
only reported in 15.4% of cases (4). Despite recent advances in
developing therapeutics for treating TNBC such as immune
checkpoint inhibitor immuotherapy (5), chemotherapy
remains the most common recommended systemic regimens
for TNBC, even though rapid development of chemoresist-
ance is common (6).

An emerging body of evidence has supported key function-
al roles of microRNAs (miRNAs) in sustaining tumor prolif-
eration, resisting growth inhibitors and cell death, inducing
tumor invasion and metastasis, and promoting angiogenesis
(7), suggesting that miRNAs may function as valuable onco-
logic therapy targets (8–10). Amongst the multitude of
miRNAs, miRNA-22 (a chain of non-coding RNA consisting
of 22 nucleotides) has been found to play a critical role in
cancer initiation and progression processes (11, 12). Indeed,
miRNA-22 has been extensively studied as a regulator of tu-
mor suppressor genes like p53 (13) and as a repressor of the
oncogene c-Myc (14) in many different cancers, including
TNBC (12), hormone-dependent breast cancer (15), and co-
lon cancer (16), and for its roles in metastasis suppression in
breast cancer, ovarian cancer (17), and in the sensitization of
esophageal carcinoma to γ-ray radiation (18).

miRNA-22 has been shown to be downregulated in TNBC,
reducing inhibitory control over the eukaryotic elongation 2
factor kinase (eEF2K), a tumor growth-promoting and
chemoresistance-inducing protein (12, 19). Importantly,
eEF2K was also found to enhance the expression of PD-L1,
and is thus implicated for its role in blocking tumor immuno-
surveillance (20). Inhibiting these tumorigenic effects of eEF2K
via exogenous administration of miRNA-22 represents a poten-
tial therapeutic approach to improve the response of TNBC to
chemotherapy and/or immunotherapy with immune check-
point inhibitors. However, naked miRNA has a short half-life
in plasma due to its vulnerability to ribonucleases, shows limited
tumor penetration and cellular uptake due to its negative
charge, and has off-target effects due to non-specific delivery
(21). To overcome these shortcomings, nanoparticle (NP)-based
drug delivery systems are being studied to improve the delivery
of miRNAs to tumor cells (21). While the application of nano-
materials in cancer has been promising in improving tumor
imaging and drug delivery (4, 22–27), challenges associated
with low tumor deliverability due to off-target accumulation
and limited tumor penetration continue to limit their clinical
success (28). To this end, mechanistic mathematical modeling
can be a valuable in-silico tool to help overcome this challenge,
by furthering our understanding of NP-mediated miRNA-22
delivery in TNBC in vivo.

Mathematical modeling has been used to investigate the
mechanisms relevant to tumor response to miRNA-based
treatment. For instance, a system of ordinary differential
equations (ODEs) with a delay term has been used to study
feedback loops between the oncogenes Myc, EF2, and
miRNA-17-92 (29). This model was subsequently expanded
by integrating nine different mechanisms to evaluate how
miRNAs regulate translation (30), and to study how the inac-
tivation of a transcription factor is involved in cardiac dysfunc-
tion and cancer (31). In another notable study (32), an energy
availability pathway involving miRNA-451 was analyzed in
order to elucidate the difference between invasion and prolif-
eration regimes in cancer cells, which was accomplished by
combining a pair of ODEs governing the miRNA and glucose
concentration with a system of partial differential equations
(PDEs) employing transport mechanisms, such as diffusion,
chemotaxis, and haptotaxis. Additionally, a signaling pathway
relating miRNA-21, miRNA-155, and miRNA-205 to the
proliferation and apoptosis of non-small-cell lung cancer cells
has been examined with a series ofmodeling studies (33, 34). A
noteworthy feature of themathematical approach in (34) is the
inclusion of a directional migration term, which takes into
account the competition for available space between cells un-
der the assumption of a logistic growth rate for cancer cells.

While previous modeling works focused on the molecular
interactions of miRNAs associated with their therapeutic out-
come, they lacked the inclusion of a viable drug delivery sys-
tem and the related pharmacokinetics and drug delivery
mechanisms required to assess the feasibility of miRNAs as a
systemically-deliverable therapy for cancer. Therefore, to sup-
port the development of miRNA-22 as a viable therapy for
TNBC, here we present a mechanistic mathematical model,
formulated as a system of ODEs, to describe the tumoral
delivery of systemically administered miRNA-22-loaded NPs
and the pharmacodynamics of miRNA-22 in the context of
TNBC growth. Our multiscale model incorporates processes
pertinent to systemic NP pharmacokinetics, intratumoral
transport of NPs, and the known molecular interactions of
miRNA-22 with its associated oncogenes to predict TNBC
growth dynamics. Following model calibration with in vivo
data that was then allometrically scaled to humans, we simu-
lated clinically relevant treatment of TNBC with miRNA-22
to obtain the dose-response relationship at the individual and
population scales, thus helping to reveal the optimal dose and
frequency of treatment for each individual “virtual” patient.
Local and global sensitivity analyses of key model parameters
revealed the importance of molecular interactions, tumor vas-
cularization, miRNA-22 potency, NP characteristics, and im-
mune checkpoint effects of anti-PD-L1 in governing the out-
come of miRNA-22 therapy, thus highlighting some of the key
determinants of treatment outome and suggesting the poten-
tial benefit of combination with immune checkpoint inhibi-
tors. Drug synergy was identified to occur between miRNA-
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22 and standard-of-care therapies (including both chemother-
apy and immunotherapy) studied in this work. As a result, our
mechanistic model may serve as a useful computational means
to help design and optimize a therapeutic framework for fu-
ture clinical trials of miRNA-22.

METHODS

Mathematical Model Development

We present a multiscale mechanistic model to simulate the
in vivo and translational pharmacokinetics (PK) and pharma-
codynamics (PD) of NP-mediated miRNA-22 therapy in
TNBC, alone or in combination with chemotherapy or
immunotherapy (here collectively referred to as agents), and
thus investigate the factors governing the delivery of agents
and their therapeutic efficacy.The model consists of two main
compartments (Fig. 1), represented by the plasma and tumor,
where the latter is sub-compartmentalized into vascular,
interstitial, cellular membrane, and cytosolic space. After injection
into the plasma compartment, agents are cleared through var-
ious physiological processes, which (along with the volume of
distribution of agents) govern their systemic (i.e., plasma)
pharmacokinetics. From the plasma compartment, bi-
directional perfusion-mediated delivery characterizes the
transport of agents into the tumor vasculature, from which
the extravasation of agents across the permeable tumor vas-
culature introduces them into the tumor interstitium. Once in
the interstitium, given the absence of advection due to high
interstitial fluid pressure (35, 36), the agents undergo diffusion
to reach the interstitium-cell membrane interface, and then
specific biophysical processes occur to ensure delivery to the
target site to invoke the pharmacodynamic effects of the
agents, based on the type of agent. For instance, NPs undergo
endocytosis into cancer cells where they release miRNA-22 in
the cytosol, whereas free drugs simply diffuse into the cytosol
and antibodies bind to their corresponding cell surface recep-
tors (e.g. PD-L1 in the current context).

