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Residual Maximum Likelihood (REML) analysis is the most widely used method to estimate variance components and heritability.
This method is based on large sample theory under the assumption that the parameter estimates are asymptotically multivariate
normally distributed with covariance matrix given by the inverse of the information matrix. Hence, these sampling variances could
be biased if the assumption of asymptotic approximation is incorrect, especially when the sample size is small. Though it is difficult
to assess the impact of sample size, an alternative option is to generate a full distribution of the parameters to determine the
uncertainty of estimates. In this study, we compared the REML estimates of variance components, heritability and sampling
variances of body-weight (BW), body-depth (BD), and condition-factor (K) with those obtained from four sampling-based methods
viz., parametric and nonparametric bootstrap, asymptotic sampling and Bayesian estimation. The aim was to understand if a sample
size of order 1413 was sufficient to contain adequate information for a reliable asymptotic approximation. The REML solution was
close to values obtained from different sampling-based methods indicating that the present sample size was sufficient to estimate
reliable genetic variation in different traits with varying heritability. The variance and heritability estimated by a nonparametric
bootstrap estimate based on randomization of family effects gave comparable results as evaluated by REML for different traits.
Hence, the nonparametric bootstrap estimate can be effectively used to understand whether the sample size is large enough to
contain sufficient information under likelihood estimation assumptions.
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INTRODUCTION
Variance components and their functions are essential parameters
of interest in selection experiments. In recent decades linear mixed
model (LMM) analysis has become a popular tool for analyzing
breeding data. The LMM analysis involves estimating variance
components and predicting breeding values assuming the
estimated variance components are correct. Several methods are
available for the estimation of variance components (Searle et al.
2009), but Residual/Restricted Maximum Likelihood (REML) is the
method of choice in pedigreed selection experiments (Lynch and
Walsh 1998). The REML is a variation of the Maximum Likelihood
(ML) method with an edge over the ML method in that the REML
estimates of variance parameters are unbiased by the estimation of
fixed effects (Patterson and Thompson 1971). The caveat is that the
significant properties of the likelihood estimators are valid when
the sample size approaches infinity, and the behavior of the same
when working with small sample size is primarily unknown (Psutka
and Psutka 2019). The likelihood theory suggests that the
parameter estimates asymptotically have a multivariate normal
distribution with covariance matrix given by the inverse of
information matrix, i.e., the inverse of the matrix of second partial
derivatives of the likelihood function (Meyer and Houle 2013).

An estimate of sampling variance, a measure of the reliability of the
parameter estimates (variance components and their functions),
can be obtained from the inverse of the information matrix.
Though the estimation of sampling variance is straightforward, it

is difficult to calculate reliable confidence intervals around functions
(heritability) of these parameters (Waldmann and Ericsson 2006).
Heritability, defined as the ratio of additive genetic variance to total
phenotypic variance, is an important genetic parameter used to
assess the potential for genetic improvement. The standard
procedure to obtain the sampling variance of heritability is to
linearly approximate the function with its first-order Taylor series
expansion and then calculate the variance of this linear approxima-
tion (Meyer and Houle 2013) by the Delta method (Lynch and Walsh
1998). The REML analyses implemented in standard software
packages such as WOMBAT (Meyer 2007), DMU (Madsen et al.
2014), ASREML (Gilmour et al. 2015), Echidna (Gilmour 2018), among
others use the Delta method. However, the sampling variance might
be biased under an incorrect asymptotic approximation, especially
when sample size is small (Thai et al. 2013).
Moreover, while there are large-sample approximations for the

sample variance of a REML variance estimator, it is unclear as to
what amount of data constitutes a large enough sample size
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(Walsh and Lynch 2018). There are no direct approaches available
to estimate the optimum sample size for a meaningful asymptotic
approximation of likelihood estimates; hence, the large sample
size is often a gray area. The multivariate normality of the
likelihood estimates (the assumption under which the sampling
variance of parameter estimates are quantified) is only valid when
the sample size approaches infinity. Often, there is a lack of
sufficient data to fulfill the conditions of optimal likelihood
estimates. Therefore, the use of alternative approaches to
evaluating uncertainties in variance components and their
functions is desirable. Sampling-based methods are an option
for estimating uncertainties associated with parameter estimates.
Sampling approaches are usually aimed at generating a full
distribution of parameter estimates instead of the point estima-
tors. The full distribution of estimates can provide a complete
picture of the uncertainties associated with estimating unknown
parameters.
We aimed to compare the sampling variance in the estimates of

variance components and heritability for three different traits
(body weight with high heritability, body depth with medium
heritability, and condition factor with low heritability) in Clarias
magur (an Indian catfish species) obtained from the REML method
with those obtained from sampling-based methods to assess
whether the present moderate sample size was large enough to
obtain a reliable asymptotic approximation. It was hypothesized
that if the sample size contains sufficient information, the
estimates obtained from various approaches should agree. Four
well-known sampling-based methods were compared with the
REML estimates viz., nonparametric bootstrapping, parametric
bootstrapping, asymptotic sampling and Bayesian method to
obtain a comprehensive picture of the uncertainty in the
estimates of variance components and heritability.

MATERIALS AND METHODS
Dataset
The data used in the present study were from the base population of Clarias
magur from an ongoing genetic selection program under ICAR-Central
Institute of Fisheries Education, Mumbai, India. The Indian catfish, C. magur, is
an economically important species with a high aquaculture potential. The fish
used in the present study consisted of 78 fullsib families produced across 2
years (2014 and 2015) following a single pair mating design (each male
mated with only one female—supplementary material attached as
Annexure-1). The brooders were collected from three natural populations
from three distinct geographical locations, viz., Andhra Pradesh, Assam, and
West Bengal. Of the total 2328 fingerlings stocked, the measurements from
1413 survived fish were made after a year of communal rearing under mono
and polyculture systems in different earthen ponds. The details of breeding,
larval rearing, PIT tagging and communal rearing used in this study are
described elsewhere (Jousy et al. 2018; Rameez et al. 2020). This study
focused on the three important traits in aquaculture, body weight (BW), body
depth (BD), and condition factor (K).

