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GFe/GZn contents and also for understanding the molecular 
basis of GFe/GZn homeostasis in wheat.
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Introduction

Wheat is the major constituent of cereal-based diet, and is 
the third most important cereal after maize and rice. Wheat 
grain is a major staple food, and is an important source of 
calories for a major fraction of population in the develop-
ing world. However, majority of the modern wheat varieties 
are poor in essential nutrients including grain protein and 
micronutrients like grain iron (GFe) and grain zinc (GZn). 
For this reason alone, micronutrients and vitamins are some-
times also used in the form of dietary supplements, which 
are often out of reach for most people living in the develop-
ing world (Ward 2014; De valenca et al. 2017). Malnutrition 
due to deficiency for micronutrients has been particularly 
high among children which also cause > 45% of the deaths 
of children of < 5 years of age (WHO 2017). This phenome-
non of malnutrition has also been described as ‘hidden hun-
ger’ (Stein and Qaim 2007; Harding et al. 2018; Gödecke et 
al. 2018) reviewed by Gupta et al. (2021).

According to estimates by WHO (World Health Organi-
zation), globally > 2 billion people suffer with deficiency of 
Fe/Zn (Lyons et al. 2005; Alina et al. 2019). Of these two 
micronutrients, Fe is an essential component of haemoglo-
bin and myoglobin and its deficiency cause severe health 
problems, including anemia, mental retardation, weak 
immune system and increased morbidity and mortality 
(Black 2003). The serious impact is particularly witnessed 
in women of reproductive age (especially pregnant women) 
and in children, < 5 years of age (Abbaspour et al. 2014; 
Roohani et al. 2013). Similarly, Zn plays a significant role in 

Abstract Majority of cereals are deficient in essential 
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(GZn), which are therefore the subject of research involving 
biofortification. In the present study, 11 meta-QTLs 
(MQTLs) including nine novel MQTLs for GFe and GZn 
contents were identified in wheat. Eight of these 11 MQTLs 
controlled both GFe and GZn. The confidence intervals of 
the MQTLs were narrower (0.51–15.75 cM) relative to 
those of the corresponding QTLs (0.6 to 55.1 cM). Two 
ortho-MQTLs involving three cereals (wheat, rice and 
maize) were also identified. Results of MQTLs were also 
compared with the results of earlier genome wide association 
studies (GWAS). As many as 101 candidate genes (CGs) 
underlying MQTLs were also identified. Twelve of these 
CGs were prioritized; these CGs encoded proteins with 
important domains (zinc finger, RING/FYVE/PHD type, 
flavin adenine dinucleotide linked oxidase, etc.) that are 
involved in metal ion binding, heme binding, iron binding, 
etc. qRT-PCR analysis was conducted for four of these 12 
prioritized CGs using genotypes which have differed for 
GFe and GZn. Significant differential expression in these 
genotypes was observed at 14 and 28 days after anthesis. The 
MQTLs/CGs identified in the present study may be utilized 
in marker-assisted selection (MAS) for improvement of 
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on interval mapping was retrieved by search of Google 
Scholar using different keywords. In total, 15 such stud-
ies were available, but only 12 could be used for MQTL 
analysis, because the remaining three QTL studies did not 
carry all the required information (e.g. flanking markers, 
QTL position and LOD score of the QTLs). Following two 
types of input data text files were prepared from each study 
following Biomercator v4.2 (Arcade et al. 2004; Sosnowski 
et al. 2012): (i) genetic map file, and (ii) QTL informa-
tion [name of QTL, trait, chromosome carrying the QTLs, 
range and mean of the lengths of confidence interval (CI), 
LOD score, R2 etc.]. If the value of CI for a particular QTL 
was not available in the original study, it was worked out 
using following formulae provided by Darvasi and Soller 
(1997) and Guo et al. (2006): RIL: CI = 163/(N R²); DH: 
CI = 287/(N R²), where N in both the equations is size of 
the mapping population and R2 is the phenotypic variation 
explained (PVE).

Development of consensus map and meta-QTL 
analysis

Consensus genetic map of wheat was developed using 
LPmerge software (Endelman et al. 2014) using five pub-
lished linkage maps (Somers et al. 2004; Marone et al. 
2012; Maccaferri et al. 2014; Wang et al. 2014; Bokore 
et al. 2020). Markers flanking individual QTLs were also 
included in the consensus genetic map. The consensus map 
was used for projection of QTLs reported in 12 earlier stud-
ies (Table 1). Details of the procedure used for this purpose 
are available in BioMercator v 4.2 manual (Arcade et al. 
2004; Sosnowski et al. 2012).

The original QTLs were projected onto the consen-
sus map using the QTL projection tool (QTL Proj). QTLs 
which could not be projected onto the consensus map or 
those with mapping positions outside the consensus map 
were excluded. MQTLs were identified using Goffinet and 
Gerber algorithm (Goffinet and Gerber 2000). Model selec-
tion was based on lowest AIC, which estimates the relative 
amount of data lost by different statistical models (Akaike 
1998).