Following delivery of agents to the target site, the pharma-
codynamic component of the model is then engaged such that
miRNA-22 acts by inhibiting the production of eEF2K pro-
tein, leading to inhibition of tumor growth. Also, because
there is growing evidence in the literature that eEF2K induces
the production of PD-L1 (20), this pathway was incorporated
in the model to explore the engagement of immune check-
points by eEF2K for tumor survival. The reference chemo-
therapeutic (i.e., doxorubicin) acts by inducing apoptotic cell
death, whereas anti-PD-L1 antibodies act by inhibiting the
tumor protective effects of PD-L1. Note that the mechanism
of action of anti-PD-L1 antibodies modeled here includes the
degradation of PD-L1 protein. Simulations and analysis of the
model will help to provide insights into the systemic and

tumoral pharmacokinetics of therapeutic agents and NPs,
along with the effects on tumor progression. We then use the
model as an in-silico tool to simulate virtual clinical trials in
order to explore the effects of patient variability and other
system parameters on treatment outcomes with mono- or
combination therapies.

The various transport and pharmacological processes
described above and shown in Fig. 1 have been formu-
lated into a system of ordinary differential equations
(ODEs; Eqs. 1–17) to obtain the temporal evolution of
model behaviors of interest, including tumor growth.
Equations pertaining to various compartments and bio-
logical processes are described below:

Equation for NP mass kinetics in plasma (NP(t)):

dN P tð Þ
dt

¼ N V tð Þ
V B;V

−
N P tð Þ
V P

� �
∙Q tð Þ⋅B tð Þ−kCl⋅N P tð Þ;

N P tð Þ ¼ 0; t ¼ 0
N P t−ð Þ þ N 0; t ¼ i

� ð1Þ

where NV(t) is NP mass kinetics in tumor vasculature; VB,V (=
fv∗B(t)) and VP are volumes of tumor vasculature and plasma
compartments, respectively; fv is the vascular volume fraction
of the tumor; B(t) represents tumor volume; Q(t) represents
plasma flow rate per unit volume of tumor; kCl represents
systemic clearance of NPs; N0 is the injected dose of NPs;
and i represents the injection times (in weeks) post inoculation
of tumor in mice (i = 2, 3, 4, 5). Note that Q(t) (units,
mL∙mL−1∙wk−1) obeys the following empirical relationship
with tumor volume (B(t)): Q(t) = 2843∙e−0.65∙B(t), obtained by
fitting a monoexponential function to data from literature
(37). Note that for human simulations, Q(t) was assumed to
be 1512 mL∙mL−1∙wk−1 irrespective of tumor size (38).
Given that tissue density is ~1 g∙mL−1 (39), tumor plasma flow
rate is provided in the units of mL∙mL−1∙wk−1 in our work,
which is numerically equivalent to mL∙g−1∙wk−1 as typically
used in the literature. In addition, NP clearance in mice kCl
(units, wk−1) varies empirically with NP diameter (ϕNP; units,

cm) as: kCl ¼ ln 2ð Þ
0:11∙e−1:33∙ϕNP−0:001∙e−9:7∙ϕNP

, obtained by fitting the
plasma half-life data of quantum dots of varying sizes from the
literature (40, 41). For human simulations, the value of kCl was
allometrically scaled (see Allometric Scaling Section, below).

Equation for NP mass kinetics in tumor vasculature (NV(t)):

dN V tð Þ
dt

¼ N P tð Þ
V P

−
N V tð Þ
V B;V

� �
� Q tð Þ � B tð Þ−PNP � S � N V tð Þ;N V 0ð Þ ¼ 0

ð2Þ
where PNP indicates NP permeability across tumor vascula-
ture and S is the tumor vascular surface area per unit tumor
volume (units, cm2/cm3). In vivo, S relates to tumor volume
B(t) as S = 0.26∙e−4.5∙B(t)+138∙e−0.04∙B(t), obtained empirically
from the literature (42), and PNP (units, cm∙wk−1) is a function
of tumor vascular porosity and the ratio of NP size (ϕNP) to
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tumor vascular pore size (ϕpore; units, cm) (43). For human
simulations, S was fixed at 135 cm2/cm3 irrespective of tumor
size (42).

Equation for NP mass kinetics in tumor interstitium (NI(t)):

dN I tð Þ
dt

¼ PNP � S � N V tð Þ � DNP

L2 � N I tð Þ; N I 0ð Þ ¼ 0 ð3Þ

where DNP i s t h e d i f f u s i v i t y o f NPs in tumor
interstitium (0.0112 cm2∙wk-1), and L is the characteristic in-
terstitial distance between tumor vessels and cancerous cells,
referred to herein as the intercapillary length in the tumor.

Equation for NP mass kinetics in cancer cell membrane (NM(t)):

dNM tð Þ
dt

¼ DNP

L2 � N I tð Þ−kendo∙NM tð Þ; NM 0ð Þ ¼ 0 ð4Þ

where kendo (units, wk
−1) is the rate of endocytosis of NPs into

tumor cells, and may be obtained by equating work done by
the membrane motor proteins against surface tension of cell
membrane (44).

Equation for NP mass kinetics in cancer cell cytosol (NC(t)):

dN C tð Þ
dt

¼ kendo∙NM tð Þ−δNP � N C tð Þ; N C 0ð Þ ¼ 0 ð5Þ

where δNP is NP degradation rate.
Equation for miRNA concentration kinetics in cancer cell cytosol

(CM(t)):

dCM tð Þ
dt

¼ g0M
1þ εB∙B tð Þ þ krel � N C tð Þ∙M0∙e−krel∙ t−ið Þ

V B;C

−δM � CM tð Þ; CM 0ð Þ ¼ g0M
δM

ð6Þ

where g0M is the intrinsic production rate of miRNA-22 in
the tumor cytosol; εB is the efficiency of tumor on inhib-
iting miRNA-22 production; M0 is the mass of miRNAs
loaded in a single NP, which depletes over time due to
the release of miRNAs from the NP at a rate krel, as
indicated by the closed-form solution (M0∙e−krel∙ t−ið Þ ) of
the ODE that describes the rate of change of mass of
miRNA M inside a NP (dM

dt
¼ −krel �M ; M 0ð Þ ¼ M0 );

i represents the nanotherapy injection times (in weeks)
post inoculation of tumor in mice (i = 2, 3, 4, 5); and
VB, C is the cytosolic volume of tumor (= fc∗fcy∗B(t)),
where fc (=0.4) is the cancer cell volume fraction of a
tumor (45) and fcy (=0.4) is the cytoplasmic volume frac-
tion of a cancer cell (46). δM is the degradation rate of
miRNAs. Note that the initial condition CM(0) is estimat-
ed at the trivial steady state of the system when B(0) = 0
and no exogenous administration of miRNAs has
occured, such that CM 0ð Þ ¼ g0M=δM.