The animal model
An animal model in matrix notation takes the following form,

y ¼ Xβþ Zuþ e

where y is a vector of observations on all individuals, β is a vector of fixed
effects (stock, batch, pond, sex, and body-weight at stocking as linear
covariate), X represents a design matrix (principally 0s and 1s) relating the
fixed effects to each individual, u is a vector of random animal effects, Z is a
design matrix relating the random effects to each individual and e is a
vector of residual errors. It is assumed that random effects u and e are
normally distributed with mean zero and variance-covariance matrix G and
R respectively, u ~ N(0, G) and e ~ N(0, R).
G is a matrix that is made of additive genetic covariances between

relatives i and j, which is given by twice the coefficient of coancestry (2Θij

− the probability that an allele is drawn at random from individual i will be
identical by descent to an allele drawn at random from individual j) times
the additive genetic variance in the base population, i.e., G ¼ 2Θijσ

2
A or

G ¼ Aijσ2A , where A is known as the additive genetic (or numerator)
relationship matrix and has elements Aij= 2Θij. e is assumed to be
independently and identically distributed (iid). Hence the residual
variance-covariance matrix is given by R ¼ σ2e I, where σ2e is the residual
variance and I is the identity matrix.

REML estimation of variance components
Mathematically REML is based on the linear transformation of the
observation vector y to y* that removes the fixed effects from the model,
with the help of a transformation matrix K such that KX= 0 (Lynch and
Walsh 1998). Applying the transformation matrix then yields the model
equation as y*= KZu+ Ke and the REML estimates are essentially the ML
estimates for these transformed variables (Kruuk 2004). The transforma-
tion matrix K is also called the matrix of error contrasts, and hence REML is
sometimes known as Residual Maximum Likelihood (Littell et al. 2006).
The variance components using the REML method were estimated in
software Wombat (Meyer 2007) using an animal model. For an animal
model with a single random effect, the REML analysis will provide
estimates σ2A and σ2e , from which the heritability was estimated as
h2 ¼ σ2A= σ2A þ σ2e

� �
.

Prediction of random effects
In an animal model, the random effects of interest are known as the
breeding values of individual animals. An individual’s breeding value for a
given phenotypic trait is the total additive effect of its genes on that trait
(Falconer and Mackay 1996). A general method for predicting random
effects, known as the Best Linear Unbiased Predictor (BLUP), predicts
individuals’ breeding values from field records of large and complex
pedigrees (Lynch and Walsh 1998). Robinson (1991) lists four different
derivations for BLUPs of which the one developed by Henderson (1973)
can obtain BLUP for random effects simultaneously with the Best Linear
Unbiased Estimators of the fixed effects and hence the method is
popularly known as Henderson’s mixed model equation (MME). The MME
for a general mixed model setting is:

X 0R�1X X 0R�1Z

Z0R�1X Z0R�1Z þ G�1

" #
bβ
bu

" #

¼ X 0R�1y

Z0R�1y

" #

Suppose we assume that residual variance is iid, in that case, the R
matrix can be factored out, and the MME for the animal model will reduce
to (Isik et al. 2017):

X 0X X 0Z
Z0X Z0Z þ A�1α

� � bβ
bu

" #

¼ X 0y
Z0y

� �

where, α ¼ σ2e
σ2A

or 1� h2
� �

=h2. The solutions to these equations are the best
linear unbiased estimators of bβ and the best linear unbiased predictors of bu
for a given value of α. The BLUP breeding values were predicted by solving
MMEs in Wombat (Meyer 2007) using estimated REML variances.

The standard error of heritability
Heritability is a nonlinear function (ratio) of variance components. The
usual way to estimate the variance of a ratio is by the Delta method (Lynch
and Walsh 1998). The Delta method uses the first-order Taylor series
expansion of the function about the estimated bΘ parameter (Meyer and
Houle 2013). For the nonlinear function heritability,
h2 ¼ f Θð Þ ¼ σ2A= σ2A þ σ2e

� �
, provided f(Θ) is differentiable and continuous

around the estimated bΘ, the variance of heritability is given as (Stefan
2017):

Var h2
� � � ∂h2

∂σ2A

� �2

σ2σ2A
þ ∂h2

∂σ2e

� �2

σ2σ2e þ 2
∂h2

∂σ2A

� �
∂h2

∂σ2e

� �
σσ2A0σ2e

the square root of which gives the asymptotic standard error of heritability.

The functions, ∂h2

∂σ2A

� 	
¼ σ2e

σ2Aþσ2eð Þ2 and ∂h2

∂σ2e

� 	
¼ �σ2A

σ2Aþσ2eð Þ2 are the partial

derivatives of the function of heritability with respect to the estimated
additive genetic variance and error variance, respectively. The notations,
σ2
σ2A
, σ2

σ2e
and σσ2A0σ2e are the variance of additive genetic variance, the

variance of the error variance and covariance between additive genetic
variance and error variance, respectively, all of which can be obtained from
the asymptotic variance-covariance matrix. Based on the standard errors
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from the delta method, ~95% confidence intervals (CI) were computed as
h2 ± 1:96bσh2 .

