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Abstract
Current clinical management of major mental disorders, such 
as autism spectrum disorder, depression and schizophrenia, is 
less than optimal. Recent scientific advances have indicated 
that deficits in oxidative and inflammation systems are 
extensively involved in the pathogenesis of these disorders. 
These findings have led to expanded considerations for 
treatment. Sulforaphane (SFN) is a dietary phytochemical 
extracted from cruciferous vegetables. It is an effective 
activator of the transcription factor nuclear erythroid-2 like 
factor-2, which can upregulate multiple antioxidants and 
protect neurons against various oxidative damages. On the 
other hand, it can also significantly reduce inflammatory 
response to pathological states and decrease the damage 
caused by the immune response via the nuclear factor-κB 
pathway and other pathways. In this review, we introduce the 
biological mechanisms of SFN and the pilot evidence from its 
clinical trials of major mental disorders, hoping to promote an 
increase in psychiatric clinical studies of SFN.

Introduction
Sulforaphane (SFN, 4-methylsulfinylbutyl 
isothiocyanate) is a dietary phytochemical abun-
dant in the seeds and sprouts of cruciferous 
plants. It is present in plants as its biologically 
inactive precursor, glucoraphanin (GR).1 When 
cut or chewed, GR is hydrolysed into the corre-
sponding isothiocyanate SFN either by the plant 
thioglucosidase myrosinase or by bacterial thio-
glucosidase in the colon.2 Pharmacokinetic 
studies in both humans and animals revealed 
that the plasma concentration of SFN and its 
metabolites increase rapidly, with peak plasma 
concentration 1–3 hours after administration of 
SFN.3 Furthermore, SFN can cross the blood–
brain barrier (BBB) and accumulate in the 
brain. A mouse study demonstrated that after 
SFN gavage, SFN is able to cross the BBB, accu-
mulate in the ventral midbrain and striatum, 
attain a peak concentration in 15 min and then 
disappear after 2 hours,4 suggesting that it may 
have potential pharmacological activity in the 
central nervous system.

SFN has a wide range of biological 
activities, including antioxidant, anti-
inflammatory, anticancer and cytoprotective 

effects.1 5 Its involvement in the pathological 
process of tumours, diabetes, ageing, cardiovas-
cular disease and many other diseases has been 
proven.6–8

Mental disorders create a major public 
health burden worldwide, but current therapies 
provide relatively modest efficacy and notice-
able adverse effects.9 The potential application 
of SFN to mental disorders has attracted much 
attention from researchers. Recently, several 
studies have reported findings suggesting that 
SFN might confer neuroprotective effects on 
mental disorders by inhibiting oxidative stress, 
neuroinflammation and neuronal death.10 11

Biological mechanisms of SFN
Antioxidation
One of the key mechanisms of SFN is the acti-
vation of nuclear factor erythroid 2-related 
factor 2 (Nrf2). Under physiological conditions, 
Nrf2 forms a complex with Kelch-like ECH-
associated protein 1 (Keap1) in the cytoplasm. 
Keap1 is a redox-sensitive E3 ubiquitin ligase 
substrate adaptor that inhibits the effect of Nrf2 
and promotes the ubiquitination and degrada-
tion of Nrf2 through the ubiquitin-proteasome 
system.12 After entering the cell, SFN chemically 
reacts with reactive cysteine residues on Keap1,13 
and subsequently Nrf2 is diverted from the inac-
tivated Keap1. It translocates to the nucleus, 
where it forms a heterodimer with small Maf 
proteins (MafG, MafK, MafF), which endow 
it with a DNA-binding capacity to attach to its 
consensus sequence, the antioxidant response 
element (ARE) of phase 2 genes, to activate 
their transcription.14 15 In addition to bonding 
with Keap1, SFN can also enhance the activity 
of Nrf2 by suppressing the activity of glycogen 
synthase kinase-3β (GSK-3β),16 reducing methyl-
ation of the first 15 CpGs of Nrf2 promoters17 
and altering the translocation and stability of 
Nrf2.8 18 ARE induction by Nrf2 can upregulate 
its downstream products, including NAD(P)H 
quinone dehydrogenase 1,19 20 haem oxygenase 
1 (HO-1)20 21 and glutamate cysteine ligase,21–23 
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Figure 1  Biological mechanisms of sulforaphane. ARE, antioxidant response element; ERK, extracellular signal-regulated 
kinase; GCL, glutamate cysteine ligase; HO1, haem oxygenase 1; IκB, inhibitor of NF-κB; JNK, c-Jun N-terminal kinase; Keap1, 
Kelch-like ECH-associated protein 1; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-κB; NQO1, NAD(P)H 
quinone dehydrogenase 1; Nrf2, nuclear factor erythroid 2-related factor 2.