MQTLs overlapping MTAs from GWAS  
studies

The most promising wheat MQTLs were compared with 
known MTAs for GFe and GZn contents reported in earlier 
GWAS in wheat. The data on MTAs were collected from 
nine published GWAS and used for comparison with MQTL 
regions. The MTAs overlapping or in close proximity of 
5 Mb region associated with a MQTL were accepted to be 
co-located with MQTL.

different metabolic processes and is an essential cofactor for 
many enzymes and regulatory proteins. The symptoms of 
deficiency for Zn intake for humans can be observed in the 
form of retardation of growth and development, excessive 
weight loss, diarrhea and depression (Ozturk et al. 2006; 
Kambe et al. 2014). This makes the development of biofor-
tified wheat varieties enriched for GFe and GZn, a priority 
area of wheat breeding.

A pre-requisite for biofortification involving Fe and Zn is 
the identification of the genomic regions/genes, which control 
the contents of these micronutrients in the grain. The results 
of efforts already made in this direction in wheat include the 
identification of the following: (i) 168 QTLs using interval 
mapping, 716 marker trait associations (MTAs) using LD-
based association mapping and a number of gene families 
involved in GFe and GZn homeostasis (Singh et al. 2021) 
(ii) A large number of cereal proteins (too many to be listed 
here) (iii) Seven MQTLs for GFe/GZn content and other 
associated yield and quality traits utilizing 50 QTLs reported 
earlier, and identification of 1,336 candidate genes (CGs) 
associated with these 7 MQTLs (Shariatipour et al. 2021a).

The QTLs and MTAs, which have already been known 
for a variety of traits in wheat are often not robust enough 
to be used for marker-assisted selection (MAS) in wheat 
breeding in any significant measure. Therefore, in recent 
years, MQTL analysis has been conducted for almost all 
important traits in wheat (Kumar et al. 2020; Jan et al. 
2021). However, for GFe and GZn, only a solitary MQTL 
study involving a limited number of QTLs is available war-
ranting a fresh study involving all known QTLs.

Keeping the above in view, the present study on GFe and 
GZn was planned for identification of MQTLs and candi-
date genes (CGs) in wheat and ortho-MQTL involving three 
cereals (wheat, maize and rice). MQTLs identified in the 
present study were also compared with MTAs reported in 
genome wide association studies (GWAS), leading to iden-
tification of genomic regions showing co-localization of 
MTAs and the MQTLs. qRT-PCR was also conducted for 
validation of four prioritized CGs underlying the MQTL 
regions. It has been proposed that the results of the pres-
ent study may be proved useful in wheat breeding and will 
also help in developing a better understanding of the genetic 
architecture underlying GFe and GZn contents.

Materials and methods

Bibliographic review and retrieval of GFe and GZn 
QTL information

For conducting MQTL analysis, information on known 
QTLs for GFe and GZn from published literature (till 2019) 
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the sequence). If the sequence of a marker(s) was absent, 
then we used the sequence of the closely adjacent genetic 
marker. (ii) The physical interval (in Mb) for an individual 
MQTL was calculated using the genetic confidence interval 
(in cM) of the MQTL regions. For this purpose, the physical 
interval (in Mb, calculated from the coordinate information 
of the MQTL) was divided by the genetic interval (in cM) 
and the distance in units of bases per cM was calculated. (iii) 
Actual physical position of the MQTL was calculated and 
1 Mb region on either side of the MQTL peak (total 2 Mb 
intervals) was used for identification of the putative CGs 
associated with the respective MQTL region. (iv) Annota-
tion of CGs was undertaken on the basis of the domain in 
the corresponding protein sequences, which were obtained 
using InterPro database.

qRT-PCR for some selected CGs

For expression analysis of the selected CGs, following 
four wheat genotypes with different levels of GZn and GFe 
contents were utilized: FAR4 and WB02 each with high 
GZn (40 ppm to ~ 48 ppm) and GFe (42 ppm to ~ 44 ppm) 

Ortho-meta QTL analysis and comparison

Based on the high synteny among wheat, rice and maize, the 
most promising wheat MQTLs were explored for identifica-
tion of ortho-MQTLs for the same traits conserved across 
rice (Raza et al. 2019) and maize (Jin et al. 2013). The 
syntenic regions were identified using a set of orthologous 
genes within 2 Mb region for an individual MQTL of wheat 
using EnsemblPlants database.

