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The morphological traits of plants contribute to many important functional features such as radiation inter‐
ception, lodging tolerance, gas exchange efficiency, spatial competition between individuals and/or species,
and disease resistance. Although the importance of plant phenotyping techniques is increasing with advances
in molecular breeding strategies, there are barriers to its advancement, including the gap between measured
data and phenotypic values, low quantitativity, and low throughput caused by the lack of models for repre‐
senting morphological traits. In this review, we introduce morphological descriptors that can be used for pheno‐
typing plant morphological traits. Geometric morphometric approaches pave the way to a general-purpose
method applicable to single units. Hierarchical structures composed of an indefinite number of multiple
elements, which is often observed in plants, can be quantified in terms of their multi-scale topological charac‐
teristics using topological data analysis. Theoretical morphological models capture specific anatomical
structures, if recognized. These morphological descriptors provide us with the advantages of model-based
plant phenotyping, including robust quantification of limited datasets. Moreover, we discuss the future possi‐
bilities that a system of model-based measurement and model refinement would solve the lack of morpho‐
logical models and the difficulties in scaling out the phenotyping processes.
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Introduction

The importance of plant phenotyping techniques is increas‐
ing with the accumulation of genomic data and the
widespread of sensor technologies. Recent advances have
been made in plant breeding strategies, such as marker-
assisted recurrent breeding and genomic selection, in re‐
sponse to the growing global demand for food production
(Heslot et al. 2015, Lorenz et al. 2011). Although their ad‐
vantages are mainly derived from genomic data, molecular
breeding strategies also require phenotypic data, that is,
phenotypes are not used for selection but to train a predic‐
tion model in genomic selection (Araus and Cairns 2014,
Cobb et al. 2013, Lorenz et al. 2011). Plant phenotyping
techniques coupled with sequencing technologies will fur‐
ther accelerate crop improvement strategies. In particular,
an insight into the phenomics of plant morphological prop‐
erties is important because many functional features depend
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on them, e.g., radiation interception, lodging tolerance, gas
exchange efficiency, spatial competition between individu‐
als and/or species, and disease resistance. However, there
are several challenges.

The first problem is the gap between the measured data
acquired by various instruments and the biologically mean‐
ingful phenotypic values caused by the lack of models (e.g.,
quantitative representations, mathematical equations). Un‐
like genomic data, which are modeled and represented as
strings of nucleobases (A, T, G, and C), it is not clear to
what extent phenotypic data should be collected to define
the phenome (Fiorani and Schurr 2013, Mahner and Kary
1997). In most cases, a simple collection of measured mor‐
phological traits, such as plant height, number of leaves,
stem diameter and height, and leaf weight, and their de‐
rived statistics are insufficient to directly represent the plant
morphology as a hierarchical structure combining multiple
elements. Although morphological information can be eas‐
ily obtained as digitized data such as images, voxels,
polygons, and point clouds using several sensor technol‐
ogies, such digitized data are not themselves morpholog‐
ical descriptors; of course, morphological parameters are
included, but they require extraction via appropriate
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quantification methods. In geometric morphometrics, shape,
an aspect of morphological traits, is defined as a geometric
invariant to translation, rotation, and scaling. Based on this
definition, we are able to extract the shape information of a
target the morphological descriptors, which is a quantitative
representation of morphological characteristics especially for
further analysis, through landmark-based and outline-based
models (Figs. 1, 2; see the section Geometric morpho‐
metrics for shape of single units for details). This requires
mathematical tools for modeling, designing descriptors,
and phenome data analysis of plant morphological traits
(Bucksch et al. 2017, Furbank and Tester 2011).

The second challenge, related to the first, is the low
quantitativity of phenotypic data and the resulting low
throughput (Araus and Cairns 2014, Yang et al. 2020). It is
difficult to accumulate data and replace the workforce with
computational resources. Quantifying morphological prop‐
erties requires tacit knowledge, and is labor-intensive and
highly dependent on experts, e.g., the selection of good cul‐
tivars by breeders and tissue diagnosis by pathologists, thus
making it difficult to automate and scale out such processes
(Furbank and Tester 2011). This contrasts with genomics,