Equation for anti-PD-L1 antibody concentration kinetics in plasma

(CAb, P(t)):

Fig. 1 Multiscale mechanistic model. Model schematic shows key system interactions and variables. The plasma compartment is connected to the tumor
compartment, with the latter sub-compartmentalized into vascular, interstitial, and cytosolic compartments. Key transport processes responsible for drug delivery
to the tumor cytosol include perfusion, extravasation across tumor vasculature, diffusion across tumor interstitium, and endocytosis. While target receptors of
immune checkpoint inhibitors are on the cell surface, the other agents including miRNA-22 and chemotherapeutics act intracellularly. Key signaling pathways
relevant to miRNA-22 included in the model are shown in the cytosolic sub-compartment, including eEF2K induced tumor growth (σ) and PD-L1 production,
miRNA-22 induced inhibition of eEF2K production, suppression of tumor antigenicity by checkpoint PD-L1 (δimmune), eEF2K induced chemoresistance, and
induction of tumor death by chemotherapeutic agents (δchemo)
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dCAb;P tð Þ
dt

¼ ∑ j in Q T kabs∙
DoseAb
V pc

∙1t ≥ j tð Þ∙e−kabs∙ t− jð Þ

þ CAb;V tð Þ−CAb;P tð Þ� �
∙Q tð Þ � B tð Þ−ClAb � CAb;P tð Þ
V P

;

CAb;P 0ð Þ ¼ C0;Ab where; 1t≥ j tð Þ ¼ 1; t≥ j

0; t< j
:

�

ð7Þ
Here, j represents the injection times (in weeks) post inocula-
tion of tumor in mice defined in the set QT (=1, 1.71, 2.43,
3.14, 3.86, 4.57); DoseAb represents the dose of antibodies; kabs
is the absorption rate constant of antibodies from the perito-
neum into plasma after intraperitoneal (IP) injection; Vpc is the
volume of peritoneal fluid in female mice (0.1 mL) (47); and
ClAb is the systemic clearance of antibodies. Note that in
mouse experiments, antibodies were given IP; therefore, the
initial plasma concentration of antibodies C0,Ab is zero.
However, for human simulations, immunotherapy was ad-
ministered as an intravenous (IV) bolus injection, therefore
the initial plasma concentration of antibodies C0, Ab is non-
zero and is calculated based on the initial dose (DoseAb) and
systemic volume of distribution (VD, Ab) of the given antibody.
As a result, the first term of Eq. 7 that accounts for systemic
absorption of the drug from the peritoneum is removed dur-
ing human simulations.

Equation for anti-PD-L1 antibody concentration kinetics in tumor

vasculature (CAb, V(t)):

dCAb;V tð Þ
dt

¼ CAb;P tð Þ−CAb;V tð Þ
V B;V

∙Q tð Þ � B tð Þ−PAb � S � CAb;V tð Þ;

CAb;V 0ð Þ ¼ 0

ð8Þ

where PAb indicates antibody permeability across tumor
vasculature.

Equation for anti-PD-L1 antibody concentration kinetics in tumor

interstitium (CAb, I(t)):

dCAb;I tð Þ
dt

¼ PAb � S � CAb;V tð Þ−DAb

L2 � CAb;I tð Þ; CAb;I 0ð Þ ¼ 0 ð9Þ

where DAb is the diffusivity of antibodies in tumor intersti-
tium (0.0784 cm2∙wk-1).

Equation for anti-PD-L1 antibody concentration kinetics in cancer cell

membrane (CAb, M(t)):

dCAb;M tð Þ
dt

¼ DAb

L2 � CAb;I tð Þ−δAb � CAb;M tð Þ; CAb;M 0ð Þ ¼ 0 ð10Þ

where δAb is the degradation rate of antibodies.
Equation for doxorubicin concentration in plasma (CD, P(t)):

dCD;P tð Þ
dt

¼ CD;V tð Þ−CD;P tð Þ� �
∙Q tð Þ � B tð Þ−Cldox � CD;P tð Þ

V P;

CD;P tð Þ ¼ 0; t ¼ 0
C0;D; t ¼ i

�
ð11Þ

where Cldox is the plasma clearance of doxorubicin; C0,D is the
initial concentration of doxorubicin calculated based on the
injected dose of 4 mg/kg and the given volume of distribution
(Table II); i represents the injection times (in weeks) post inoc-
ulation of tumor in mice (i = 1, 2, 3).

Equation for doxorubicin concentration in tumor vasculature

(CD,V(t)):

dCD;V tð Þ
dt

¼ CD;P tð Þ−CD;V tð Þ� �
∙Q tð Þ � B tð Þ þ J � S

V B;V; CD;V 0ð Þ ¼ 0
ð12Þ

where J is the diffusive flux of doxorubicin across the
tumor vasculature into tumor interstitium, and is given

by J ¼ −Ddox � CD;V tð Þ−CD;I tð Þð Þ
Δx . Here, Ddox is the diffusivity

of doxorubicin in tumor interstitium (0.4933 cm2 wk-1) and
Δx is the thickness of blood capillary wall (5 μm) (55).

Equation for doxorubicin concentration in tumor interstitium (CD, I(t)):

dCD;I tð Þ
dt

¼ −
J � S
V B;I

−
Ddox

L2 � CD;I tð Þ; CD;I 0ð Þ ¼ 0 ð13Þ

where VB,I is the interstitial volume of tumor.
Equation for doxorubicin concentration in tumor cytosolic space

(CD,C(t)):

dCD;C tð Þ
dt

¼ DAb

L2 � CD;I tð Þ−δD � CD;C tð Þ; CD;C 0ð Þ ¼ 0 ð14Þ

where δD is the degradation rate of doxorubicin in the
cytosolic space.

Equation for eEF2K concentration kinetics in cancer cell cytosol

(CE(t)):

dCE tð Þ
dt

¼ g0E � 1þ AB;E∙B tð Þ
K B;E þ B tð Þ

� �
−δE � 1þ AM;E∙CM

ECM
50 þ CM

� �
∙CE tð Þ;

CE 0ð Þ ¼ C0
E

ð15Þ

where g0E is the basal production rate of eEF2K protein
in tumor cytosol; AB, E is the stimulation factor of tumor
effects on eEF2K production; KB,E is the Michaelis-
Menten constant for tumor effects on eEF2K production;
δE is the degradation rate of eEF2K protein; AM,E is the
stimulation factor of miRNA-22 effects on eEF2K pro-
tein degradation; ECM

50 is the half-maximal effective con-
centration of miRNA-22 for its effect on eEF2K protein
degradation; and C0

E is the intial concentration of eEF2K
protein.