Identification of candidate genes (CGs) underlying 
the MQTL region

The CGs were identified using the following steps: (i) 
Nucleotide sequences of the markers flanking a particular 
MQTL were retrieved either from Gramene or Graingenes 
database and these sequences were utilized to identify their 
physical position. For this purpose, the nucleotide sequences 
were blasted against wheat reference genomic sequence 
available in EnsemblPlants database (Triticum_aestivum 
IWGSC_ensembl_release 48) employing nucleotide blast 
(maximum E-value = 1E-100 and minimum 95% identity of 

Table 1  A summary of 12 QTL studies involving 14 mapping populations used for MQTL analysis for GFe and GZn in wheat
Sn Mapping population Type of 

markers
Chromosome identity Range of 

PVE%*
No. of QTLs Reference

Cross Type 
(number)

GZn GFe

1. Hanxuan l0 x Lumai 14 DH (119) SSR, AFLP 1 A, 2D, 3 A, 4 A, 4D, 5 A, 
7 A, 7B

4.6–14.6 8 4 Shi et al. 
(2008, 2013)

2. Tabassi x Taifun RIL (118) SSR 1 A, 2 A, 3D, 4 A, 4D, 7B, 7D 8.9–50.7 2 6 Roshanzamir et 
al. (2013)

3. SHW L1 x Chuanmai32 RIL (171) SSR, DArT 2B, 2D, 3D, 4D, 5D, 7D 5.4–9.5 4 4 Pu et al. (2014)
4. Chuanmai42 x Chuannong16 RIL (127) SSR, SRAP 3D, 4 A, 4D, 5 A, 5B 9.2–15.9 3 4 Pu et al. (2014)
5. PBW343 x Kenya Swara RIL (177) SSR, DArT 1BS, 2Bc, 2D, 3AL, 4AS, 

5BL, 6AL
7.0–15.0 6 - Hao et al. 

(2014)
6. T. spelta accession H + 26 

(PI348449) × T. aestivum cv. 
HUW 234

RIL (185) SNP, DArT 1 A, 2 A, 2B, 3B, 3D, 6 A, 6B 3.5–27.1 5 5 Srinivasa et al. 
(2014)

7. Berkut 9 x Krichauff DH (138) SSR, DArT 1B, 2B 22.2–35.9 2 1 Tiwari et al. 
(2016)

8. Seri M82 x SHW CWI76364 RIL (140) SNP 2BL, 2DS, 4BS, 5AL, 5BL, 
6AL, 6BL, 6DS, 7DS

7.2–19.6 6 10 Crespo-Herrara 
et al. (2016)

9. Adana99 x T. Sphaerococcum 
(70,711)

RIL (127) DArT 1B, 1D, 2 A, 2B, 3 A, 3D, 6 A, 
6B, 7 A, 7B

9.0–31.0 8 3 Velu et al. 
(2017a, b)

10. Saricanak98 x MM5/4 (4x 
wheat)

RILs (105) DArT 1B, 3 A/3B, 5 A, 5B, 6 A, 6B 5.9–16.9 8 4 Velu et al. 
(2017a, b)

11. WH542 x Synthetic derivative 
(PI94624)

RILs (286) SSR 2 A, 4 A, 5 A, 7 A, 7B 2.3–14.4 7 6 Krishnappa et 
al. (2017)

12. Bubo x Turtur RILs (188) DArT 6 A, 3 A, 1B, 4B, 5B, 7B 2.8–16.7 4 3 Crespo-Herrara 
et al. (2017)

13. Louries x Batelur RILs (188) DArT 1 A, 1B, 2 A, 2B, 3B, 3D, 
4 A,4D,5B, 6 A,7B, 7D

3.3–32.8 12 7 Crespo-Herrara 
et al. (2017)

14. Roelfs F 2007 x Chinese Paren-
tal Line

RILs (200) DArT 1 A, 2 A, 1B, 2B, 3 A, 3B, 3D, 
4B, 5 A, 6B, 7 A

2.10–14.613 6 Liu et al. (2019)

* PVE = Phenotypic variation explained; RILs = Recombinant inbreed lines; DH = Double haploid
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with SSR, SNP, DArT, and several other marker systems. 
In two recent studies, seven mapping populations were used 
for MQTL analysis for GFe and GZn (Shariatipour et al. 
2021a, b). Out of the seven populations used in these two 
earlier studies, results from six mapping populations were 
also included in the present study; the results from the 
remaining eight mapping populations were used in the pres-
ent MQTL study for the first time.

High resolution consensus map of wheat

A high-resolution consensus genetic map of wheat was 
prepared using LPmerge software (Endelman and Plomion 
2014), which is superior to other available software like Bio-
mercator, LPmerge integrates a very large number of mark-
ers and has the power to resolve inconsistencies in marker 
order between different linkage maps. For these reasons, the 
software LPMerge has also been used in some recent stud-
ies on MQTL analysis in wheat (Venske et al. 2019; Liu et 
al. 2020a, b; Jan et al. 2021; Kumar et al. 2021; Saini et al. 
2021; Yang et al. 2021).

The consensus genetic map prepared during the present 
study had 76,743 markers (with an average of 3,655 mark-
ers per chromosome) with a genetic distance of 7184.77 cM 
(Fig. 1). The available marker types included the follow-
ing: SNPs (65,459), SSRs (3,965), DArTs (3,526), and a 
variety of other markers (3,793) including AFLP, and STS 
markers. The consensus map carried many more markers 

relative to those in two other genotypes, namely K8027, 
and HD3226 (33 ppm to 36 ppm GZn and ~ 23 to ~ 35 ppm 
GFe). For each of these four field grown genotypes, grains 
at 14 and 28 days after anthesis (DAA) were collected and 
immediately transferred to liquid nitrogen to be stored at 
-80oC. Total RNA was isolated using the TRIzol Reagent 
(Ambion) as per the manufacturer’s specifications. cDNA 
synthesis was carried out using iScript cDNA Synthesis 
kit (Bio-Rad) according to the manufacturer’s instructions. 
The qRT-PCR was performed in optical 96 well plates with 
StepOnePlus Real-Time PCR system (Applied Biosystems) 
using SYBR Green (Applied Biosystem). Wheat β-actin 
gene (AB181991) was used as an endogenous control.