Fig. 1. Shape as a geometric invariant. A. In geometric morpho‐
metrics, form is defined as a geometric invariant to translation and
rotation. A pair of triangles 1–3 show the same form, but the pairs of
1–2 and 2–3 do not. B. The shape is defined as a geometric invariant
to translation, rotation, and scaling. Two triangles cannot be matched
with translation and rotation but can be matched with scaling included.
C. Procrustes analysis is a process that extracts shape, i.e., removes
positional, orientational, and size information. The landmark data,
which are initially distributed in the configuration space, are con‐
strained into subspaces via the Procrustes analysis. D. In the pre-shape
space, the shape is represented as a trajectory of equivalence class
against rotation. The differences between the trajectories are given by
the great circular distance called the Procrustes distance. This figure
was created based on Noshita (2021a) (Licensed under CC-BY 4.0).

where next-generation sequencing and bioinformatics tech‐
nologies have enabled rapid and inexpensive research and
development (Werner 2010). Therefore, a highly efficient
phenotyping system for morphological properties is re‐
quired. Some of these aspects, such as the quantitative
assessment by experts and extraction of morphological
features from the digitized morphology of targets, can be
addressed by computer vision techniques using deep learn‐
ing models (Singh et al. 2018). However, they may prove
unreliable because the available phenotypic data to train the
deep learning models are often limited, particularly at the
initial stages of the breeding program and research phases.
It is worthwhile to model what is to be quantified explicitly
because it enables rational estimation of phenotypic values,
even when the available data are limited.

In this review, we introduce three types of morphological
descriptors that can be used for phenotyping of plant mor‐
phological traits: i) general-purpose geometric morpho‐
metric models, ii) topological data analysis (TDA) that can
quantify structures composed of an indefinite number of el‐
ements (common in plants) for which homology is difficult
to define, and iii) theoretical morphological models that
capture specific anatomical structures. In reality, plants
show diverse morphological characteristics on multiple
scales because of their evolutional, functional, and develop‐
mental backgrounds. It is important to choose a relevant
quantification model; this may extend to the development
of novel models specifically for this purpose. Such model-
based plant phenotyping approaches have several advan‐
tages, including robustness of quantification. Finally, we
will discuss the future possibilities of an ecosystem of
model-based measurement and continuous model refine‐
ment.

Geometric morphometrics for shape quantifica‐
tion of single units

Geometric morphometrics can be used to extract aspects of
morphological properties such as geometric invariants
called form and shape (Dryden and Mardia 2016, Kendall
et al. 2008, Zelditch et al. 2012). Form, which is also
known as shape-and-size, is defined as a geometric invari‐
ant against translation and rotation (Fig. 1A). The shape is
defined as a geometric invariant against translation, rota‐
tion, and scaling (Fig. 1B). Before the geometric morpho‐
metrics, the morphological properties of targets had been
quantified using simple one-dimensional measurements,
such as number, angle, length, area, volume, and ratio,
combined with multivariate analysis. Beyond the series of
ad-hoc measurements, geometric morphometrics achieved a
direct quantification of form and shape by modeling form
and shape as geometric invariants in several manners. In
most studies using geometric morphometrics, the shape of
single units, which are distinguished from others (e.g., sin‐
gle leaf, single petal, and single seed), is a primary target,
and there are two well-established major approaches,
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known as landmark-based and outline-based morphometrics,
respectively.

In landmark-based morphometrics, the morphological
properties of targets are modeled as a set of landmarks,
which correspond to points among specimens; the shape is
extracted via a procedure removing position, size, and
orientation, called the Procrustes analysis (Fig. 1C; see
Dryden and Mardia (2016) and Kendall et al. (2008) for
details). Briefly, a vector X represents a configuration of
k landmarks in m dimensions. X, called the configuration
vector or simply the configuration, is a k × m vector and in‐
cludes the position, orientation, and size. To remove posi‐
tional information, all landmark coordinate values are
normalized to their centroid. Then, the size is normalized
by the norm of X, called the centroid size. The data are then
distributed on the pre-shape space, which is a high-
dimensional hypersphere. The shape corresponds to a sin‐
gle orbit on this hypersphere as an equivalence class to the
rotation, i.e., data on the orbit have the same shape but dif‐
ferent orientations. The difference between the shapes is
measured by the great-circular distance, the Procrustes dis‐
tance, between these orbits (Fig. 2D).