Nonparametric bootstrap (NPBS). A Nonparametric subject-wise boot-
strap, wherein samples were drawn from the predicted random animal
effects (BLUPs) and residuals, was performed. The resampling unit was a
parent and its offspring, taking into account the family structure. The NPBS
was performed under three different schemes. A total of 10,000 new
datasets were generated, and for each data set, heritability was estimated
using REML to obtain the sampling distribution of heritability estimates.
The bootstrap samples were obtained as follows:

1. Fit the model, y= Xβ+ Zu+ e, to the data
2. Predict the random animal effects bu and residuals be
3. Obtain vector of fixed effects as by ¼ y � buþ beð Þ, where by is y vector

corrected for effects of bu and be
4. Draw random animal effects with replacement from predicted bu

(step 2) to obtain new bu�
5. Draw residuals with replacement from predicted be (step 2) to obtain

new be�
6. Create new y values by� as by� ¼ by þ bu� þ be�
7. Fit the model by� ¼ Xβþ Zuþ e to the new data set to estimate

variance components and obtain heritability
8. Repeat the steps from 4 to 7 for 10,000 times

The NPBS was performed in six ways viz., two methods of analysis
(animal model and family model) by three sampling schemes:

(1) u and e treated independently; bootstrap samples built
separately from u and e without randomizing the families

(2) Linkage between u and e maintained; bootstrap samples built
from u+ e without randomizing families and

(3) Linkage between u and e maintained; bootstrap samples built
from u+ e randomizing the families.

The separation of the animal effect into genetic (u) and residual (e)
components via the mixed model equations is in fact, just a computational
strategy for fitting an animal effect that is correlated within families. In this
data, where the genetic relationships are essentially defined as fullsib
families (4 of the 78 are half-sib), the family model and animal model are
(almost) equivalent, and the essential information required for boot-
strapping is given by u+ e nested in families.

Parametric bootstrap. Here, new data sets were generated by sampling
values for the animal effects and residuals for the data and pedigree
structure from a multivariate normal distribution with a mean zero and
covariance matrix as estimated from the REML analysis, a form of model-
based simulation. The parametric bootstrap sample was obtained as
follows:

1. Fit the model y= Xβ+ Zu+ e to the data
2. Estimate the overall mean E(y)= Xβ
3. Generate random animal effect bu and residuals be from the

multivariate normal distribution
4. Create new by values as by ¼ E yð Þ þ buþ be
5. Fit the model by ¼ Xβþ Zuþ e to the new data set to estimate

variance components and obtain heritability
6. Repeat steps 3 to 5 for 10,000 times

Asymptotic sampling
A total of 10,000 sets of the variance components (both additive genetic
variance and residual variances) were sampled from the multivariate
normal distribution. The MVN was parameterized with the mean and
covariance matrix obtained from the REML analysis. The heritabilities were
estimated from the samples of variance components obtained in Wombat
(Meyer 2007).

Bayesian estimation
The MCMCglmm package in R software, a combination of Gibbs sampling,
slice sampling and Metropolis-Hastings updates, was used to generate the
chain (Hadfield et al. 2019). The starting values generated by the default
heuristic techniques within MCMCglmm were used to initialize the chain. A

single chain was generated with a chain length of 10,00,000 iterations with
a thinning interval of 100 iterations (which means only one iteration value
is saved for every 100 iterations) to reduce the autocorrelation between
successive values (de Villemereuil 2012). A burn-in period of 50,000
iterations was used to ensure the convergence of the chain before saving
iteration values. A total of 9500 values of variance estimates were sampled
from the chain for every trait, and heritability was estimated for each
sampled variances.
An inverse-gamma distribution was used as the prior for variance

components, and a diffuse normal prior centered around zero with a very
large variance (108) was used for the mean (Hadfield et al. 2019). The
inverse-gamma distribution was parameterized by two parameters nu
(shape) and V (scale), where nu= 0.002 and V= 1. The inverse-gamma
distribution allows for a weakly informative prior on variance components
and U-shaped prior (with a very steep shape on the borders in 0 and 1) on
the heritability (de Villemereuil 2012). For algebraic convenience, under the
Bayesian method, the trait values of K was first multiplied with a constant
(100 in this case) before estimation of the variance components.
Convergence was assessed visually by looking at trace plots of

parameters. The convergence diagnostic as proposed by Geweke (1992)
for Markov chains was used to statistically test the chain for convergence. It
was based on a test for equality of the means of the first and last part of a
Markov chain (by default, the first 10% and the last 50%). Geweke’s statistic
was estimated as a statistical test for convergence using gewke.diag()
function from the coda package in R. A thinning interval of 100 was used to
reduce the autocorrelation and get a better effective sample size, wherein
only one iteration value was picked from every 100 iterations. The thinning
also reduces the memory required to hold results and lightens down-
stream analysis.
A 95% Highest Density Region (HDR) is interpreted as a 1− α (0.95)

probability that the interval contains the actual value of the unknown
parameter as opposed to the 95% CI from the frequentist method where
1− α (0.95) of the time the confidence intervals will enclose the parameter.
HDRs are estimated by the HPDinterval() function from the coda package in
R. The mode of the posterior distribution was estimated using the function
posterior.mode() from the coda package in R. The kernel density plots were
obtained using proc kde in SAS 9.3.

RESULTS
REML estimates
The results from the REML analysis of variance components and
heritability are presented in Table 1. The additive genetic variance
(255.20) and the residual variance (325.20) for the body weight
and other traits (Table 1) were obtained by REML using the
average information algorithm, and the corresponding sampling
variances were obtained from the inverse of the average
information matrix. The heritability estimates of 0.44 for BW,
0.22 for BD, and 0.08 for K were obtained as the function of
variance components (ratio of additive genetic variance and total
phenotypic variance), and their sampling distributions were
obtained by approximating the function with its first-order Taylor
series expansion. The results and their corresponding approximate
95% CI are given in Table 1.