Equation for PD-L1 concentration kinetics in cancer cell membrane

(CP(t)):

dCP tð Þ
dt

¼ g0P � 1þ AE;P∙CE tð Þ
K E;P þ CE tð Þ

� �
−δP � 1þ AAb;P∙CAb;M tð Þ

ECAb
50 þ CAb;M tð Þ

� �
∙CP tð Þ;

CP 0ð Þ ¼ C0
P

ð16Þ

where g0P is the basal production rate of PD-L1 protein in
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tumor cytosol; AE,P is the stimulation factor of eEF2K effects
on PD-L1 production; KE,P is the Michaelis-Menten constant
for eEF2K effects on PD-L1 production; δP is the degradation
rate of PD-L1 protein; AAb,P is the stimulation factor of anti-
PD-L1 antibody effects on PD-L1 degradation; ECAb

50 is the
half-maximal effective concentration of anti-PD-L1 antibody
for its effect on PD-L1 protein degradation; and C0

P is the
intial concentration of PD-L1 protein.

Equation for tumor volume kinetics (B(t)):

dB tð Þ
dt

¼ σ∙ 1þ AE;B∙CE tð Þ
K E;B þ CE tð Þ

� �
∙ 1−

B tð Þ
B*

� �
� B tð Þ− δB;I

1þ εP � CP tð Þ �

B tð Þ−δB;C∙
CD;C tð Þ

ECD
50∙ 1þ AE;D∙CE tð Þ

K E;D þ CE tð Þ
� �

þ CD;C tð Þ

0
BB@

1
CCA∙B tð Þ; B 0ð Þ ¼ B0

ð17Þ
where σ is the tumor growth rate constant; AE, B is the stimu-
lation factor representing eEF2K effects on tumor growth; KE,
B is the Michaelis-Menten constant for eEF2K effects on tu-
mor growth; B∗ is the tumor carrying capacity; δB,I is the death
rate of tumor cells induced by normal immune system func-
tionality (without drug intervention); εP is the efficiency of PD-
L1 protein in inhibiting immune-induced tumor death; δB,C is
the death rate of tumor cells induced by doxorubicin; ECD

50 is
the half-maximal effective concentration of doxorubicin for its
effect on tumor death; AE,D is the stimulation factor for eEF2K
effects in inducing chemoresistance; KE,D is the Michaelis-
Menten constant for eEF2K effects in inducing chemoresist-
ance; and B0 is the size of inoculated tumor, i.e., initial condi-
tion (equal to a single cell volume for human simulations).

The model was solved numerically as an initial value prob-
lem in MATLAB R2018a by using the built-in function
ode15s, and fit to the in vivo data from the literature (12,
56–58) by using the built-in function lsqcurvefit. Correlation
analysis was then performed between model fits and experi-
mental data to assess the goodness of fit.

Allometric Scaling

For human simulations, the rate constants kCl, σ, δB,I, and δB,C
were allometrically scaled from values determined for mice
based on body weights and the standard allometric exponent
for rate constants, i.e., −0.25 (59), such that the value of pa-

rameter i for humans (Ph
i ) was: P

h
i ¼ Pm

i ∙
BWh

BWm

� �−0:25
, where

Pm
i is the value of parameter i for mice, and BWh and BWm are

the body weights assumed for humans (70 kg) and mice
(0.02 kg), respectively. We note that a different scaling expo-
nent was used in the above formula for a subset of parameters,
as based on published reports, these were: dose and clearance
calculations (exponent = 0.75) and volume of distribution
calculations (exponent = 1.0) (60, 61).

Treatment Response Evaluation

The model was used to study the effect of miRNA-22 nano-
therapy, alone or in combination with doxorubicin and/or
atezolizumab, in virtual patients. The effect of therapy on
tumor shrinkage was quantified by a metric defined as percent
tumor growth inhibition (%TGI), such that %TGI = (1 −
Btreated/Bcontrol)∙100, where Btreated and Bcontrol represent
treatment and control tumor volumes at the end of 104 weeks
post tumor inception with a single cell. Note that, in the treat-
ment scenario, therapy was initiated at 80 weeks post tumor
inception, such that treatment was given over 24 weeks
(~6 months). To evaluate tumor response at a population
level, we employed a scale analogous to RECIST 1.1 (58),
such that treatment response was classified as progressive disease
(TGI ≤ 0%), stable disease (0% < TGI ≤ 10%), intermediate
response (10% < TGI ≤ 30%), partial response (30% < TGI ≤
50%), and major response (TGI > 50%).

Parameter Sensitivity Analysis

To investigate the importance of various model parameters
in causing tumor shrinkage in patients undergoing treat-
ment with a weekly dose of 0.026 mg/kg miRNA-22 (load-
ed in NPs), we performed local (LSA) and global (GSA)
sensitivity analyses (43, 62–66) by perturbing the parame-
ters of interest (highlighted by a dagger in Tables I and II)
over a range of 0.2× to 5× of their corresponding baseline
values.

LSA involved perturbation of one model parameter at
a time at 500 levels between the range of 0.2× to 5× of
the baseline value while the other parameters were held
constant at baseline. Each parameter was perturbed indi-
vidually and %TGI was calculated to obtain the qualita-
tive relationship between parameter factor change and
%TGI. Alternatively, in GSA, all model parameters of
interest were simultaneously perturbed and %TGI calcu-
lated for each simulation (i.e., for a given combination of
parameter values). Note that, to comprehensively investi-
gate the vast multiparameter space (21 parameters), yet to
minimize the number of simulations, Latin hypercube
sampling (LHS) (43, 62, 63) was used to obtain 10,000
combinations of parameter values, and 10 such replicates
were obtained. Multivariate linear regression analysis was
then performed on every replicate, and regression coeffi-
cients were determined as a quantitative measure of pa-
rameter sensitivity index (SI). A distribution of regression
coefficients (or SI) was obtained for each parameter, and
one-way ANOVA with Tukey’s test was used to rank the
parameters in terms of their sensitivity, such that a higher
SI represents a greater influence on model output (i.e.,
%TGI).
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Table I List of Biological Parameters and Initial Conditions

Parameter Description Units Value Ref.

eEF2K-related parameters
AB, E

† Stimulation factor for tumor effects on eEF2K production – 11.9 Est
AM, E

† Stimulation factor for miRNA-22 effects on eEF2K degradation – 10.52 Est
KB, E

† Michaelis-Menten constant for tumor effects on eEF2K production cm3 16.03 Est
δE Decay rate of eEF2K wk−1 60.48 (34)

g0E
†

Basal production rate of eEF2K protein wk−1 36.3 Est

C0
E

eEF2K initial condition – 0.58 Est

PD-L1-related parameters
AE, P

† Stimulation factor for eEF2K effects on PD-L1 production – 3.32 Est
AAb, P Stimulation factor for anti-PD-L1 antibody effects on PD-L1

degradation
– 1.79 Est

KE, P
† Michaelis-Menten constant for eEF2K effects on PD-L1 production – 8.1 Est