Landmark-based morphometrics has been adapted to
multiple scales from the inner-cell structure to the whole
plant, including grass phytoliths (Hošková et al. 2021),
leaves (Silva et al. 2012, Viscosi et al. 2009), lips of orchid
flowers (Shipunov and Bateman 2005), whole flowers

(Gardère et al. 2019, Savriama et al. 2012), and whole
plants (Manacorda and Asurmendi 2018). One of the ad‐
vantages of landmark-based morphometrics is its applica‐
bility to targets whose homology can be defined using
shared landmarks among them, even if they consist of mul‐
tiple elements. This is why the approach is applicable to
whole flowers and plants. van der Niet et al. (2010) used
landmark-based morphometrics on three-dimensional (3D)
data of Satyrium (a genus of Orchidaceae) flowers scanned
using microCT and showed an association between floral
shapes and pollinator classes. Quantitative representation of
shape enables further biological analyses. In a study on
grapevine leaves that included landmark-based modeling
and statistical analysis of biological metadata (species, de‐
velopmental stages, and leaf positions), Chitwood et al.
(2016) isolated latent shapes, which are components associ‐
ated with other contexts (e.g., species and developmental
stages) independent of each other, thereby indicating that
developmental stages are predictive independent of species
identity and vice versa. Landmark configuration is usually
done manually by experts or trained people (Bookstein
1992, Dryden and Mardia 2016), but research on semi-
automatic landmarking based on a small number of land‐
marked datasets has appeared (Pereira et al. 2019, Vandaele
et al. 2018).

In outline-based morphometrics, the outlines, which are
boundary lines or boundary surfaces separating the target

Fig. 2. Elliptic Fourier analysis. A. An outline shape that can be quantified by the polar Fourier descriptor (left) and an outline shape that
cannot be quantified by a polar Fourier descriptor (right). If the line segment between the pole and a point on the outline intersects another part
of the outline, the radial distance along the polar angle is a multivalent function. B. Elliptic Fourier descriptor. The x- and y-coordinates for the
parameters along the outline are modeled as other functions, respectively. C. Reconstruction of the outline shape by inverse Fourier transform.
The outline shape can be reconstructed from the data, i.e., Fourier coefficients, quantified by the elliptic Fourier descriptor. The resolution of the
outline shape differs depending on which order n of the Fourier coefficients is used. In particular, the outline is approximated by an ellipse when
n  =  1. This figure was created based on Noshita (2021b) (Licensed under CC-BY 4.0).
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from others, are modeled as closed functions. Elliptic
Fourier analysis (EFA) is widely applied for two-
dimensional modeling (Kuhl and Giardina 1982). In EFA,
an outline of a target is modeled as the functions of co‐
ordinate values (x, y) on it (Fig. 2A). These functions are
approximated as a Fourier series of degree n and quantita‐
tively described using a set of Fourier coefficients (ai, bi, ci,
and di):

x t =
a0
2 + ∑

i = 1

n
ai cos iωπ + bi sin iωπ ,

y t =
c0
2 + ∑

i = 1

n
ci cos iωπ + di sin iωπ ,

where t is a parameter indicating the position on the out‐
line, ω = 2π

T  with outline perimeter T. More details of the
outline shapes are captured with a greater degree n
(Fig. 2B). In most cases, these coefficients are normalized
(e.g., by the major axis of the ellipse defined with the first
harmonic; Rohlf and Archie 1984) because the size and ori‐
entational information remain. The normalized coefficients
are descriptors of the outline shapes and are often summa‐
rized using dimension reduction methods, such as principal
component analysis (PCA) (Fig. 2C).

EFA has been used to quantify the shape of seeds
(Ohsawa et al. 1998, Sakamoto et al. 2019, Williams et al.
2013), leaves (Chitwood et al. 2012, 2013, Iwata et al.
2002, 2015), petals (Yoshioka et al. 2004), roots (Iwata
et al. 1998, Rellán-Álvarez et al. 2015), and fruits (Costa
et al. 2009, Currie et al. 2000). In particular, Iwata et al.
(2015, 2010) demonstrated the advantages of outline-based
morphometrics combined with genomic data. The grain
shapes of rice (Oryza sativa L.) were quantified using ellip‐
tic Fourier descriptors, and the descriptors or their principal
component (PC) scores were used as quantitative traits.
Iwata et al. (2010) conducted genome-wide association
analysis (GWAS) of PC scores with genome-wide markers
and found five significant markers associated with PC
scores, including three previously reported markers. In a
subsequent study, Iwata et al. (2015) developed non-linear
regression models for genomic prediction of grain shape
based on genome-wide single nucleotide polymorphism
(SNP) genotypes.