Results and discussion

Literature survey and original QTLs for MQTL 
analysis

Information about the QTLs from 12 of the 15 studies used 
for MQTL analysis in the present study is summarized in 
Table 1 (detailed information is available in supplemen-
tary Table S1). The remaining 3 studies could not be used 
due to inadequacy of all the information needed for MQTL 
analysis.

The above 12 studies involved 14 different DH/RIL map-
ping populations (size range: 118 to 286 lines) genotyped 

Fig. 1 Marker densities (high to low) on each of 21 chromosomes of the consensus genetic map used for meta-QTL analysis. Red to green colors 
shows high to low densities of markers within each individual chromosome
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PVE (%) did follow a pattern (unimodal skewed distribu-
tion), where majority of QTLs have low LOD score and low 
PVE value, with only a small fraction with high LOD score 
and high PVE (Fig. 2).

Using the lowest AIC value as the basis for selection 
of major QTLs for projection, only 32 (~ 20%) of the 148 
available QTLs (PVE, 21–50.8%; CIs, 0.6 to 55.1 cM) 
could be projected on the consensus map. In a number of 
previous studies on MQTL analysis also, not all QTLs for 
an individual trait could be projected (Quraishi et al. 2017; 
Saini et al. 2021; Kumar et al. 2021; Shariatipour et al. 
2021a, b).

MQTLs for GFe and/or GZn content

Only 11 MQTLs, each based on 2–4 QTLs, were derived 
from 32 QTLs which were used for projection (Table 2; 
Fig. 3). This indicated roughly three times reduction in the 
number of genomic regions that are involved in controlling 
GFe and GZn contents in wheat. These results are not very 
different from the results of an earlier recent study, where 
7 MQTLs were obtained using 21 original QTLs (Shari-
atipour et al. 2021a). In contrast, in another major study 
involving a variety of traits including GFe and GZn, 100 

relative to consensus maps used in some earlier MQTL 
studies in wheat, where the number of markers used ranged 
from 558 to 57,112 (Zheng et al. 2021; Liu et al. 2020a, 
b; Shariatipour et al. 2021a, b; Venske et al. 2019; Yang et 
al. 2021; Quraishi et al. 2017; Saini et al. 2021). The high 
marker density in our consensus map allowed us to identify 
markers that were closely associated with corresponding 
MQTLs. The maximum number of markers were available 
in the B sub-genome (30,522) followed by A sub-genome 
(28,362) and D sub-genome (17,859). The size of the 21 
individual linkage groups ranged from 163.7 cM (4D) to 
1365.8 cM (6 A) (Fig. 1). The marker densities ranged from 
2.98 markers per cM for 6 A to 27.77 markers per cM for 
1 A. In individual sub-genomes, the average marker densi-
ties were lowest for D sub- genome (11.17 markers per cM) 
followed by B sub-genome (12.33 markers per cM) and A 
sub-genome (13.10 markers per cM).

MQTL analysis

As mentioned earlier, only 148 of the 151 available QTLs 
could be used for MQTL analysis (see Material and Meth-
ods). The original QTLs did not follow any specific pattern 
of distribution on the 21 wheat chromosomes, but the dis-
tribution of QTLs on the basis of values of LOD scores and 

Fig. 2 Distribution of QTLs (a) on individual chromosomes; (b) based on LOD Score; (c) based on PVE%
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Table 2 List of meta-QTLs (MQTLs) for GFe and GZn contents discovered during the present study in wheat
Sn Meta-QTL Flanking marker Chr. 

no.
CI 
(cM)

Position cM/Mb R2 No. of QTLs 
(trait)

1. MQTL1.5 A Xcda394 - IAAV669 5 A 9.52 16.32/- 4.2 2 (1-Fe, 1-Zn)
2. MQTL2.5 A Xwmc559 - Excalibur-c35095-180 5 A 14.26 100.6/571.16 9.15 2 (Zn)
3. MQTL3.5 A wsnp_Ex_c27046_36265198 

- Excalibur_c54514_248
5 A 1.04 160.61/538.66 12.3 4 (2-Fe, 2-Zn)