MCMC diagnostics
Convergence and autocorrelation. The additive genetic variances,
residual variances and heritabilities for body weight are presented
in Fig. 1, plotted against iteration number. This shows the
fluctuation in sampled values over the iterations (50,000 to
1,000,000 after dropping the first 50,000 iterations, known as burn-
in). The trace plot depicts a well-mixing chain, which moves
through the entire subset of parameter space without settling to
any particular region. The MCMC trace plots for BD and K also
followed the same pattern (not presented). The Geweke’s test
statistic was a standard Z-score; all the p values for the Z scores
from Geweke diagnostics for convergence of variance compo-
nents and heritabilities of BW, BD, and K were greater than 0.05.
Since Geweke’s statistic did not reveal any significant difference
between the mean of the values sampled from the first and the
last parts of the Markov chains, it indicates convergence and
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proper mixing of the chains. Also, the thinning interval of 100
reduced the autocorrelation of samples within the range of
−0.001 to 0.10 for different traits (Table 2). Autocorrelations for
additive genetic variances and residual variances for BW, BD, and
K at five different points of iterations are given in Table 2, where
Lag 100 stands for autocorrelation of estimates 100 iterations
apart. The autocorrelation between additive genetic variance
within the traits ranged from −0.001 to 0.10 and 0.001 to 0.05 for
the residual variance.

High-density regions (HDRs). The posterior probability distribu-
tion of additive genetic variance, residual variance and
heritabilities for trait BW are presented in Fig. 2 a, b. The
additive genetic variance for BW ranged from 119.70 to 678.30
(See Fig. 2) with a 95% probability of the parameter values
between 174.50 and 400.30, whereas the residual variance had
95% HDR ranging from 321.20 to 466.90 (Table 1). The posterior
probability means of additive genetic variance and residual
variance were 279.40, and 395.40 for BW, 0.0257 and 0.1070 for
BD, 0.00124 and 0.00992 for K, and are presented in Table 1.
The mean of the variance components and heritabilities for
BW, BD and K are presented in Table 1. The heritabilitiesTa
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Fig. 1 Trace plots of the sampled values for additive variance,
residual variance and heritability along the iterations from MCMC
sampler for trait BW. (A) Additive genetic variance, (B) Residual
variance, and (C) Heritability.
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estimated by REML and the Bayesian method for BW, BD, and K
were similar (Table 1).
Heritability estimates of BW obtained from the posterior

distribution of variance components ranged from 0.20 to 0.77
with the posterior mean and median heritability of 0.41 and
the posterior mode of 0.43, with a standard error of 0.07 for the
mean heritability (Table 1). HDR 95% regions of heritability for
BW ranged from 0.27 to 0.54, indicating a 95% probability for
the true value of heritability to lie between 0.27 and 0.54. The
mean heritability for BD and K were 0.19 and 0.11, respectively,
which were similar to their median heritabilities.

Bootstrap estimates
Nonparametric bootstrap sampling (NPBS). The distribution of the
variance components and heritabilities for BW obtained from
nonparametric bootstrap is illustrated in Fig. 2 a, b. The
distributions of variances and heritabilities of three traits are
summarized in Table 1. A total of 10,000 bootstrap samples were
obtained for each of the six scenarios, and the variance
parameters were re-estimated by REML. Under the animal model,
nonparametric bootstrap sampling was performed from the
vector of animal effects (BLUPs) and residual effects sampling
within fullsib (dam) families. The results are summarized in Table 1
with respect to the variance components and the heritability
estimate. The 95% CI constructed for variance components and
heritability by calculating the 2.5th and 97.5th percentile of
bootstrap distribution is also given in Table 1.
The estimates of additive genetic variance (207.10–302.46),

residual variance (Animal model: 230.00–358.52; Family model:
498.97–524.40) and heritabilities (0.34–0.51) for BW varied across
the six NPBS schemes using animal model and family model, so as
for BD and K (Table 1). For the NPBS models, resampling u and e
independently without randomizing families (Scheme 1) gave rise
to the lowest estimated residual variances for BW, BD, and K under
the animal model; under the family model, scheme 2 had the
lowest residual for K. Recognizing the dependence (correlation)
between the estimates of and the randomization of families
(Scheme 3) yielded the highest estimated residual variance for all
traits under both animal model and family model. Assuming
independent u and e in the animal model (Scheme 1) has inflated
heritability (the quantum of inflation increased with decreasing
REML heritability), and under dependent u and e assumption in
the animal model, the non-randomization (Scheme 2) and
randomization (Scheme 3) yielded heritability estimates with
differences of the order 0.08 for BW (Scheme 2: 0.41; Scheme 3:
0.49), 0.03 for BD (Scheme 2: 0.32; Scheme 3: 0.29) and 0.01 for K
(Scheme 2: 0.18; Scheme 3: 0.17). The family variance was the
lowest under the independent u and e model even when the
families were randomized (Scheme 1) for all three traits. Under the
dependent u and e assumption in the family model, the family
randomization (Scheme 3) gave higher family variance for BW. For
BD and K, the non-randomization (Scheme 2) and the randomiza-
tion (Scheme 3) yielded similar family variance. For both the
animal and family model, the highest residual variance was
observed under the dependent u and e model with family

randomization for all three traits. Assuming independence of u
and e, family model scheme 1 gave the lowest heritability for all
three traits (Table 1). Additionally, the results from various NPBS
schemes, applied on different data sets with varying family size
and the total sample size randomly sampled from the original
data, is attached as a supplementary file (Annexure-2).

Parametric bootstrap. The results obtained from the parametric
bootstrap are presented in Table 1. The distribution of variance
components and heritabilities for BW are illustrated in Fig. 2. The
estimates of variance components were calculated as the mean of
the parameter estimates from bootstrap samples and the
confidence interval as the values lying between 2.5th and 97.5th
percentile. The additive genetic variance and residual variance for
different traits estimated from the parametric bootstrap, along
with its standard errors, are provided in Table 1. The variance and
heritability estimates for three traits obtained from the parametric
bootstrap were similar to that of the REML estimates (Table 1).