Spherical harmonic analysis is available for the modeling
of 3D morphological structures (Ritchie and Kemp 1999,
Shen et al. 2009, Styner et al. 2006). In this approach, coor‐
dinate values (x, y, z) on an outline (closed surface) of a tar‐
get are approximated as a linear combination of spherical
harmonics:

x θ, ϕ = ∑
l = 0

∞
∑

m = − l

l
cx, l

m Y l
m θ, ϕ ,

y θ, ϕ = ∑
l = 0

∞
∑

m = − l

l
cy, l

m Y l
m θ, ϕ ,

and

z θ, ϕ = ∑
l = 0

∞
∑

m = − l

l
cz, l

m Y l
m θ, ϕ ,

where Y l
m θ, ϕ  is a spherical harmonic function of degree l

and order m, and θ and ϕ are parameters indicating a posi‐
tion on the spherical coordinates, respectively. An outline
shape is quantitatively described using a set of the expan‐
sion coefficients cx, l

m , cy, l
m , cz, l

m  , similar to EFA. Spherical
harmonic analysis has been used to describe the 3D outline
shapes of citrus fruits (Ding et al. 2000), agricultural grains
(beans, chickpeas, and maize) (Radvilaitė et al. 2016).

The extraction of outlines from digitized data (e.g., im‐
ages, volume data) can be achieved via a relatively simple
image analysis, which is user-friendly because it does not
require an explicit definition of homology, such as a con‐
figuration of landmarks. Several useful geometric morpho‐
metrics tools have been provided as R packages, e.g., for
landmark-based morphometrics (Adams and Otárola-
Castillo 2013, Dryden 2021), combined landmark-based
and outline-based morphometrics (Bonhomme et al. 2013),
desktop applications for outline-based morphometrics
(Iwata and Ukai 2002) and landmark-based morphometrics,
including phylogenetic analysis (Klingenberg 2011), and
web applications (Dujardin and Dujardin 2019).

TDA will overcome the issue of ill-defined homol‐
ogy

Recently, topological data analysis (TDA), which refers to
statistical methods for extracting structures from data using
topological concepts, has been widely available for the
quantitative representation of morphological properties in
several fields. These include material science (Hiraoka
et al. 2016, Saadatfar et al. 2017), biochemistry (Kovacev-
Nikolic et al. 2016, Xia and Wei 2014), developmental
biology (McGuirl et al. 2020), and neuroscience (Bendich
et al. 2016, Saggar et al. 2018). In particular, persistent
homology (PH) analysis captures topological features in
data on a multi-scale and enables the quantification of
abstract topological features.

PH analysis calculates the topological characteristics by
constructing a filtration of simplicial complexes based on
input data, e.g., images, point clouds, and graphs. A sim‐
plex is a generalization of arbitrary dimensions of points,
line segments, triangles, and tetrahedrons; that is, the small‐
est convex set composed of linearly independent k vectors
given by k + 1 points in n-dimensional Euclidean space Rn

is called a k-simplex. Furthermore, l-simplexes, defined as
the convex sets of l + 1 vertices taken from the vertices of
k-simplex are called faces of k-simplex, which is a general‐
ization of faces of polyhedrons. A set of simplexes K is
called a simplicial complex if a face α of a simplex β ∈ K
belongs to K and γ ∩ δ is a face of both γ and δ if not
γ ∩ δ = ∅ for γ, δ ∈ K . In PH analysis, the homology
classes, which are structures with holes, are calculated in
several dimensions at the simplicial complex using an
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increasing sequence of the simplicial complex called a fil‐
tration, constructed based on the data. Persistence diagrams
(PDs) depict the birth-death profiles of the homology
classes during filtration. Based on the PD, the dissimilarity
between two data points can be represented topologically
(Edelsbrunner and Harer 2009). For practical use, several
vectorized representations are derived from the PD, such
as the persistence landscape (Bubenik 2015), persistence
image (PI) (Adams et al. 2017), and Betti curve (Umeda
2017). Fig. 3A shows an example of a workflow for quanti‐
tatively describing the topological features using PH analy‐
sis; the PD and the PIs were calculated from point cloud
data sampled from a structure.