and protect neuronal cell lines against various oxidative 
damages22–25 (figure 1).

Accumulating evidence reveals that oxidative stress is a 
crucial factor in the initiation and development of mental 
disorders. SFN can attenuate the oxidative stress in the 
periphery and brain of autism spectrum disorder (ASD) 
mouse models by upregulating the expression of enzymatic 
antioxidants, including superoxide dismutase 1, glutathione 
peroxidase 1 and glutathione reductase, as well as reducing 
the level of lipid peroxides.26 SFN can also reduce oxidative 
stress by normalising the decreased expression of HO-1 and 
glutathione (GSH) in subjects with ASD and depression.27–29 
Recently, studies using postmortem brain samples showed 
that compared with healthy controls, patients with a history 
of mental disorders, such as depression and schizophrenia, 
have fewer Keap1 and Nrf2 proteins in their brain.30 Similar 
variation is observed in mice with a depression-like pheno-
type, which can be restored by SFN, suggesting that SFN 
is likely to protect the neurons from antioxidant damage 
through the Nrf2 pathway.27 31

Anti-inflammation
Inflammation and immune dysregulation are widely accepted 
physiological aberrations in individuals with mental disor-
ders. The mechanism by which SFN regulates the inflamma-
tory response is probably associated with nuclear factor-κB 
(NF-κB). NF-κB is sequestered as an inactive form in the 
cytoplasm by inhibitor of NF-κB (IκB) family members.32 

When an infection factor activates specific immune signalling 
pathways, the IκB proteins are ubiquitinated and degraded, 
leading to the translocation of NF-κB to the nucleus.32 Subse-
quently, NF-κB binds to DNA and induces the expression 
of proinflammatory cytokines, including tumour necrosis 
factor-α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 
(IL-6), as well as prostaglandin E2 (PGE2), inducible nitric 
oxide synthase (iNOS), cyclo-oxygenase-2 (COX-2), vascular 
adhesion molecules and others.33 SFN can exert anti-
inflammatory effects by reducing the expression of NF-κB 
and its nuclear translocation and DNA-binding ability.26 34 
In addition to the NF-κB pathway, SFN also inhibits neuroin-
flammation by regulating mitogen-activated protein kinases 
(MAPKs), including p38, c-Jun N-terminal kinase (JNK) 
and extracellular signal-regulated kinase (ERK),35 and by 
promoting the polarisation of the microglia from M1 to an 
anti-inflammatory M2 type.36

A study conducted by Qin et al37 suggested that SFN atten-
uated the proinflammatory response induced by lipopoly-
saccharides (LPS) via downregulating the MAPK/NF-κB 
signalling pathway and reducing the mRNA and protein of 
proinflammatory mediators such as TNF-α, IL-1β, IL-6 and 
iNOS in a concentration-dependent manner in BV-2 cells, 
thereby indirectly inhibiting microglia-mediated neuroin-
flammation and neuronal damage. Their study also indicated 
that the MAPK signalling pathway is upstream of NF-κB p65. 
Similar results have been reported by Subedi and colleagues.33 
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They found that SFN reduced the JNK phosphorylation 
levels, which subsequently downregulated the NF-κB pathway, 
resulting in decreased expression of the inflammatory medi-
ators (iNOS, COX-2, nitric oxide and PGE2) and proinflam-
matory cytokines (TNF-α, IL-6 and IL-1β) in LPS-activated 
microglia. Furthermore, in a recent clinical trial, SFN treat-
ment also significantly downregulated the expression of 
inflammatory markers, including IL-6, TNF-α and IL-1β, in 
subjects with ASD compared with the placebo group.29 These 
results suggest a possibility that SFN could be applied to 
mental illness by modulating neuroinflammation.