Asymptotic sampling. The estimate of variance components and
heritabilities for different traits were obtained as the mean of all
the sampled values and is presented in Table 1. The distribution of
the sampled values for additive genetic effects and residual effects
and heritabilities for BW is given in Fig. 2 a, b. The values of
variances and heritabilities estimated for the traits considered
were similar to REML estimates.

Comparison of estimates. Variance components, heritabilities and
their uncertainties were estimated from five different methods, of
which the heritabilities ranged from 0.34 to 0.51 for BW, 0.11 to
0.38 for BD and 0.09 to 0.19 for K across the methods (Table 1).
Estimates of heritabilities and standard errors obtained from
REML, parametric bootstrap and asymptotic sampling were similar
for different traits (BW: 0.44, BD: 0.22 and K: 0.10). MCMC sampling
also gave similar heritability estimates as REML for different traits.
Under the NPBS models, the average heritability of BW for Scheme
3 was 0.49 ± 0.07, less than 1 SD above the REML estimate. The
other schemes disagreed more with the REML estimate, but
the REML estimate was still well within the 95% coverage range.
The 95% coverage probabilities of variance components and
heritabilities from different methods for BW are given in Table 3.
The coverage probabilities obtained for different methods ranged
from 0.94 to 0.98 (Table 3). For the traits BD and K, the REML
heritability was within the 95 % CL of the NPBS scheme 3 using
both animal model and family model, and the largest bias was
observed in scheme 1.
For subjective comparison, overlaid kernel density graphs for

additive variance, residual variance and heritabilities of BW
obtained from different sampling-based methods are illustrated
in Fig. 3 a–c. These figures show that the distribution of additive
genetic variance, residual variance and heritabilities are approxi-
mately normal. The location of the peak of distribution for the
additive genetic variance does not vary significantly (well within
1 SD of REML estimate of additive variance) among the methods,
with the smallest sampling variance for the additive genetic

Table 2. Autocorrelation values for different intervals for the MCMC chain.

BW BD K

Intervals Additive Variance Residual Variance Additive Variance Residual Variance Additive Variance Residual Variance

Lag 0 1 1 1 1 1 1

Lag 100 0.078 0.054 0.100 0.058 −0.011 0.001

Lag 500 0.007 0.007 −0.0001 0.001 −0.010 −0.023

Lag 1000 0.010 0.011 −0.0002 −0.002 −0.004 0.009

Lag 5000 −0.022 −0.005 −0.011 −0.004 −0.017 0.004
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a

b

Fig. 2 Distribution of variance components and heritabilities estimated for BW from four methods. a A (Column 1: Additive variance;
Column 2: Residual variance; Row 1: Bayesian MCMC, Row 2: NPBS AM scheme 1, Row 3: Parametric bootstrapping and Row 4: Asymptotic
sampling. b Heritabilities Row1-Column1: Bayesian MCMC, Row1-Column2: NPBS AM scheme 1, Row2-Column1: Parametric bootstrapping
and Row2-Column2: Asymptotic sampling.
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variance obtained from NPBS models (with a sharp peak and
narrow confidence interval) giving higher confidence in the
parameter estimated. Among different methods, the sampling
variance for additive variance was high for the MCMC method
with a wider confidence interval. The distribution for residual

variance varied largely among methods (Fig. 3b), where both the
lowest and the highest residual variance were obtained from NPBS
models. Both the parametric bootstrap and asymptotic sampling
gave rise to similar distribution for a residual variance. The
sampling variance obtained from REML, parametric bootstrap,
MCMC method and asymptotic sampling for a residual variance
were similar. The parametric bootstrap, MCMC method and
asymptotic sampling gave identical distribution for heritability
estimates. The distribution for the NPBS model with independent
u and e assumption largely varied from the empirical distribution
of other methods (Fig. 3c).

DISCUSSION
In REML estimation, the maximization of likelihood can be
achieved differently depending upon the order of derivatives
available (Thompson and Mäntysaari 1999). The precise class of
algorithms are derivative-free (DF) methods, of which simplex/
polytope (Nelder and Mead 1965) and Powell’s algorithms (Powell
1964) are more common. The most popular algorithm involving
the first derivatives is Expectation-Maximization (EM REML)
algorithm, while the Average-Information algorithm (AI REML) is
the most popular involving second derivatives (Misztal 2008).
The DF approaches are fast for simple models, whereas they are

expensive and unreliable for complicated models and have
become obsolete (Gilmour et al. 1995). The EM algorithm was
considered the most reliable but is slow in convergence and does
not directly generate the standard error of the estimate. AI REML is
popular because it is much easier to compute than other second
derivative methods like Newton-Raphson and Fisher Scoring, it is
not much more complicated than EM per iteration and it requires
many fewer iterations (Gilmour et al. 1995). One advantage of
using the Newton-Raphson or Average Information algorithm is
that the matrix of the second derivatives of the log-likelihood
evaluated at the optima, known as the Hessian matrix (H), is
available upon completion. Serfling (1980) explained with the help
of the asymptotic theory of maximum likelihood that matrix 2H−1

is an asymptotic variance-covariance matrix of the estimated
parameters of G and R. In the breeding experiments, heritability is
the primary genetic parameter used to assess the potential for
genetic improvement. It is estimated as a non-linear function
(ratio) of variance components (Meyer and Houle 2013; Stefan
2017). Under the REML method, the estimated heritability’s
reliability/standard error (SE) is obtained from the first-order
Taylor series approximation of the function of heritability. In all
these methods, the estimation of reliabilities is based on the large
sample (asymptotic) theory, where the test and confidence
intervals are based on the asymptotic normality (Serfling 1980).
These estimates of standard errors may be unreliable, especially
under small sample sizes, since these methods are based on
approximations (Littell et al. 2006). In the present study, we
compared the variance components and their reliabilities and the
precision of heritability estimates obtained from the REML method
with the corresponding estimates obtained using various sam-
pling methods.
The sampling-based methods are costly on time compared to

the REML method. However, the time required for sampling-based
methods depends upon the sample size, the number of iterations
envisaged, and the software and the computational capacity. The
recorded CPU time ranged from 45 to 90min in the present study,
depending upon the method (AMD A10-8700P Radeon R6, 10
Compute Cores 4 C+6 G 1.80 GHz with 8 GB installed RAM).