Recently, PH analysis has been applied to quantify plant
morphological traits. For example, Li et al. (2018a) suc‐
cessfully captured multi-scale morphological features of
diverse and disparate leaf shapes among 141 families of
seed plants, which include different numbers of lobes and
leaflets, using PH analysis, and represented them in the
common morphospace; it is difficult to define their homol‐
ogy using only the landmark-based and/or outline-based
morphometrics approaches mentioned in the previous sec‐
tion. Li et al. (2017) discussed the possibility of PH analy‐
sis for branching patterns (plant shoots, roots, and clusters)

and the versatility of a morphometrics tool for plant struc‐
tures. Li et al. (2018b) demonstrated that the topological
features of leaf shapes, leaf serrations, and tomato roots,
obtained via PH analysis, improved the associations be‐
tween genotype and phenotype, that is, clear and unique
quantitative trait loci (QTLs) were detected by utilizing
topological features as opposed to conventional traits (and
their multivariate derivatives). Fig. 3B shows an example
of the quantification of four foliage structures using the PD
and the PIs. For each probability distribution of leaf occur‐
rence on the radial plane corresponding to the different
structures, 30 point cloud data representing the leaf posi‐
tions were simulated (Fig. 3B left). The point cloud data
were quantified as the PDs and the PIs (Fig. 3B middle).
The PCA was conducted for the PIs, and different distribu‐
tion patterns were recognized among the four structures in
the data space (Fig. 3B right).

Although there are no established routines for analyzing
plant structures consisting of an indefinite number of ele‐
ments, TDA may be a breakthrough technology for quanti‐
fying such structures in plant science (Amézquita et al.
2020, Bucksch et al. 2017). Several open-source libraries
and packages are available (e.g., Tauzin et al. 2021, The
GUDHI Project 2021).

Fig. 3. Persistent Homology Analysis. A. An example of persistent homology (PH) analysis of point cloud data generated based on a structure.
The birth-death profiles of homology classes are summarized in a persistence diagram (PD). Several vectorized representations are derived from
the PD for further statistical analysis; persistence images (PIs) are shown here. B. An example of PH analysis of simulated plant foliage. The
foliage structures were represented as point cloud data corresponding to leaf positions. Based on the point cloud data, the PD was generated
based on the Čech complex. Using PIs, the differences among foliage structures were recognized in the data space generated by principal com‐
ponent analysis.
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Theoretical morphological modeling of specific
anatomical structures

If we recognize mathematical, geometric, developmental,
or other morphological rules, developing a model for de‐
scribing specific anatomical structures could be an effective
approach. Theoretical morphological approaches make it
possible to organize morphometric information in a model-
based manner and indirectly evaluate features that are
difficult to measure directly. It is possible to generate hypo‐
thetical morphologies based on the models and evaluate
their morphological features and functions to understand
better why they do or do not exist; that is, to identify the
potential constraints on morphological diversity. These
strengths were already recognized in the first papers on the‐
oretical morphological approaches, and Raup’s work on
theoretical morphological models of shells (Raup 1966,
Raup and Michelson 1965) discussed morphological diver‐
sity and its functional and structural constraints. Previous
work on land plant evolution (Niklas 1994, 1999) and leaf
shapes (Runions et al. 2017) have also adopted theoretical
morphological approaches. However, there is a limited
number of theoretical morphological studies compared to
morphometric approaches because researchers attempting
to conduct a theoretical morphological study are required to
find and/or develop a model for mimicking the target mor‐
phological traits. Here, we introduce several theoretical
morphological studies on phyllotaxis, branching patterns,
and flowers as examples.

Several theoretical studies on phyllotaxis adopt the theo‐
retical morphological approaches. Douady and Couder
(1996a, 1996b, 1996c) conducted experiments and numeri‐
cal analyses with theoretical models that work on principles
of spiral phyllotaxis proposed by Hofmeister (1868). These
studies showed several diagrams that visualized the rela‐
tionship between the model parameters that regulate devel‐
opment and the spiral phyllotactic patterns produced by
those parameters. Although they might not have intended to
draw morphospaces, some basic ideas are shared; that is,
these diagrams can also be used to visualize the potential
clusters and the constraints of the pattern. One of the latest
studies developed from the Douady-Couder model demon‐
strated that phyllotactic patterns were mapped on a para‐
metric diagram and showed how to transit from one pattern
to another, which cannot be achieved in the Douady-
Couder model (Yonekura et al. 2019). In terms of its appli‐
cations related to floral morphologies, the number of
perianths and the symmetry properties have been respec‐
tively investigated using the Douady-Couder model and the
phase diagram to visualize the pattern transition (Kitazawa
and Fujimoto 2015, Nakagawa et al. 2020).