δP Decay rate of PD-L1 wk−1 60.48 (34)

g0P
†

Basal production rate of PD-L1 protein wk−1 10.44 Est

C0
P

PD-L1 initial condition – 0.21 Est

Tumor-related parameters
AE, B

† Stimulation factor for eEF2K effects on tumor growth – 4.5 Est
KE, B

† Michaelis-Menten constant for eEF2K effects on tumor growth – 8.78 Est
AE, D Stimulation factor for eEF2K effects on inducing chemoresistance – 0.1 Est
KE, D Michaelis-Menten constant for eEF2K effects on inducing

chemoresistance
– 10.0 Est

σ† Tumor growth rate constant wk−1 3.1 (miRNA-22, M)
3.75 (Dox, M)
3.13 (Atezo, M)
0.43 (H)

Est,
Allo

B* Tumor carrying capacity cm3 2.21 (miRNA-22, M)
2.5 (Dox, M)
2.99 (Atezo, M
100 (H)

Est

δB, I
† Tumor death rate (immune-induced) wk−1 3.0 (M), 0.39 (H) Est,

Allo
εP

† Efficiency of PD-L1 to inhibit immune-induced tumor death – 1.9 Est
δB, C Tumor death rate (chemo-induced) wk−1 2.46 (M), 0.3198 (H) Est,

Allo
ϕpore Diameter of tumor vessel wall pores nm 1700 (67)
L Intercapillary length cm 0.01 (68)
ηB, B Dynamic viscosity of tumor blood cP 7.42 (42)
ηB, I Dynamic viscosity of tumor interstitium cP 3.5 (69)
B0 Tumor initial condition cm3 0.001 (12)
fv Tumor vascular volume fraction – 0.17 (42)
Q(t)† Tumor blood flow rate mL ∙mL−1 ∙

wk−1
Q(t)=2843∙e−0.65 ∙B(t) (M), 1512 (H) (37,

38)
S† Tumor microvascular surface area cm2/cm3 S=0.26∙e−4.5∙B(t)+138∙e−0.04∙B(t) (M), 135 (H) (42)
Systemic circulation-related parameters
VP Volume of plasma compartment mL 1 (M), 3000 (H) (70)
Vpc Volume of peritoneal fluid mL 0.1 (M) (47)

Mice and human specific parameters are specified by M and H in parantheses, respectively. Not specified in case of common values. †Dagger indicates patient-
specific parameters perturbed for virtual clinical trial simulations. Abbreviations: Est- estimated via regression, Allo- allometrically scaled, Dox- doxorubicin, Atezo-
atezolizumab
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Determination of Drug Synergy

The Chou-Talalay method (71) was used to identify drug synergy
between miRNA-22 and its combination with standard-of-care
drugs for TNBC (doxorubicin and/or atezolizumab). Occurence
of drug synergy allows the possibility of using a lower dose of the
constituent drugs, which can reduce their adverse effects. The
method involves determination of combination index (CI), such that
CI < 1 is an indicator of existence of drug synergism.To calculate
CI, the open source software COMPUSYN (available at https://
www.combosyn.com/) was used to generate the analysis report,
which has been provided in the Supplementary Information.

RESULTS AND DISCUSSION

Model Development, Calibration, and Baseline
Solution

The multiscale mechanistic model developed to study the PK-
PD of NP-mediated miRNA-22 therapy in TNBC, along with

other clinically approved treatment modalities, was formulat-
ed as a system of ODEs (Eqs. 1–17) and solved numerically as
an initial value problem. Somemodel parameters were known
a priori (Tables I and II), while the rest were estimated
through non-linear least squares fitting of the model to pub-
lished in vivo datasets. The selected datasets include longitu-
dinal measurements of tumor volume in mice bearing MDA-
MB-231 xenografts under control conditions, or under treat-
ment with one of the following therapies: 0.15 mg/kg (equiv-
alent 4 μg/mouse) IV miRNA-22-loaded NPs once a week
(12), 4 mg/kg IV doxorubicin once a week (56), and 5 mg/kg
IP anti-PD-L1 immunotherapy (atezolizumab) once every
5 days (58).

We used the model to simulate the treatment protocols
shown in Fig. 2, and the numerical solutions of tumor volume
kinetics were then fit simultaneously to the four datasets to
estimate the unknown model parameters (given in Tables I
and II). Additionally, the model solution for eEF2K protein
kinetics from themiRNA-22 simulation was fit to the available
data (Fig. 2a). Model fits were in good agreement with the
experimental data, as indicated by a strong Pearson

Table II List of Therapy-related Parameters and Initial Conditions

Parameter Description Units Value Ref.

NP-related parameters
ϕNP NP diameter nm 70 (12)
δNP NP degradation rate wk−1 7.7 (48)
N0 Number of NPs per injection – ~2.5e+10 Calc
miRNA-22-related parameters

ECM
50

EC50 of miRNA-22 nM 2.34 Est

krel Release rate of miRNA-22 from NPs wk−1 0.99 Est

g0M
†

Basal production rate of miRNA-22 nM∙wk−1 0.033 Est

εB
† Efficiency of tumor to inhibit miRNA-22 production cm−3 1 Assumed

δM Decay rate of miRNA-22 wk−1 4.851 (49)
M0 miRNA-22 initial condition nM 0.007 Est
Chemotherapy-related parameters (doxorubicin)
Cldox Plasma clearance of dox mL ∙wk−1 8.4e+3 (M), 4.25e+6 (H) (50, 51)
VD, dox Volume of distribution of dox mL 734 (M), 3.65e+5 (H) (50, 51)
δD Degradation rate of dox wk−1 2.0 Est

ECD
50

EC50 of dox nM 25 (50)

Immunotherapy-related parameters (atezolizumab)
ϕAb Ab diameter nm 10 (52)
δAb Degradation rate of Ab wk−1 1.21 Est
ClAb Plasma clearance of Ab mL ∙wk−1 3.07 (M), 1400 (H); Allo, (53)
VD, Ab Volume of distribution of Ab mL 1.97 (M), 6900 (H); Allo, (53)

ECAb
50

EC50 of Ab nM 0.0446 (54)

kabs Peritoneal absorption rate constant of Ab wk−1 100 Est

†Dagger indicates patient-specific parameters perturbed for virtual clinical trial simulations. Mice and human specific parameters are specified by M and H in
parantheses, respectively. Abbreviations: Est- estimated via regression, Allo- allometrically scaled., Calc- calculated from formulae, Dox- doxorubicin, Ab- antibody
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correlation (Fig. S1;R > 0.96, P < 0.0001).While the various
experimental studies used above demonstrated the effects of
individual therapies on TNBC progression, the model

revealed additional insights into drug (and also NP) pharma-
cokinetics and molecular interaction dynamics leading to tu-
mor response to the three therapies.