4. MQTL4.5B wPt-9504 - wPt-730,009 5B 14.18 71.4/643.66 14.9 2 (1-Fe, 1-Zn)
5. MQTL5.5B wsnp_Ra_c8465_14340896 - Bobwhite c7818_278 5B 9.47 111.25/533.86 11.5 2 (1-Fe, 1-Zn
6. MQTL6.5B wPt-7029 - wPt-5120 5B 1.7 180/287.30 7.7 4 (3-Fe, 1-Zn)
7. MQTL7.6 A wPt-732,324 - wPt-733,051 6 A 0.6 419.97/- 6.5 2 (Zn)
8. MQTL8.6 A wPt-669,271 -Tduram_contig97520_902 6 A 2.36 694.77/- 9.6 3 (1-Fe, 2-Zn)
9. MQTL9.6 A wPt-667,562 - wPt-1642 6 A 0.88 762.82/- 8.76 2 (Zn)
10. MQTL10.7 A Excalibur_c53864_277 

- Opata_2719987_24_Pst1Mst1_SNP
7 A 15.31 17.78/477.47 3.75 2 (1-Fe, 1-Zn)

11. MQTL11.7 A Xgwm260 - Xwmc83 7 A 2.46 178.06/169.04 7.4 3 (1-Fe,2 -Zn)
Chr, chromosome; CI, confidence interval

Fig. 3 Distribution of 11 MQTLs on four different chromosomes of wheat. The colored blocks inside each chromosome indicate MQTL regions. 
Green colored bars indicate MQTLs only for GZn and yellow colored bar indicate MQTLs for both GFe and GZn. Only the flanking markers 
closely associated with MQTLs are shown
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QTLs controlling ionomic traits was reported (Shariatipour 
et al. 2021c). In a study in rice, 44 out of 48 MQTLs were 
reported to control both GFe and GZn contents (Raza et al. 
2019). Similar results on co-localization of MQTLs respon-
sible for several grain yield components under drought were 
reported by Kumar et al. (2020). This co-localization of 
QTLs for nutrient elements may be due to one of the fol-
lowing reasons: (i) tight linkage of distinct genes or plei-
otropism, (ii) physiological association of micronutrient 
accumulation, suggesting a relationship at the molecular 
level among these traits and (iii) a correlation between 
phenotypic traits involving GFe and GZn contents. Such 
MQTLs controlling both GFe and GZn contents would be 
helpful in crop improvement with enhanced levels of GFe 
and GZn contents because the tightly correlated traits could 
be selected simultaneously through marker-assisted selec-
tion (MAS) (Mallimar et al. 2016).

Comparison of MQTLs with GWAS-based MTAs

The 11 MQTLs that were identified during the present study 
were compared with GWAS-MTAs (Table 3). This compari-
son showed that only a solitary MQTL (MQTL3.5 A) con-
trolling both GFe and GZn content was co-located with 32 
known MTAs (Alomari et al. 2018, 2019). Co-location of 
the remaining MQTLs with MTAs reported in GWAS may 
be discovered as more LD-based GWAS studies on GFe 
and GZn become available. In several other studies, much 
higher proportion of co-localized MQTL genomic region 
was reported. For instance, Saini et al. (2021) reported 
co-location of 412 MTAs with 88 MQTL regions, which 
were associated with nitrogen use efficiency/ root system 

MQTLs (including 19 MQTLs for GFe and 12 MQTLs for 
GZn) were identified using 449 QTLs (Shariatipour et al. 
2021b.

Out of the 11 MQTLs identified in the present study, 8 
MQTLs were localized on the A sub-genome and 3 on the B 
sub-genome. On the D sub-genome, two singleton MQTLs 
(each based on solitary QTL) were available, but being sin-
gletons, these were not accepted as MQTLs. In a previous 
study also, no MQTLs for GFe and GZn were available in 
the D sub-genome (Shariatipour et al. 2021a). Out of the 
above 11 MQTLs, six QTLs located on chromosomes 5B 
and 6 A and three MQTLs located on 5 and 7 A are com-
pletely novel, since no such MQTL was reported in two 
recent studies (Shariatipour et al. 2021a, b).

The CIs for these 11 MQTLs were narrower relative to 
CIs of the original QTLs, and it ranged from 0.6 cM (equiv-
alent to 169.04 Mb) for MQTL11.7 A to 15.31 cM (equiva-
lent to 643.66 Mb) for MQTL4.5B (Fig. 4a). This represents 
three-fold reduction in the length of CI. These results are not 
very different from those reported in two recent studies, one 
of them reporting 2.4 fold reduction and the other reporting 
3 fold reduction (Shariatipour et al. 2021a, b). In contrast 
to this level of reduction on the length of CI, in a recent 
MQTL study in Arabidopsis thaliana, eight fold reduction 
in CI was reported (Shariatipour et al. 2021c).