Branching patterns is another typical subject of theoreti‐
cal morphological studies, in particular their geometric reg‐
ularity and growing rules. L-system, a cellular automaton
accepting both cell division and hierarchical structures,

mimics branching patterns and their growth by using gener‐
ated strings and a growth grammar (Lindenmayer 1968a,
1968b, 1971). For example, consider a finite string consist‐
ing of symbols, including an empty string, which models a
cellular array with specific states; a grammar is a set of
rewriting rules for symbols and operates each symbol in the
string. From an initial string called the axiom, the string is
rewritten recursively based on the grammar and new strings
are generated in each step. The L-system describes a hierar‐
chical branching structure by representing certain symbols
as biological components (e.g., cells, organs, and other
anatomical structures) and geometric indicators (e.g., bi‐
furcation and changing direction) via turtle interpretation.
Early studies (Lindenmayer 1968b, 1971) successfully
mimicked the branching pattern of Callithamnion roseum,
a red alga, and the leaf development of Tortula acaulon,
a moss, using the context-free L-system (0 L-system). In
subsequent studies, extended models of the L-system have
been developed, e.g., stochastic L-system (Eichhorst and
Savitch 1980), parametric L-system (Chien and Jürgensen
1992), open L-system (Měch and Prusinkiewicz 1996), and
relational growth grammar (Kniemeyer et al. 2007). A wide
range of plant structures, such as trees, herbaceous plants,
flowers, leaves, and their developmental processes, have
also been generated using these models (Prusinkiewicz and
Lindenmayer 1990). The L-system and its extended models
have been used in combination with plant/crop models,
which are models for mimicking the dynamics of growth
stages and physiological processes, as functional structural
plant models; this allows feedback among structures, physi‐
ological processes, and surrounding environments (Barczi
et al. 2008, Kniemeyer et al. 2007, Pradal et al. 2008, Vos
et al. 2010).

One of the difficulties in quantifying plant morphology is
the hierarchical composition of several types of elements in
an indefinite number, which type of morphology is often
observed in the flower shape. Although this characteristic,
i.e., a flower consists of multiple elements, such as petals,
makes it difficult to define the homology between objects
and apply geometric morphometrics, there are cases in
which the morphology can be summarized and described as
model parameters. As noted previously, there are several
known mathematical models of floral structure based on
phyllotaxis models (Kitazawa and Fujimoto 2015, Nakagawa
et al. 2020). We expect some general-purpose theoretical
morphological models to be developed by combining them
with existing morphogenesis simulations, even though
theoretical morphological models have been used in the
analysis of floral morphology in only a few cases. Here, we
introduce an example of a theoretical morphological model
of a flower. Although this model does not parameterize
flower development and only describes the whole flower
morphology, it represents a typical application of the theo‐
retical morphological approach.

Conventionally, floral morphologies are given qualita‐
tive descriptions by breeders or specialists using natural
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language or combinations of simple measurements in flori‐
culture. Thus, it is difficult to interpret the meaning and ac‐
tual appearance quantitatively. Kirie et al. (2020) proposed
a theoretical morphological model for Nymphaea (water
lilies) flowers to describe the morphological diversity of
horticultural cultivars; the floral morphology was reduced
to three hierarchical rules, namely (1) morphologies of
tepals, (2) the spiral phyllotaxis, and (3) the blooming state.
To demonstrate the versatility of this model, a theoretical
morphospace was generated by varying several parameters,
especially those related to the gradual change in size and
shape through a series of tepals. The flower shapes of the
measured cultivars were mapped into some subspaces of
the theoretical morphospace, that is, one can estimate the
occupation pattern of real floral morphologies in a subspace
spanned by measurable parameters (Fig. 4). Consequently,
it was suggested that typical flower shapes could be classi‐
fied. The study included a survey of the parameters or fea‐
tures of parts as well as features of the whole morphology.
Both the convexity and solidity of whole flowers were cal‐
culated as global features for each shape sampled from the
theoretical morphospace using silhouettes of theoretical flo‐
ral morphologies and their convex hulls. The results sug‐
gest that some flower shapes can also be classified based on
global features. Moreover, these features showed different
sensitivities in response to changes in the model parameters
and the direction of projection. It seems conceivable that
such a theoretical approach could translate qualitative de‐
scriptions made by floricultural breeders to quantitative or
machine-readable ways and facilitate the design of new
morphologies.