Fig. 2 Model calibration. Numerical solution of model fit to published in vivo data for treatment of MDA-MB-231 tumor-bearing mice with (a) NP-delivered
miRNA-22, (b) doxorubicin, and (c) atezolizumab. Markers represent experimental data. Pearson correlation analysis results goodness of fit of the model are
reported in Fig. S1.
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As shown in Fig. 2a, simulated NP-mediated miRNA-22
therapy involved periodic IV administration of miRNA-22-
loaded NPs into the plasma compartment, from where the
NPs were cleared in a size-dependent fashion characterized
by kCl, and also transported to the tumor vascular sub-
compartment in a perfusion-dependent manner governed by
the plasma flow rate Q. Extravasation of NPs across the leaky
tumor vasculature into the tumor interstitium, determined by
the vascular permeability-surface area product (PNP · S), was
followed by NP size-dependent diffusion through the tumor
interstitium. Remaining NPs were ultimitely endocytosed into
the tumor cytosolic sub-compartment (i.e., cancer cell cytosol),
followed by NP degradation and release of miRNA-22 into
the cancer cell cytosol. As a result, miRNA-22-induced inhi-
bition of eEF2K production was observed relative to the con-
trol case, which reduced the downstream production of cancer
cell transmembrane protein PD-L1. The overall effect of
miRNA-22 therapy on alterations in protein expression man-
ifested as tumor growth inhibition mediated by suppressed
induction of tumor growth by eEF2K and increased vulnera-
bility to tumor immunogenicity due to depletion of the im-
mune checkpoint PD-L1.

To explore the therapeutic combinations of miRNA-22 with
FDA approved chemotherapies and immunotherapies, we cali-
brated the model with in vivo data from treatment of TNBC
with doxorubicin (Fig. 2b) and atezolizumab (Fig. 2c). In re-
sponse to doxorubicin therapy (Fig. 2b), the model showed re-
duction in tumor growth relative to the control case due to drug
concentration-dependent increase in tumor death rate δB, C. This
is accompanied by reduced expression levels of eEF2K and PD-
L1, but increased basal miRNA-22 expression level. Note that
tumor growth has an inhibitory effect on miRNA-22 production
(12), but stimulates eEF2K production, which tends to stimulate
tumor growth in a complimentary feedback process (12, 19). We
next modeled the effect of anti-PD-L1 immunotherapy
(atezolizumab) in a simplistic fashion by targeting PD-L1 degra-
dation rate δP, such that atezolizumab enhances the degradation
of PD-L1 in a drug concentration-dependent manner. As a re-
sult, as shown in Fig. 2c, due to depletion of PD-L1, there is
inhibition of tumor growth compared to the control. The param-
eters estimated as a result of the above model calibrations are
given in Tables I and II.

Model Extrapolation to Human Scale

To study the translational value of miRNA-22 and associated
potential combination therapies, we extrapolated the in vivo
mechanistic model to human scale, either by substituting
known physiological parameters with human values, or by
allometric scaling of unknown parameters from mice to
humans (see Allometric Scaling in Methods). In Fig. 3a, a
representative simulation of NP-mediatedmiRNA-22 therapy
in a virtual adult patient (body weight 70 kg) is shown

following once aweek (QW) IVadministration of 0.026mg/kg
miRNA-22 (allometrically scaled dose) for six months, starting
80 weeks after the inception of tumor with a single cell. As
shown, eEF2K and PD-L1 levels are suppressed throughout
the duration of treatment, thereby leading to ~29% TGI
compared to the control case. The prameters used for the
representative simulation are the baseline values shown in
Tables I and II.

Dose-Response Relationship and Population Variability

To investigate the effect of changes in miRNA-22 dosage and
treatment frequency on %TGI, dose-response curves (DRCs)
was generated for a representative individual by simulating
treatment with miRNA-22 nanotherapy at different doses
(0–0.2 mg/kg), either once weekly (QW) or once every two
weeks (Q2W) (Fig. 3b). DRCs were also generated for slow,
medium, and fast growing tumors at the two treatment fre-
quencies. Note that the ratio of tumor immunogenicity-
induced death rate (e.g., tumor death rate due to normal
immune effects without drug intervention) to tumor growth
rate (δB, I/σ) indiciates how fast a tumor grows; e.g., within the
scope of this work, the ratios of 0.99, 0.9, and 0.75 indicate
slow, medium, and fast growing tumors, respectively (Fig. S3).
As shown in Fig. 3b, therapeutic response tends to saturate
around a dose of 0.05 mg/kg in these six scenarios, and even
beyond 0.026 mg/kg (dose obtained through allometric
scaling; see Allometric Scaling in Methods), tumors do not
exhibit significant increase in %TGI, hence 0.026 mg/kg
was chosen as the reference dose in humans for further inves-
tigation. As for the slow growing tumors, they show a much
higher response to therapy (~two-fold) than their rapidly pro-
liferating counterparts. Additionally, irrespective of the rate of
tumor growth, the QW protocol causes greater %TGI than
Q2W.

Further, by creating a virtual population of 2000 patients
through LHS of patient-specific parameters between ±50% of
their baseline values, the effects of inter-individual variability
on %TGI for different doses of QW miRNA-22 were investi-
gated and presented in a manner analogous to the RECIST 1.1
classification (59, 72). As shown in Figs. 3c and S2, the patient
population showed significant improvement in response with
increasing dose up to ~0.02 mg/kg, such that stable disease
(0% < TGI ≤ 10%) cases dropped exponentially, and the
population of intermediate responders (10% < TGI ≤ 30%)
and major responders (> 50% TGI) grew rapidly. Also, a
steady increase was observed in the population of partial res-
ponders (30% < TGI ≤ 50%). However, beyond
~0.02 mg/kg dose, the population of major responders quick-
ly saturated at a value of ~20%, while the population of par-
tial responders increased with increasing drug dose up to
~0.1 mg/kg, eventually settling at ~25%; the remaining pop-
ulation (~55%) primarily consisted of intermediate
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responsers. Thus, these observations support our use of the
allometrically calculated dose of 0.026 mg/kg; this was used
as the reference value for further analysis. Note that progres-
sive disease (≤ 0% TGI) was only seen in the no treatment
scenario; this indicates that treated tumors do not grow be-
yond the size of the corresponding control tumors, and hence
as per our definition of %TGI, ≤ 0% values are not observed
under treatment. These simulations provide quantification of
the variation in treatment response that can be expected from
physiological variability and tumor heterogeneity on a popu-
lation scale, and can thus support treatment personalization to
maximize patient benefit. Note that the parameters used to
generate the virtual population are marked by a dagger in
Tables I and II.