Other potential mechanisms
SFN also protects neurons through autophagy.38 Studies have 
shown that SFN activates ERK by increasing reactive oxygen 
species, thereby increasing neuronal autophagy flux marker 
microtubule-associated protein 1 light chain 3-II levels and 
inducing autophagy whose dysfunction could lead to ASD-
like synaptic pruning defects and ultimately create ASD-like 
social behaviours.39 40

In addition, SFN activates Nrf2 to protect mitochon-
drial complex I, II and IV from dysfunction and promotes 
mitochondrial biogenesis, which has proven involvement 
in the prevention and treatment of mental disorders.41 A 
randomised controlled trial showed that the mitochondrial 
dysfunction was significantly improved in subjects treated 
with SFN but not in those treated with a placebo. The 
improvement in mitochondrial parameters correlated with 
the improvement in ASD symptoms.42

Moreover, SFN also improves the synaptic plasticity for 
neuroprotection. Zhang and colleagues43 found that in LPS-
induced depression-like mice, the levels of brain synaptic 
markers, including postsynaptic density protein 95 (PSD95) 
and GluA1, as well as brain-derived neurotrophic factor 
(BDNF) and dendritic spine density, were markedly decreased 
in the prefrontal cortex (PFC), dentate gyrus (DG) and CA3 
of the hippocampus and markedly increased in the nucleus 
accumbens (NAc)—all of which were subsequently recovered 
to control levels by SFN. Moreover, dietary intake of 0.1% GR 
also prevented the decrease of PSD95, GluA1, BDNF and 
dendritic spine density in PFC, CA3 and DG, and the increase 
of BDNF and dendritic spine density in NAc. Yao et al44 likewise 
found that SFN increased the number of neurite outgrowth 
cells in PC12 cells in a concentration-dependent manner.

Furthermore, a new theory suggests neuronal protection 
from apoptosis by SFN. Lee et al21 found that SFN treatment 
attenuated the apoptotic characteristics of cells, including 
activation of c-Jun N-terminal kinase (c-JNK), changes in 
the mitochondrial membrane potential, increased expres-
sion of BCL-2 gene and DNA fragmentation. A further study 
conducted by Zhou et al38 revealed that SFN probably exerts 
neuroprotective effects by inhibiting the mammalian target 
of rapamycin-dependent neuronal apoptosis.

Clinical efficacy of SFN for mental disorders
Autism spectrum disorder
ASD is a neurodevelopmental disorder characterised by 
deficits in social interactions and communication, restricted 

interest, and repetitive behaviours, starting in early child-
hood and affecting about 1 in 68 children aged 8 years in 
the USA.45

Over the past 8 years, SFN has been clinically studied and 
has proved beneficial for individuals with ASD (table 1).46 
The first placebo-controlled, double-blind, randomised trial 
was reported in 2014, lasting 18 weeks and comprising 44 
males aged 13–27 with a diagnosis of ASD. It found that 
compared with placebo, participants receiving SFN showed 
significant improvement in the Aberrant Behavior Check-
list (ABC) scores by 34% and in the Social Responsiveness 
Scale (SRS) scores by 17%, as well as improvement in social 
interaction, abnormal behaviour and verbal communica-
tion on the Clinical Global Impression Improvement Scale. 
However, when the administration of SFN stopped, the total 
scores of all scales returned to pretreatment levels.47 It was 
noted that those in the follow-up case series from this trial 
also reported positive results. After completing the inter-
vention phase of the original trial, many subjects continued 
to use SFN supplements to try to maintain improvements 
similar to those noted during the intervention. During the 
intervention phase and the subsequent 3-year follow-up, 
many subjects reported positive effects from SFN.48