Model-based phenotyping improves the robust‐
ness of estimation in limited datasets

The model-based phenotyping approaches described in the
previous sections help us to extract morphological traits
and improve the robustness of the estimation when datasets
are limited or small. If we know the constraint and diversity
of the morphological traits of targets, it will serve as a geo‐
metric prior to restricting the morphospace to be explored.

Assuming a two-dimensional leaf structure, model-based
phenotyping allows us to make more robust measurements
of leaf traits for surface reconstruction. For example, con‐
sider the reconstruction of a leaf surface using point cloud
data and estimations of the morphological traits; point
cloud data digitized from real plants contain noise that is
difficult to remove completely, even using denoising filters.
Therefore, the surface was reconstructed using Poisson sur‐
face reconstruction (Kazhdan et al. 2006), resulting in an
overestimation of the leaf area (Fig. 5A). A possible solu‐
tion is to assume a priori that the leaf is a single (bounded)
surface. For example, Fig. 6A shows a leaf surface recon‐
structed via B-spline surface fitting with B-spline curve
trimming (Mörwald 2013), i.e., the leaf surface was model
as a piece of surface; the leaf surface reconstruction was
clearly improved, and the approach provided robust mea‐
surements despite the point cloud data containing some
noise. Several methods have been proposed to provide
robust measurements of leaf morphological traits, e.g., by
modeling the leaf surface as triangular meshes (Dornbusch
et al. 2007), a set of small patches (Pound et al. 2014),

Fig. 4. Morphospace and feature spaces mapped on the morphospace of a theoretical morphological model of Nymphaea flower. A. Morpho‐
space of the theoretical morphological model. Each parameter regulates the gradual change of transverse or longitudinal length of the tepal. B.
Feature spaces mapped on the morphospace. The convexity, which is the ratio of perimeter lengths of the convex hull over that of a silhouette of
the theoretical morphological model, and the solidity, which is the ratio of areas of the silhouette of the model over that of the convex hull, are
displayed. The upper two spaces were calculated for the top-viewed silhouette of the model and the lower spaces were calculated for the side-
viewed silhouette. Each feature index showed a different pattern for the change of parameters, therefore, it suggests the “trade-off” involved in
designing floral morphology via selective breeding. This figure was created based on partially modified Figs. 3 and 5 in Kirie et al. (2020)
(Licensed under CC-BY 4.0).
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or as another piecewise polynomial function (Kempthorne
et al. 2015).

Another interesting example is that of leaf contour shape
extraction in a 3D space. Although a leaf is a structure that
exists in a 3D space, the leaf shape is usually quantified and
evaluated using two-dimensional measurements. Capturing
such a one-dimensional closed curve in a 3D space as an
outline shape is challenging because of the difficulty of
accurately estimating the boundary based on point clouds
reconstructed using other approaches, such as structure from
motion (SfM) and multi-view stereo (MVS). For example,
in a study that presented a method for visualizing leaf veins
and contours from laser-scanned point cloud data, Sun
et al. (2011) extracted the structure outline from the mesh,
but the mesh did not extend to the boundary points. Curve-
based 3D reconstruction is a candidate for modeling the
outline as a one-dimensional closed curve in a 3D space
directly (Fabbri and Kimia 2010). Unlike SfM and other
point-based methods, curve-based reconstruction uses the

Fig. 5. Three-dimensional (3D) recontraction of leaf morphology
based on explicit assumptions. A. Point cloud data of the leaf surface
(left) and results of surface reconstruction using Poisson reconstruc‐
tion (middle) and B-spline surface fitting (left). In this case, the dupli‐
cated reconstruction was recognized as the result of Poisson
reconstruction, which is often used for this purpose, and resulted in
over-estimation of the leaf area. The B-spline surface fitting avoided
the problem by assuming that a leaf is a single two-dimensional sur‐
face in a 3D space. B. Simulation data of a leaf (left) and a leaf recon‐
structed using curve features (right). The contours and reconstructions
of the simulation data are almost identical. There is a lot of noise at
both ends of the slope. The contour is represented as a set of curve
fragments.