Parameter Sensitivity Analysis

For a more complete understanding of the effects of both
patient-specific and treatment-related parameters on %TGI
following 0.026 mg/kg QW dose of miRNA-22 nanotherapy
starting 80 weeks post initiation of tumor and delivered for six
months, we performed local (LSA) and global (GSA) sensitiv-
ity analyses by perturbing parameters over a range of 0.2× to

5× of the baseline values (43). As shown in Fig. 4a, GSA
ranked the 21 model parameters into eight categories based
on their sensitivity indices (by using one-way ANOVA and
Tukey’s test), out of which we discuss the top five ranking
parameter brackets below.

First, as shown in Fig. 4a, miRNA-22 degradation rate
(δM) stands out for its influence on %TGI, indicating that
the stability of the miRNA is critical to ensure therapeutic
efficacy, and an increase in degradation rate of miRNA-22
causes reduction in %TGI (as revealed by LSA, Fig. 4b),
thereby reinforcing the need for NP-mediated delivery to
protect the cargo until delivered to the cytosol. In the second
bracket, we find tumor-specific parameters controlling PD-
L1 and eEF2K protein production (g0P and g0E, respectively),
and the efficiency of PD-L1 (εP) at inhibiting immune cell-
induced tumor death, suggesting that PD-L1-mediated tu-
mor immunosurveillance blockade, eEF2K-induced tumor
proliferation, and PD-L1 production that affect the intrinsic
tumor growth and death are important determinants of
miRNA-22 efficacy. This result suggests that delivering
anti-PD-L1 therapies that target high PD-L1 activity can
improve treatment outcomes when used in combination with
miRNA-22.

Fig. 3 Translational PK-PD of miRNA-22. (a) Human extrapolation of in vivo mechanistic model simulating treatment with once weekly dose of miRNA-22 for
six months. TGI indicates percent tumor growth inhibition. (b) Dose response curves of a virtual patient under scenarios of once weekly (QW) or once every two
weeks (Q2W) dose of miRNA-22 for slow and fast growing tumors. (c) Effects of inter-individual variability on miRNA-22 therapy outcome for different QW
doses, presented on a scale analogous to RECIST 1.1. Black arrow on x-axis indicates the dose of 0.026 mg/kg used for further analysis.
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These parameters are followed by NP size (ϕNP) and NP
degradability (δNP). NP characteristics strongly influence the
systemic pharmacokinetics of NPs (driven by hepatic and re-
nal clearance (43, 70, 73–75)) and also NP transport to and
accumulation within the tumor (driven by extravasation
across tumor vasculature, diffusion through tumor intersti-
tium, endocytosis into cancer cells, and metabolism-
dependent degradation in the cancer cell cytosol (4, 22)).
These NP-specific parameters rank highly for their influence
on %TGI due to their role in miRNA-22 delivery to the
tumor. Of note, as for the individual effects of NP size (ϕNP),
we observed an inverse monotonic trend between %TGI and
the investigated parameter values, suggesting that an increase
in NP size leads to reduced %TGI (Fig. 4b). This suggests that
while smaller NPs have smaller drug loading capacity, this
may be compensated by using larger quantities to deliver the
same dose of drug, which can then outperform larger NPs
primarily due to better pharmacokinetics and greater tumor

penetration. Note that the corresponding number of NPs
injected to deliver 0.026 mg/kg miRNA-22 via NPs of differ-
ent sizes in our study ranged from ~90 billion (i.e., ~9 × 1010

for size 350 nm) to ~1.5 quadrillion (i.e., ~1.5 × 1015 for size
14 nm), which lies well within the range of values used in
preclinical studies and clinical trials (76). While we did not
investigate renally clearable NPs (<10 nm) due to lack of
reported clinical application for drug delivery, we anticipate
poorer performance from such particles, primarily due to
their short circulation half-life driven by rapid renal clearance
(43, 77). Further, within the same ranking bracket is the pa-
rameter governing the induction of eEF2K degradation by
miRNA-22 (AM,E), suggesting the expected significance of
miRNA-22 for eEF2K degradation to inhibit tumor growth.

Parameters in the 4th and 5th ranking brackets include
those that control the positive feedback between eEF2K pro-
tein and tumor growth (AE,B, AB,E), the half-maximal effective
concentration of miRNA-22 in suppressing eEF2K (ECM

50 ),

Fig. 4 Parameter sensitivity analysis. (a) Violin plot showing results of global sensitivity analysis such that parameters are plotted in a descending order of sensitivity
from left to right. SI denotes sensitivity index. Parameters are bracketed based on their ranking obtained from Tukey’s test. (b) Effects of individual parameters on
%TGI is shown via local sensitivity analysis. Note that for both analyses, parameters were perturbed over a range of 0.2x to 5x of the baseline value. Red dot in
each curve indicates the %TGI value corresponding to the baseline parameter values
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the potency of eEF2K in inducing tumor growth (KE, B), and
importantly, the tumor microvascular surface area (S). This
suggests that the positive feedback role of eEF2K with tumor
growth is secondary relative to its role in immune suppression
(these effects are found in the second bracket), that the prima-
ry effective mechanism of action of miRNA-22 is immume
suppression, and that associated reduction of tumor growth
represents a beneficial – but secondary – therapeutic mecha-
nism. The importance of tumor microvascular surface area is
attributed to its role in determining rate of extravasation of
NPs across tumor vasculature for drug delivery to the cells.
However, tumor blood flow rate (Q(t)) does not appear to have
a significant impact on therapy efficacy.

Together, our simulations find that tumor response is most
sensitive to the immune checkpoint effects of PD-L1, miRNA-
22-eEF2K interaction, miRNA-22 potency and stability, and
NP characteristics. This finding may provide opportunities for
patient-specific optimization of NP-mediated miRNA-22
therapy. It also warrants the use of combination therapies,
particularly immune checkpoint inhibitors in combination
with chemotherapeutics due to the chemoresistive influence
of eEF2K, in order to achieve a better treatment outcome. In
light of the ranking obtained through GSA, we understand
that LSA may not be required to obtain a ranked order of
parameters for their influence on%TGI, because unlike GSA,
LSA does not incorporate the interactions between parame-
ters that may influence the outcome, and thus only provides a
limited assessment into the sensitivity of parameters. However,
LSA can still be used to obtain the empirical relationships
between individual parameters and model output, as shown
in Fig. 4b.