Another 12-week, open-label study of 15 children with ASD 
also showed significant improvement in ABC scores by 7.1 
points and SRS scores by 9.7 points.49 In addition, Momtaz-
manesh and fellows50 conducted a 10-week, randomised, 
double-blind, placebo-controlled clinical trial with 30 chil-
dren in SFN and placebo groups, respectively, showing the 
safety and efficacy of SFN as an adjunctive treatment to 
significantly improve irritability and hyperactivity symptoms 
of children with ASD. More recently, a phase III, 36-week, 
randomised controlled trial with 45 children aged 3–12 years 
with ASD also observed significant improvement on ABC 
scales and a tendency to improve the total score of the Ohio 
Autism Clinical Impressions Scale-Improvement (OACIS-I) 
after treatment of SFN versus placebo.29 All of these studies 
highlight the potential of SFN to benefit patients with ASD 
in the future clinically.

Depression
Depression is a severe public health problem with a high prev-
alence worldwide. About one-third of patients with depres-
sion do not respond well to antidepressants. SFN is currently 
considered a potential agent for depression therapy.

A randomised, double-blind, placebo-controlled clinical 
trial was recently conducted in patients with a cardiac inter-
vention history. Compared with the placebo group (n=30), 
the SFN group (n=30) exhibited greater improvement in the 
Hamilton Rating Scale for Depression scores, higher rates 
of response to treatment and an upward tendency towards 
remission.51 Another randomised, double-blind, placebo-
controlled, parallel-group clinical trial of SFN for depression 
is ongoing in China.52

Schizophrenia
Schizophrenia is a severe psychotic disorder characterised by 
cognitive impairment and positive and negative symptoms, 
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affecting about 1% of the world’s population.53 The illness 
is lifelong, and unfortunately the efficacy of antipsychotics 
is not optimal for many patients, leading to high rates of 
mental disability among populations with schizophrenia. 
It has been hypothesised that deficits in antioxidation and 
anti-inflammation systems play vital roles in the pathophysi-
ological mechanisms of schizophrenia,11 driving researchers 
to examine the clinical value of SFN for patients with this 
illness.

Cognitive impairment is schizophrenia’s core symptom. 
An open study involving seven patients with schizophrenia 
found that the average score in the accuracy component of 
the One Card Learning Task increased significantly after an 
8-week SFN administration; this highlighted the potential 
of SFN to improve some domains of cognitive function in 
patients with schizophrenia.54 However, another randomised, 
double-blind, placebo-controlled trial found no difference 
in psychotic symptoms or cognitive function between the 
active (n=29) or placebo (n=29) group after SFN or placebo 
treatment, respectively, for 16 weeks.55 These results suggest 
that additional randomised clinical trials (RCTs) with large 
sample sizes are necessary to examine the efficacy of SFN for 
schizophrenia.

Recently, the potential value of SFN in the prevention of 
psychosis has attracted much attention from researchers. 
The aberrant expression of numerous inflammatory cyto-
kines and oxidative stress-related biomarkers has been 
reported in the prodromal stage of psychosis.56 Subjects 
at clinical high risk (CHR) of psychosis provide a golden 
opportunity for examining the value of SFN in decreasing 
the psychosis conversion rate. A randomised, double-blind, 
placebo-controlled, clinical multicentre trial to evaluate the 
efficacy of SFN versus placebo in reducing risk and conver-
sion rates in CHR individuals is ongoing in China.57 Expec-
tations about its findings are high, as psychosis prevention 
remains a considerable challenge in psychiatry.

Conclusion and future perspective
The oxidative and inflammation system deficits are exten-
sively involved in the pathogenesis of major mental disorders, 
such as ASD, depression and schizophrenia. Considering its 
good pharmacokinetics and safety, SFN is a promising choice 
for treating these mental disorders due to its antioxidation 
and anti-inflammation capabilities. RCTs with large sample 
sizes and high-quality designs are urgently needed to clarify 
the evidence on SFN clinical efficacy.
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