The 11 MQTLs identified in the present study included 
8 MQTL for both GFe and GZn, 3 MQTLs for GZn alone 
and none for GFe (Fig. 4b). This is in agreement with recent 
studies on MQTL analysis, where a high frequency of co-
localization of MQTLs for GFe and GZn was observed 
(Shariatipour et al. 2021a, b). In another recent study in 
Arabidopsis thaliana also, strong co-localization of genes/

Fig. 4 Basic information of MQTLs. (a) The reduction in CI after meta-QTL analysis. (b) Distribution of MQTLs on different chromosomes
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given in supplemental Table S2). Ortho-MQTLs involv-
ing wheat MQTL2.5 A were identified in syntenic regions 
with rMQT12.1 and rMQTL12.2 on rice chromosome 12, 
and MQTL5 and MQTL6 on maize chromosome 4. Simi-
larly, MQTL3.5 A had its corresponding syntenic MQTLs, 
namely rMQTL12.2 and rMQTL12.4 on rice chromosome 
12 (Fig. 5). Ortho-MQTLs for GFe and GZn on chromo-
some 7 in rice were also reported in a recent study (Shariati-
pour et al. 2021b). The identification of two ortho-MQTLs 
each in rice and maize against each of the two individual 
wheat MQTLs suggest the possibility of duplication of 
MQTL regions in both rice and maize or loss of one of 
these MQTL region in wheat. This is in line with the previ-
ous studies suggesting frequent gene duplications in both 
the rice and maize genomes (Gaut et al. 2000; Wang et al. 
2005). Effect of semi-dwarfing Rht genes on micronutri-
ents concentration (GFe and GZn) in modern wheat cul-
tivars has also been reported, suggesting that some genes 
for micronutrients have been lost in modern dwarf wheat 
cultivars (Velu et al. 2017a, b).

architecture in wheat. In another study, 89 MQTLs were co-
located with MTAs for grain yield (Yang et al. 2021). In 
view of co-localization of MQTL3.5 A with GWAS-MTAs, 
this MQTL is recommended for use in MAS for develop-
ment of biofortified wheat cultivars with higher GFe and 
GZn content. This validated MQTL may also be prioritized 
for mining CGs associated with GFe and GZn in wheat. 
The 32 MTAs identified in this MQTL region are perhaps 
important genomic regions for further studies on allele min-
ing involving GFe and GZn.

Ortho-MQTLs for cereals (wheat, maize and rice)

Out of 11 MQTLs, high confidence CGs were available 
for four MQTLs (MQTL2.5 A, MQTL3.5 A, MQTL4.5B, 
MQTL10.7 A). These four MQTLs were used for com-
parative mapping with corresponding MQTLs in rice and 
maize. Ortho-MQTLs in rice and maize could be iden-
tified against two of the four above mentioned wheat 
MQTLs, namely MQTL2.5 A and MQTL3.5 A (details 

Table 3 Summary of nine genome-wide association studies (GWAS) reporting marker trait associations (MTAs) for GFe and GZn contents in 
wheat
Sn Asso. panel (size) Country Method of 

analysis of 
GFe and 
GZn

No. of 
markers

Model
used

Chromosomes No. of 
MTAs

No. of 
environments

Reference

Zn Fe

1. HPAM Panel 
(330)

India, 
Mexico

EDXRF (14,273) 
SNP

MLM 1 A, 1D, 2 A, 2B, 2D, 
5 A, 6B, 6D, 7B

39 - 6 Velu et al. 
(2018)

2. HPAM Panel 
(330)

Mexico ICP-MS (28,074) 
SNP

GLM, 
MLM, 
MMLM

1B, 2 A, 2B, 2D 3 A, 3B, 
4 A, 4B, 5B, 6 A, 7 A, 7B

72 65 2 Cu et al. 
(2020)

3. European wheat 
varieties (369)

Germany ICP-OES (15,523) 
SNP

MLM 2 A, 3 A, 3B, 4 A, 4D, 
5 A, 5B, 5D, 6D, 7 A, 
7B, 7D

40 - 3 Alomari et 
al. (2018)

Sub-panel (183) (28,710) 
SNP

3B, 5 A 161 - 3

4. European wheat 
varieties (369)

Germany ICP-OES (15,523) 
SNP

MLM 2 A, 3B, 5 A - 41 3 Alomari et 
al. (2019)

Sub-panel (183) (44,233) 
SNP

2 A, 5 A - 137 3

5. SWRS (246) India EDXRF - - 1B, 2B, 3 A, 3B, 5B, 5D, 
6 A, 6B, 7 A, 7D

94 33 2 Kumar et 
al. (2018)

6. SHW (Longdon 
x 47 Ae tauschii) 
(47)

Japan ICP-AES 70 (SSRs) - 1D, 2D, 3D, 4D, 5D, 
6D, 7D

3 3 2 Gorafi et 
al. (2018)

7. SHW (123) Turkey ICP-MS 35,648 
(SNP)

MLM 1 A, 2 A, 3 A, 3B, 4 A, 
4B, 5 A, 6B

13 3 2 Bhatta et 
al. (2018)

8. Chinese wheat 
mini core collec-
tion (246)

China ICP-OES 545 (SSR) MLM 1B, 2B, 2D, 3 A, 3D, 
4 A, 4B, 5 A, 5D, 6B, 7D

16 - 2 Liu et al. 
(2021a, b)

9. Advanced lines 
(161)

China - 13,116 
(DArT)

GLM, 
MLM

1B, 3B, 4A, 4B, 5A, 7B 3 6 Liu et al. 
(2021a, b)