Bootstrap vs REML estimates
Bootstrap methods are an alternative approach for estimating the
reliability/SE of parameters and constructing the confidence
interval without assuming the symmetric distribution. Model-
based bootstrapping was first developed under simple linear

Table 3. Coverage probabilities for NPB: Nonparametric bootstrap, PB:
Parametric bootstrap, BYS: Bayesian estimation, ASY: Asymptotic
sampling.

NPBS PB BYS ASY

Additive 0.98 0.94 0.96 0.95

Residual 0.97 0.94 0.97 0.94

Heritability 0.97 0.94 0.96 0.95

Fig. 3 Overlaid kernel density graphs for BW obtained from
different methods. a Additive genetic variances, b Residual
variances, and c Heritabilities.
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models, where bootstrap samples were based on residuals (Efron
1979; Efron and Tibshirani 1994). In the simple linear models, the
residuals are resampled either from an estimated empirical
distribution of the residuals (parametric bootstrap) or are
resampled from the initial residuals without any distributional
assumptions (nonparametric bootstrap). The resampled residuals
are then added onto an estimate of the mean function obtained
from the data (Morris 2002) to create a new set of observations to
analyze. In the present study, the same idea was extended to the
animal model by sampling with replacement from predictors of
the random effects and residuals for nonparametric bootstrap and
from an estimated multivariate normal distribution for parametric
bootstrap. In the context of an animal model, the natural choice of
predictors for random effects is BLUPs (BLUP bootstrap), as they
are readily available in software packages and have optimality
properties in predicting an individual’s random effect. However,
the variance structure is defined by the sum of the random effect
and the residual. A random effect is a shrunken form of a fixed
effect. The balance of the fixed effect remains in the residual, so
resampling needs to be done on the sum to reproduce the
appropriate variance structure.
Different NPBS models were used in this study. The NPBS with

an animal model assuming independence of u and e (Scheme 1)
gave rise to a high heritability score for all the three traits (For BW
REML: 0.44, Scheme 1: 0.51; BD REML: 0.22, Scheme 1: 0.38; and K
REML: 0.10, Scheme 1: 0.19) wherein all three cases the residual
variance was underestimated relative to REML. This suggests this
bootstrapping process is not recreating the variance structure
assumed for the model, and it is because the estimated random
effect is correlated with the residual because of the shrinkage in its
estimation. Combining an animal effect ((fi + eij)s) with the
residual from another animal in the same family ((fi + eik)(1-s))
produces (fi + seij + (1-s)eik) in which the latter two terms tend to
cancel producing a smaller residual than required. The math is
different under the family model bootstrapping, where under
scheme 1 the family variance is low, and the residual is high: the
family effect (si fi) is combined with a residual (1-sk) fk + ekj
typically from another family.
Under Schemes 2 and 3, adding the random and residual

components at the individual level always yields a sum that is not
disturbed by the shrinkage or whether it is fitted as an animal or
family model. However, the average sampled genetic variance was
inflated relative to the initial REML estimates in both cases for all
traits, with a commensurate reduction in the residual variance. The
REML solution has the same standard deviation and is well within
1 standard deviation (SD) of the mean under Scheme 3 for BW,
within 2 SD for BD and K. However, the failure to randomize family
effects under scheme 2 has resulted in a family variance 2 SD
above the REML estimate. This indicates that Scheme 2 is not
properly representing the variation in the data.
A simulation study by Morris (2002) demonstrated that the

optimal properties of the BLUP do not transfer over to boot-
strapping when the sample size is small, as a result of which the
BLUP based bootstrap consistently underestimate the variability in
the data. Further, he reported that the coverage probability of 90
% intervals for the variance components from BLUP bootstrap
showed severe undercoverage problems. However, there were no
undercoverage issues in the present study with the 95%
confidence intervals for variance components and heritability,
which add confidence to the optimality of the current sample size
(Table 3). An increase in the coverage rate with an increase in
sample size was reported by Thai et al. (2013). In our study, both
nonparametric and parametric bootstrap gave similar coverage
probabilities with slight differences in the values attributed to the
total bootstrap sample size (10,000). Increasing the total bootstrap
sample size might give exact coverage probability for nonpara-
metric and parametric bootstrap. Searle et al. (2009) explained
that the realizations of BLUP are shrinkage estimates and the

overall effect of shrinkage estimation is the reduction in the
variance surrounding realized BLUPs (Morris 2002). This reduction
in variance is translated to every new data set generated by
resampling from BLUP predictions. In a mixed model analysis with
pedigree, the BLUP shrinkage is a function of the number of
observations per family, the total number of observations, the
observed vector of trait values and estimated variance compo-
nents (Searle et al. 2009). So, one of the possible ways to reduce
the effect of shrinkage would be to randomize the families while
bootstrapping so that the overall shrinkage effect might
cancel out.
The heritability estimated from the parametric bootstrap was

similar to the REML estimate. In parametric bootstrap, the random
variables were sampled from a multivariate normal distribution,
resulting in an estimate identical to the REML method since the
latter is based on the strong assumption of multivariate normality.
A global nonparametric bootstrap was also performed (results not
shown), in which the random animal effects and residuals were
sampled from the respective vectors of BLUPs and residuals,
wherein each vectors were respectively assumed to be one single
sampling unit in contrast to assuming each fullsib family as the
primary sampling unit. The global nonparametric bootstrap did
not yield any meaningful result, where the estimated variance was
near zero. The reason for this is, while performing bootstrapping,
one of the concerns is that the resampling should appropriately
mimic the actual data generating process that produced the data
set (Flachaire 2005). It is evident that the classical bootstrap
methods developed for simple linear models should be modified
to take into account the characteristics of mixed-effects models
(Das and Krishen 1999). In the setting of an animal model, the
within-family correlation structure needs to be taken into account;
thereby, one parent and its entire offspring will be the appropriate
sampling unit for generating meaningful bootstrap samples,
rather than a whole vector of animal effects (predicted breeding
values).