curves in the image as features for 3D reconstruction.
Therefore, it can reconstruct thin structures, such as leaves
and branches, as more stable curves instead of as points (Li
et al. 2018c). Moreover, because it reconstructs the outlines
directly, it is possible to obtain clear leaf boundaries. To
improve the accuracy of curve-based reconstruction, it is
recommended to perform deep learning-based instance seg‐
mentation, e.g., Mask R-CNN (He et al. 2017), on leaf out‐
lines instead of conventional edge detection methods such
as a differential filter that picks up noise such as leaf veins.
Fig. 5B shows an example of curve-based 3D reconstruc‐
tion on simulated data, that is, images and masks of the
leaves acquired by 48 cameras. The outline was extracted
as a set of curved fragments reconstructed from pairs of
mask images. Although the apical portion of the leaf was
unstable in comparison to the original 3D mesh, these
curved fragments could be merged using a curve averaging
method for further improvements (Usumezbas et al. 2016).
Thus, it is expected that structures that are difficult to ob‐
serve in 3D space directly could be handled by direct mod‐
eling, especially the thin structures of plants themselves.

Conclusion and future perspective

In this review, we introduced several morphological de‐
scriptors, summarized the major concepts of mathematical
models and the theories behind them, and presented various
examples of their applications. Using geometric morpho‐
metric approaches, the morphological properties of single
units in plants were quantified as shape (or form) without
over- or underestimation (Figs. 1, 2). Even if plants show a
hierarchical structure composed of an indefinite number of
multiple elements, TDA will enable the representation of
such complex morphological features from the perspective
of topological characteristics (Fig. 3). Theoretical morpho‐
logical models also enable the quantification of complex
plant morphology in cases where we discover mathemati‐
cal, geometric, developmental, or other morphological rules
(Fig. 4). Although finding rules in plant morphology is
generally the result of trial and error, data accumulation
will accelerate the process (Cao 2017). On the other hand,
model-based phenotyping also accelerates data accumula‐
tion because of its robustness when applied to limited data‐
sets (Fig. 5). These model-based phenotyping approaches
coupled with sequencing technologies are promising future
for crop improvement because the complex morphological
properties, which are difficult with conventional qualitative
and subjective evaluations, can be analyzed as quantitative
traits and predicted based on genomic data (e.g., Hiraoka
et al. 2016, Iwata et al. 2015).

However, the morphological traits of plants show com‐
plex and hierarchical structures and such traits are not al‐
ways covered by the models introduced in this review. As
mentioned in the section Theoretical morphological mod‐
eling of specific anatomical structure, there are not many
available theoretical morphological models, and further

BS Breeding Science
Vol. 72 No. 1 Noshita, Murata and Kirie

26



development of a model for mimicking the target morpho‐
logical traits often required. In the research phase, when
improving hypotheses continuously using limited data and
a poorly systemized quantification workflow, it is important
to extract biologically meaningful information from each
experiment and provide feedback to the next as much as
possible (e.g., Campbell et al. 2018, Rahaman et al. 2015).
Such a problem would be partially solved by continuously
developing morphological models using model-based
phenotyping approaches (Fig. 6). To improve the model
continuously, we measure morphological traits based on the
model, extract a subspace of the morphospace by analyzing
the data obtained from the measurement, and develop and
propose a new model that covers the subspace. Initially, we
can start with generic methods, such as geometric morpho‐
metrics, to collect data with limited prior knowledge of tar‐
gets. We then extract a subspace of the morphospace by
analyzing the obtained data using linear statistical methods
such as PCA. A new morphological model that covers the
extracted subspace of the morphospace is proposed, and we
then proceed to the next measurement based on the new
morphological model. Even if the measurement fails par‐

tially or contains a large amount of noise, robust quantifi‐
cation will be possible using the constraints of the model
as prior knowledge. Thus, the dataset can be expanded
continuously. As the data increase, more options become
available for data analysis, such as nonlinear dimension
reduction (e.g., Cayton 2005). This implies the possibility
of extracting a subspace that is more appropriate given the
diversity of morphological data. This may lead to the pro‐
posal of a theoretical model that can cover the obtained
subspace. The integration of all the constituent elements
into a continuous improvement cycle is required for pheno‐
typing of plant morphological properties. This includes
edge devices for model-based measurements, a web appli‐
cation programming interface providing the backend of
morphometric processes and data accumulation, and user
interfaces to conduct mathematical and statistical analyses.
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