Asso. panel = Association panel; HPAM = Harvest Plus Association Panel; SWRS = Spring Wheat Reference Set; HWWAMP = Hard Winter 
Wheat Association Mapping Panel; EDXRF = Energy Dispersive-X-ray Fluorescence; ICP-MS = Inductively coupled plasma mass spectrom-
etry; ICP-OES = ICP-optical emission spectrometry; GLM = General linear model; MLM; Mixed linear model; - = Unknown
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Breeders’ MQTLs

In the present study, the above MQTL3.5 A that was 
colocalized with MTA from GWAS along with two other 
MQTLs, namely MQTL2.5 A and MQTL4.5B, have been 
shortlisted for breeding purpose. These are described as 
breeder MQTLs. These three MQTLs are each based on 
2–4 original QTLs having relatively high PVE (9–15%). 
For two of these MQTLs, one each for GZn (MQTL2.5 A) 
and GFe/GZn (MQTL.3.5 A), ortho-MQTLs were also 
detected in maize/rice, and rice, respectively (details are 
presented below). Interestingly, a CG containing ‘iron/zinc 
purple acid phosphatase-like-C- terminal domain’ was also 

The discovery of ortho-MQTLs in closely related species 
indicate the conservation of genomic regions controlling 
GFe and GZn contents across the cereal species, increases 
their significance and verifies their stability, as well as the 
confidence of association with CGs (Jin et al. 2015; Kha-
hani et al. 2020; Yang et al. 2021). Important CGs encod-
ing either heat shock proteins i.e. HSPs (containing DnaJ 
domain) or iron/zinc purple acid phosphatase-like domain 
involved in GFe and GZn accumulation are associated with 
these ortho-MQTLs (more details are discussed below). The 
gene-based markers developed from these CGs may be used 
in MAS for improvement of GFe and GZn contents across 
the three cereal species.

Fig. 5 Two wheat MQTLs, both on chromosome 5 A (showing four genes), with their corresponding syntenic MQTLs in rice chromosome 12 and 
maize chromosome 4. The chromosome number, genomic position, and common genes between the wheat, rice, and maize are indicated
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has never been identified for Zn/Fe homeostasis in plants, 
although similar gene for Fe regulation has been identified 
in humans (Ma et al. 2019). Further analysis revealed that 
SMAD4 signaling selectively represses the promoters of 
the Fe-absorptive genes. During Fe-deficiency, the expres-
sion of SMAD3 and SMAD4 was significantly decreased 

associated with the MQTL3.5 A. The protein corresponding 
to MQTL4.5B for GFe/GZn contains zinc finger domain/
RING, exhibiting down-regulation under Fe deficient con-
ditions. This latter MQTL was also validated through qRT-
PCR during the present study (see below).

CG-based genes controlling Fe/Zn content

A total of 101 CGs that were found associated with 6/11 
meta-QTLs, were subjected to GO analysis and based on 
biological functions, 12 high confidence CGs were identified 
that were associated with 4 MQTLs (Table 4, Supplemen-
tary Table S3). These CGs were apparently involved in metal 
ion homeostasis and encoded proteins containing different 
major domains. Six CGs involved in different biological pro-
cesses encode proteins including the following: (i) proteins 
involved in metal ion binding, (ii) heat shock protein (HSP), 
(iii) metallo-dependent phosphatase-like domain, (iv) iron/
zinc purple acid phosphatase-like C-terminal domain, (v) 
zinc finger/RING/FYVE/PHD-type domain, (vi) SMAD/
forkhead-associated (FHA) domain, (vii) proteins belonging 
to cytochrome P450 superfamily and involved in heme bind-
ing/iron binding, (viii) four CGs encoding proteins belong-
ing to thioredoxin-like superfamily, cupredoxin, FAD linked 
oxidase, and ferric reductase transmembrane, enriched with 
oxidation-reduction process, electron transfer activity, and 
cell redox homeostasis (for details see Table 4; Fig. 6). Some 
of these CGs were earlier reported to control GFe and GZn 
contents in wheat or other cereals like rice and maize (Jin et 
al. 2013, 2015; Raza et al. 2019).

Some of the CGs also have a role in Fe/Zn homeosta-
sis. Following are some important examples: (i) The CG 
TraesCS5B02G469800 associated with MQTL4.5B encod-
ing HRZ protein containing zinc finger/RING/FYVE/
PHD-type domain plays an important role in Fe deficient 
condition. The iron binding regulators HRZs, major regu-
lators of Fe homeostasis, contain three zinc (Zn) finger 
domains along with other domains including a RING fin-
ger (Kobayashi et al. 2011, 2013; Selote et al. 2015). In 
rice, the genes OsHRZ1 and OsHRZ2 are negative regula-
tors of Fe deficiency response; their knockdown results in 
increased tolerance to Fe deficiency and Fe accumulation 
in rice and Arabidopsis (Kobayashi et al. 2013; Selote et al. 
2015). (ii) The CG TraesCS5A02G329200 associated with 
the above MQTL encodes iron/zinc purple acid phosphatase 
(PAP)-like C-terminal (PAP) domain containing protein. 
PAP containing protein requires iron (Fe) for its function 
in diverse biological roles including Fe homeostasis. In tea 
(Camellia sinensis) also, based on conserved motifs, 19 
CsPAP members were identified (Yin et al. 2019). (iii) The 
CG TraesCS5B02G470200 associated with MQTL4.5B 
encodes a protein containing SMAD/forkhead domain that 