Bayesian vs REML estimates
Bayesian methods are often touted for their ability to incorporate
prior information when available, but the key utility of these
methods is their ability to provide a complete description of the
uncertainty of an estimate (Walsh and Lynch 2018). An MCMC
chain of 10,00,000 iterations were run with a burn-in of 50,000
iterations (for better convergence and mixing of chain) and a
thinning interval of 100 (to reduce autocorrelation), which yielded
a total of 9500 sampled values of variance components and
heritabilities. Convergence and autocorrelation are two critical
issues to monitor when using the MCMC method. There is a
possibility of a strong dependence of the values obtained in the
first few iterations on the starting values. The chain is said to
converge only after the dependence on the starting parameter
has diminished. The visual examination of the trace suggested a
well-mixing chain (Fig. 1). As a rule of thumb, if there is no trend in
the trace, then the chain has achieved convergence (Hadfield et al.
2019). An autocorrelation of less than 0.10 in magnitude is
considered reasonable (de Villemereuil 2012). Further, if the
samples were drawn from the chain’s stationary distribution, the
two means are equal, and Geweke’s statistic has an asymptotically
standard normal distribution (Plummer et al. 2018).
One of the consequences of the large sample theory is the

asymptotic normality of the posterior distribution, i.e., to say as
n→∞ (as more and more data arrive from the underlying
process), the posterior distribution of θ approaches normality
(Gelman et al. 2013). Examination of the distribution of the
variance components (additive and residual; presented for BW in
Fig. 2a) for different traits obtained from the MCMC sampler
shows that the posterior distribution is approximately normal.
The additive variance obtained from the REML analysis was in
close agreement with the location parameters of the posterior
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distribution, whereas the REML residual variance was notably less
in comparison with the Bayesian posterior estimate for BW and
BD; however, for trait K in its original scale, the MCMC did not
yield results similar to REML solutions which inflated the
heritability. The probable reason could be that a weakly
informative inverse gamma prior was used to obtain the posterior
distribution. In the original scale, the likelihood estimates of
variance components of K is of the order 10−7 and the
parameterization of inverse gamma prior used in this study has
its density function approaching infinity as the variance
approaches zero. It means the information of the prior is
maximum as the variance approached zero, or in other words,
the only information available in the prior is that variance cannot
be negative. The high information of prior near to zero will always
overpower the information in the likelihood estimates as it
approaches zero, which was the case with K (likelihood estimate
of the order of 10−7). To remove this inconvenience, the
observations of K were multiplied with an appropriate constant
(100 in the present study), which yielded variance components of
the order 10−7, the ratios of which estimated the heritability
similar to REML. The scale corrected K values were used only in
the Bayesian method. Gelman (2006) noted the popularity of the
inverse gamma family of priors is due to its clean mathematical
properties, wherein he discourages the use of inverse gamma
prior due to the sensitivity of its parameterization towards the
posterior inferences. However, in the present study, the
MCMCglmm package was used, which does not offer the
flexibility to use a different family of prior other than inverse
gamma. Waldmann and Ericsson (2006) reported a high residual
variance in the posterior distribution when comparing the REML
and Gibbs sampling estimates of genetic parameters, which was
the case with BW and BD in this study. However, according to
Sorensen et al. (2002), the variance components from REML
analysis should be identical to the Bayesian posterior distribution
mode if the mixed models’ parameters are assigned non-
informative uniform distributions. Another study by Guan et al.
(2017) in turbot (a species of flatfish) showed that the Bayesian
estimate of additive variance from the posterior mean was high
compared to the REML estimate, whereas the Bayesian residual
variance was low in comparison with the corresponding REML
estimate. In the present study, a higher additive and residual
variance were obtained from the posterior mean, median, and
mode compared to the REML estimates for BW and BD, whereas
for K, the MCMC variances agreed with REML solutions (Additive:
0.0011 and Residual: 0.0099). In a simulation study by Van Tassell
and Van Vleck (1996), the variance components obtained from
the posterior mean and REML estimates were similar, and the
variance components obtained from the posterior mode was
always low. Despite the difference in variances, the posterior
distribution of heritability resulted in a similar value as that of the
REML estimate, giving more confidence in our estimate. Several
other studies also reported where both REML and Bayesian
methods provide a similar estimate of heritability if the sample
size is large and heritability is high (Waldmann and Ericsson 2006;
Alijani et al. 2012; de Villemereuil et al. 2013; Guan et al. 2017). It
should be noted that the standard error estimated from the
posterior distribution was similar to the one obtained from the
delta method. The approximate 95% CI of REML heritability
agreed well with the 95% HDR of heritability of posterior
distribution. An objective comparison between the estimates of
the REML and Bayesian posterior distribution is difficult. However,
heritabilities obtained from both the methods were in close
agreement, which indicates that the likelihood function has an
overpowering influence on the prior distribution. The influence of
the prior distribution on the posterior diminishes under a large
sample size (Walsh and Lynch 2018); nevertheless, only a prior
sensitivity study can ascertain this claim, as noted by Blasco and
Blasco (2017).