Combination Therapies, Population Variability,
and Synergy

We then sought to test the effects of combining miRNA-22
with standard-of-care drugs for TNBC, i.e., chemotherapeu-
tics (doxorubicin) and immune checkpoint inhibitors (atezoli-
zumab), for improvement in %TGI outcome. For these nu-
merical experiments, clinically relevant doses of 2.4 mg/kg
Q3W (once every three weeks) doxorubicin and 2 mg/kg
Q3W atezolizumab were simulated for the representative vir-
tual patient (shown in Fig. 3a) in various combinations with
0.026 mg/kg QW miRNA-22 given for six months, starting
80weeks after tumor initation. As shown in Fig. 5a, combining
miRNA-22 nanotherapy with the immune checkpoint inhib-
itor improves the outcome from intermediate response to par-
tial response (30% < TGI ≤ 50%), and combined with doxo-
rubicin it leads to major response (TGI > 50%), which almost
reaches complete response when the three modalities are giv-
en together. Further, to assess the effects of patient variability
and tumor heterogeneity on drug combination outcomes,
2000 virtual patients were generated as before, and as shown

in Fig. 5b, the three drug combination cases produced major
response in ~60% of patients, which is about three times as
many patients that showedmajor response with QWmiRNA-
22 monotherapy (Fig. 3c). However, response was reduced
when miRNA-22 was given Q2W, either alone or in combi-
nation (Fig. 5c).

Finally, our observation that monotherapies without
miRNA-22 show stable disease under the examined mono-
therapy treatment protocols (Fig. 5a), while two or three drug
combinations with miRNA-22 produce significant improve-
ments in treatment outcome, warrants testing for the occur-
rence of drug synergy between miRNA-22 and other drugs.
For this, as shown in Fig. 6a, %TGI was calculated through
model simulations for various doses of three monotherapies
(miRNA-22 QW, doxorubicin Q3W, atezolizumab Q3W)
and three combination therapies (miRNA-22 QW + doxo-
rubicin Q3W, miRNA-22 QW + atezolizumab Q3W,
miRNA-22 QW + doxorubicin Q3W + atezolizumab
Q3W), and was used as an input for the Chou-Talalay meth-
od (71) to calculate the combination indices (CI) of drug com-
binations. As shown in Fig. 6b, CI values <1 for the three
combinations of miRNA-22 indicate drug synergy with doxo-
rubicin, atezolizumab, and doxorubicin+atezolizumab.

CONCLUSIONS

By using a multiscale mechanistic modeling approach, we
studied the translational PK-PD of NP-loaded miRNA-22 as
a therapeutic for TNBC, alone or in combination with other
FDA approved therapeutics. For this, the model was first cal-
ibrated with published in vivo data involving treatment of
MDA-MB-231 tumor-bearing mice with miRNA-22, doxo-
rubicin, or an immunecheckpoint inhibitor. The calibrated
model was extrapolated to the human scale by substituting
the physiological parameter values of mice with human’s, or
by scaling of the parameters with standard allometric techni-
ques. By using the extrapolated model, the dose-response
curves and effects of inter-individual variability on treatment
outcome were assessed and quantified through a scale analo-
gous to RECIST 1.1. Percent tumor growth inhibition
(%TGI) saturated at a dose of 0.05 mg/kg, irrespective of
the treatment frequency and doubling time of the tumor.
For our translational analysis, a dose of 0.026 mg/kg was
used, obtained through allometric scaling of dose for mice.
By creating a virtual patient population through perturbation
of patient-specific parameters, patient response to variable
miRNA doses was quantified, and it was observed that at
0.02 mg/kg, the fraction of patient population showing major
response (≥50% TGI) to therapy saturated at ~40%. Within
the scope of our computational investigation, further incre-
ment in the dose only increased the fraction of partial res-
ponders (i.e., patients exhibiting ≥30% and < 50% TGI),
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and appeared to saturate at 0.14 mg/kg, with ~35% patients
exhibiting <30% TGI above that dose.

Parameter sensitivity analysis was conducted to identify the
key determinants of %TGI in miRNA-22 nanotherapy. This
analysis revealed the significance of miRNA-22-eEF2K inter-
action, eEF2K-tumor growth feedback loop, tumor

vascularization, miRNA-22 potency and stability, NP charac-
teristics, and also the immune checkpoint effects of PD-L1,
which highlights the potential of miRNA-22 used in combina-
tion with anti-PD-L1 therapy to improve %TGI. This was
supported by numerical experiments involving the combina-
tion of NP-loaded miRNA-22 with a clinically used immune

Fig. 5 Combination therapies. (a) Effects of QW dose of miRNA-22 (M) alone or in combination with doxorubicin (Dox or D), or atezolizumab (Atezo or A) on
%TGI are show. b,c) Effects of inter-individual variability on%TGI following treatment with combination therapies is shown when miRNA-22 is given (b) QWor
c) Q2W. Note that the other three drugs were administered once every three weeks (Q3W) in all cases

Fig. 6 Drug synergism. (a) Dose-response data generated from model simulations for various monotherapies and combination therapies. Note: Dox indicates
doxorubicin and Ate represents atezolizumab. (b) Combination indices calculated with the Chou-Talalay method identify drug synergy for various combinations of
miRNA-22. CI < 1 indicates drug synergism
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checkpoint inhibitor (atezolizumab) and/or doxorubicin. The
triple combination of miRNA-22 with doxorubicin and this
immune checkpoint inhibitor led to almost three-fold increase
in population fraction exhibiting major response in compari-
son to miRNA-22 alone. Importantly, the suspected drug syn-
ergy between miRNA-22 and doxorubicin and immune-
checkpoint inhibitors was confirmed through the Chou-
Talalay combination, where indices were found to be <1.

Our analysis, based on a well-calibrated mathemati-
cal model extrapolated to the human scale, provides
valuable pre-translational, quantitative insights into the
limitations, challenges, and opportunities associated with
the translation of miRNA-22 nanotherapy for TNBC
patients. The ability of the model to explore the effects
of patient variability and tumor heterogeneity through
parameter perturbation and sampling demonstrates the
utility of our in-silico tool to conduct virtual clinical trials
to assess the effects of anticancer therapeutic agents,
which can provide immediate feedback to biologists
and clinicians regarding potential problems and their
solutions to support the preclinical development and
clinical translation of novel therapeutics. The model
presented here captures the key processes involved in
systemic pharmacokinetics of NPs; however, for a more
detailed characterization, we will integrate the tumor
compartment with a whole-body physiologically-based
pharmacokinetic model in the future. Also, spatial tu-
mor heterogeneity, genetic variability, and a more com-
plete tumor microenvironment (with emphasis on im-
mune cells) will be introduced in the tumor compart-
ment of the model to further explore the effects of het-
erogeneity in drug diffusion barriers, drug resistant cell
populations, and tumor immunosurveillance. Notably,
other NP physicochemical attributes (e.g., surface
charge, shape, surface coating) that are known to play
a role in the pharmacokinetics of NPs will also be con-
sidered for their effect on miRNA-22 efficacy by incor-
porating machine learning-based correlations between
NP properties and their hepato-splenic clearance or tu-
mor vascular permeability. Lastly, while allometric scal-
ing cannot replace clinical trials, it is commonly used in
standard and experimental pharmaceutical research to
support go/no-go decisions about clinical studies and
calculate first-in-human dose of drugs. Therefore, while
our model predictions are not as yet validated against
clinical data, this work represents a meaningful step to
support translational studies of miRNA-22 nanotherapy.
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