Table 4 List of important proteins encoded by 12 candidate genes 
associated with four MQTLs for GFe and GZn contents in wheat
MQTL Gene IDs 

(chromosome)
Predicted proteins

MQTL2.5 A TraesC-
S5A02G372900 (5 A)

Heat shock protein

TraesC-
S5A02G372800 (5 A)

Cupredoxin, Phytocyanin

TraesC-
S5A02G372200 (5 A)

Glutaredoxin, Thioredoxin-
like superfamily

TraesC-
S5A02G374000 (5 A)

Carotenoid oxygenase

TraesC-
S5A02G373900 (5 A)

Metallo-dependent phospha-
tase-like, Serine/threonine-
specific protein phosphatase/
bis(5-nucleosyl)-tetraphos-
phatase

MQTL3.5 A TraesC-
S5A02G328800 (5 A)

Cytochrome P450, E-class, 
group I

TraesC-
S5A02G328700 (5 A)

Cytochrome P450 
superfamily

TraesC-
S5A02G329500 (5 A)

FAD linked oxidase, 
N-terminal,D-arabinono-
1,4-lactone oxidase

TraesC-
S5A02G329200 (5 A)

Iron/zinc purple acid 
phosphatase-like C-terminal 
domain, Metallo-dependent 
phosphatase-like

MQTL4.5B TraesC-
S5B02G469800 (5B)

Zinc finger, RING/FYVE/
PHD-type

TraesC-
S5B02G470200 (5B)

SMAD/Forkhead-associated 
(FHA) domain, PPM-type 
phosphatase domain

MQTL10.7 A TraesCS7A02G328700 
(7 A)

Ferric_Rdtase_TM, CYB561/
CYBRD1-like

Fig. 6 Proportions of significantly enriched GO terms associated with 
molecular functions of identified Fe and Zn CGs
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metallo-dependent phosphatase-like protein, and TraesC-
S5A02G372800 (associated with MQTL2.5 A) encodes 
protein with cupredoxin and phytocyanin domains. The 
HSP protein and metallo-dependent phosphatase-like pro-
tein have a role in metal ion binding, whereas, the protein 
with cupredoxin and phytocyanin domains has molecular 
function in electron transfer activity.

qRT-PCR for validation of CGs

Using qRT-PCR, differential expression of four CGs at two 
grain filling stages (14 and 28 DAA) was examined in four 
pairs of genotypes involving two genotypes (FAR4, WB02) 
with high GFe and GZn contents and two other genotypes 
(K8027, HD3226) with low GFe and GZn. In each pair of 
comparison, the expression in a genotype with high GFe 
and GZn was compared with the other genotype with low 
GFe and GZn. The results are summarized in Fig. 7. All 
the four CGs exhibited significant differential expression 

via proteasomal degradation, allowing for repression of 
Fe target genes. Several Fe-regulatory genes contain a 
SMAD-binding element (SBE) in their proximal promot-
ers (DMT1). Therefore, characterization of SMAD/fork-
head domain containing gene in plants is warranted. (iv) 
The CG TraesCS7A02G328700 encoding for ferric reduc-
tase transmembrane protein was identified in the region of 
MQTL10.7 A. The major functional domain of ferric oxido-
reductase (FRO) genes consisting of ferric reductase-like, 
transmembrane is a highly conserved protein, which is cru-
cial for cell surface ferric reductase activity (Schagerlöf et 
al. 2006; Wang et al. 2013). FRO in plants is involved in Fe 
acquisition from soil (Gupta et al. 2021) so that in Arabi-
dopsis, the overexpression of fro2 gene in the roots grow-
ing under iron deficient condition led to root growth, while 
deletion of the fro2 gene led to reduced growth under Fe-
deficient conditions (Robinson et al. 1999). (v-vii) Among 
three CGs, TraesCS5A02G372900 encodes HSP protein 
(containing DnaJ domain), TraesCS5A02G373900 encodes 

Fig. 7 Differential expression (fold difference) of four CGs in four pairs of wheat genotypes (FAR4 and WB02 with high Fe, Zn; K8027 and 
HD3226 with low Fe, Zn) at two grain filling stages (14DAA and 28DAA). (a) Heat shock protein, (b) Carotenoid oxygenase (c) FAD linked 
oxidase, (d) HRZ containing zinc finger, RING/FYVE/PHD-type domains. (i) FAR4:K8027-14, (ii) FAR4:K8027-28, (iii) FAR4:HD3226-14, (iv) 
FAR4:HD3226-28, (v) WB02:K8027-14, (vi) WB02:K8027-28, (vii) WB02:HD3226-14, (viii) WB02:HD3226-28
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wheat cultivars. Selected important CGs can be used to 
understand the genetic basis of GFe and GZn homeostasis.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s12298-
022-01149-9.
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