Asymptotic sampling vs REML estimates
Meyer and Houle (2013) described a simple alternative to estimate
the sampling distributions of the functions of variance components
by repeated sampling of parameter estimates from their asymptotic,
multivariate normal (MVN) distribution and calculating the functions
of interest for each sample inspecting their distribution across
replicates. They further concluded that the sampling of REML
estimates from asymptotic MVN distribution, specified by the
inverse of the information matrix, offers a straightforward and
computationally undemanding way to derive sampling distributions
and confidence intervals for estimates of covariance components
and their functions. Our study sampled 10,000 estimates of both
additive genetic and residual variances for all three traits and
estimated heritability for the combination of every sampled value.
The mean of the variance components and heritabilities obtained
from the asymptotic sampling were similar to the REML estimates
for different traits. The standard error for variance components and
heritabilities obtained from both methods were similar. In the
present study, both the REML and asymptotic sampling performed
equally well to estimate variance components’ uncertainties and
functions. An admonition in sampling from asymptotic distribution
is that, to yield a valid estimate of covariance, sampling distributions
and confidence intervals, large sample properties should hold well,
i.e., the inverse of the information matrix has to provide an adequate
description of sampling covariance among the parameters esti-
mated. The inverse of the information matrix could be obtained only
with Newton–Raphson type algorithms or its variant, especially the
average information algorithm (AIREML) (Gilmour et al. 1995), which
utilizes second derivatives of log-likelihood.
The uncertainties surrounding the REML heritability could be

inaccurate when the assumed asymptotic behavior is violated.
Schweiger et al. (2016) describe different cases under which the
asymptotic normality does not hold well, of which the most
common cause is the sample size. They further demonstrated that
the asymptotic CIs tend to be biased when the heritability
estimated is relatively low or high, under which the Cls can spread
beyond the natural boundaries of their parameters (e.g., negative
heritabilities). In a breeding program, the number of families and
the number of offspring per family that could be generated at a
time is constrained by many factors. As we have noted previously,
under large sample assumptions, it is not clear what constitutes a
large sample (Walsh and Lynch 2018), making it hard to realize the
goodness of asymptotic approximation. As an alternative,
sampling-based approaches can be used to generate a full
distribution of the estimates to construct CIs.
Of the alternate methods used in the present study, the

parametric bootstrap and asymptotic sampling gave similar results
for variance components and heritability as REML estimates for all
the traits under study. Even though the methods were different,
the underlying assumptions are the same and give rise to similar
results. Nonparametric bootstrap is well-known for estimating the
uncertainties in the data by generating a distribution of estimates.
In our study, we have used the BLUP predictions for resampling to
create new datasets. However, BLUP is a shrinkage estimator, and
as a result, there can be a bias in the estimate of heritability;
however, the bias can be reduced by sampling under appropriate
assumptions. The NPBS scheme 3 has minimum assumptions, and
also, the confidence interval constructed by this method
encompassed the heritability estimated by the REML method.
The Bayesian posterior mode for BW, BD, and K yielded heritability
estimates similar to REML heritability; however, there were slight
differences in the variance estimated from both methods.
We conclude that this study with 1413 observations representing

78 full-sib families has provided sufficient information to estimate
the heritability of the traits analyzed with acceptable confidence
using REML. Based on our study, we recommend to use the NPBS
scheme 3 or Bayesian methods to estimate the heritability and its
standard error when the information content of the data is in doubt.
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CONCLUSION
Variance components and heritabilities are point estimates
surrounded by statistical uncertainty. Confidence intervals derived
from the standard error of the estimate describe the uncertainty of
the estimate. The REML method assumes an underlying normal
distribution leading to asymptotic normality of the estimators, but
this may not hold for small sample sizes. When it is challenging to
ascertain adequate sample sizes, it is possible to use sampling-
based methods to generate a full distribution of estimates. In the
present study, the REML estimates of variance components,
heritability and the associated uncertainties for three traits were
compared with different sampling-based approaches to under-
stand if the data had sufficient information for the asymptotic
assumptions to hold.
Even though the parametric bootstrap and asymptotic sam-

pling yielded precisely the same variance components for all three
traits as those estimated from the REML method, these two
methods also assume multivariate normality under a large sample
theory like REML, hence not the methods of the first choice.
Moreover, the second moment of the assumed multivariate
normality from which the parametric bootstrap and asymptotic
sampling were performed was the REML estimate of variance
components. The NPBS estimates vary based on the assumptions,
where the stronger the assumption, the tighter was the
distribution. Based on the NPBS results, obtaining the bootstrap
sample by independently resampling the genetic and residual
components is not valid because of the effect of shrinkage on the
genetic effects meaning their estimates are correlated with the
residual effects. However, it is necessary to randomize the family
effects to sample the parameter space adequately. The REML
solution for BW was within 1 SD, and BD and K within 2 SD of the
bootstrap mean based on the randomization of family effects,
indicating strong confidence in REML solutions. The heritability
estimated from the mode of Bayesian posterior density did not
deviate from the REML heritability for all traits. The randomized
NPBS with linked genetic and residual effects is the sampling
method with the least assumptions. To ascertain the adequacy of
the sample size to estimate reliable genetic variation, we
recommend NPBS scheme 3 as it provides high overlap with
REML calculations and requires the least assumptions. The present
study shows that the heritability estimated from different
methods and schemes are similar to the REML estimates and
the confidence intervals are of similar magnitude and largely
overlapping. Hence, it is concluded that the present data set
meets the assumptions made for likelihood analysis, and the
heritability is well estimated by REML.

DATA AVAILABILITY
The codes used for the analysis of the data employing R, Wombat and Echidna are
provided as supplementary material. For access to the raw data, please contact the
corresponding author.
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