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Metabolites play a central role in maintaining organismal life and in defining crop phenotypes, such as nutri‐
tional value, fragrance, color, and stress resistance. Among the ‘omes’ in biology, the metabolome is the
closest to the phenotype. Consequently, metabolomics has been applied to crop improvement as method for
monitoring changes in chemical compositions, clarifying the mechanisms underlying cellular functions, dis‐
covering markers and diagnostics, and phenotyping for mQTL, mGWAS, and metabolite-genome predictions.
In this review, 359 reports of the most recent applications of metabolomics to plant breeding-related studies
were examined. In addition to the major crops, more than 160 other crops including rare medicinal plants
were considered. One bottleneck associated with using metabolomics is the wide array of instruments that are
used to obtain data and the ambiguity associated with metabolite identification and quantification. To further the
application of metabolomics to plant breeding, the features and perspectives of the technology are discussed.
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Introduction

The metabolites of agricultural and horticultural crops have
a direct effect on their phenotypes through their influence
on stress tolerance, inter-organismal interactions, color,
taste, nutritional value, and shelf life. Metabolites can gen‐
erally be divided into two groups; primary metabolites,
which are essential for maintaining the fundamental life
processes of the organism, and secondary (specialized)
metabolites, which contribute to processes that are special‐
ized to each organism. Together, the primary and secondary
metabolites constitute the metabolome, which, among the
‘omes’ in biology (i.e., genome, transcriptome, and pro‐
teome) is considered to reflect the phenotype most closely
(Guijas et al. 2018, Patti et al. 2012).

Metabolomics—technology for the comprehensive de‐
tection of small molecules in the samples (Hall 2006)—
have been applied to numerous research fields, including
plant science, zoology, clinical science, microbiology, envi‐
ronmental science, and plant breeding. Metabolomics has
been used to clarify the chemical diversity between differ‐
ent crops, analyze stress response mechanisms, discover
biomarkers for recognizing different genotypes and pheno‐
types, and assess material quality. Integrating metabolome
data into genome and transcriptome data can be used to
identify genes involved in the biosynthesis or degradation
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of specific metabolites and quantitative trait loci (mQTL),
and to perform metabolic genome-wide association studies
(mGWAS). In recent years, the data obtained from these
studies have been used for predicting phenotypes (metabo‐
lite genomic selection/prediction).

This review examined recent publications on the applica‐
tion of metabolomics to plant breeding. In most of these
studies, a variety of analytical platforms were used, primar‐
ily because of a lack of a single technology that can detect
and quantify the full spectrum of metabolites, i.e., the com‐
plete metabolome, produced by plants. Consequently, de‐
pending on the purpose of the study, researchers have to
select the most optimal platforms by considering the types
of chemicals to be analyzed, the required quantification ac‐
curacy, and the availability of the platforms. Therefore, the
second part of this review provides and overview of the
technical features of metabolome analysis with a brief in‐
troduction of the instruments and relevant technical points.
Finally, future perspectives for the further application of
metabolomics in this field are discussed. It is hoped that
this information can be used as a guide to further the appli‐
cation of metabolomics in plant breeding.

Numerous excellent reviews on topics that were not
covered in great depth in this review have been published
recently; for example: sample preparation and data analy‐
sis for association mapping (Alseekh and Fernie 2021);
mechanism analysis and phenotype predictions (Fernandez
et al. 2021); integration with other omics data (Scossa et al.
2021); a comprehensive review of relevant publications
(Razzaq et al. 2019, Sharma et al. 2021); safety assessment
of genetically modified organisms (Bedair and Glenn 2020);
elucidating and planning plant domestication (Alseekh
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et al. 2021, Fernie and Yan 2019); and computational tools
(Misra 2021). The reader is urged to refer to these studies
in detail.

Application of metabolomics to plant breeding

A literature search of all studies published in the last two
years (from January 2019 to July 2021) on the application
of metabolomics to plant breeding (described later in detail)
produced a total of 359 articles excluding reviews (Supple‐
mental Table 1). The table also contains information on
target plant, experimental factor, purpose of the study, in‐
strument used, and links to the original paper to facilitate
access to the article.

The literature search was conducted using PubMed,
PubMed Central (Sayers et al. 2021) and European
PubMed Central (Ferguson et al. 2021). All of the publica‐
tions containing two metabolomics-related terms (i.e.,
metabolome or metabolomics) and ten plant breeding-
related terms (i.e., breeding, crop improvement, quantita‐
tive trait loci, genome-wide association study, genomic
selection, genomic prediction, metabolomic selection,
phenotyping, marker, or biomarker) were searched for, with
consideration given to inflection of the terms. Redundant
results, and results containing animal- and clinical-specific
terms, such as “cerebrospinal” were omitted, which gave
601 articles. The title, abstract, and original paper (avail‐
able for 391 articles) were then checked manually, which
left 359 original research articles in which metabolomics
was applied to plant breeding. Articles indirectly related to
plant breeding, such as studies for biological mechanisms
using model plants and marker discovery for the geographi‐
cal origin of traditional Chinese medicine, are included for
use case purposes. Studies that did not use either a mass
spectrometer (MS) or a nuclear magnetic resonance (NMR)
spectrometer for chemical detection were omitted from the
analysis.

Target plants
Metabolomics was applied to a wide variety of plants

(Table 1). The 359 articles that were selected examined 160
plants or plant (sample) categories (hereafter referred to as
“classes”); of these classes, only seven classes of major
crops (including rice, tomato, maize, wheat, and tea tree)
were reported in more than 10 publications. Eighteen plant
classes were reported in more than 1% of articles (four pub‐
lications), and 48% of all articles were related to these 18
plant classes. The remainder of the articles (52%) were
related to 132 other classes, and 109 of those classes were
reported in a single article. A rare medicinal plant Ferula
asafoetida indigenous to Kashmir, Afghanistan, and Iran
was included in the last criterion (Amini et al. 2019). As
exemplified by coriander (Song et al. 2020) and Medicago
polymorpha (Cui et al. 2021), metabolic profiling was con‐
ducted in reports on the genome sequences of these species.

Purposes of the studies
Of the 359 articles, 166 (46%) analyzed metabolic mech‐

anisms, 117 (33%) examined metabolic profiling, 58 (16%)
examined marker discovery or discrimination, 18 (5%)
examined mGWAS, 14 (4%) examined mQTL, 9 (3%)
examined genomic/metabolic selection/prediction, and 25
(7%) examined other purposes. Many of the papers on
mechanism analysis focused on the resistance mechanisms
of biotic (insects and pathogens) and abiotic (salinity, tem‐
perature, and drought) stresses. The metabolic profiling
studies included preliminary and descriptive findings for
further detailed mechanism analysis and marker discovery.
The genomic/metabolomic prediction studies were con‐
ducted on major crops, such as rice, oat, barley, and wheat,
as well as on less well known crops, such as blueberry
(Ferrão et al. 2021). In addition, mGWAS was applied to
hops (Feiner et al. 2021) and coffee (Gamboa-Becerra et al.
2019), and mQTL was applied to Brachypodium distachyon
(Onda et al. 2019) and blackcurrant (Abreu et al. 2020).

In an important study on the mechanism of stress re‐
sponse, Wang et al. (2021) identified the fluorescence in
blue light (BrFLU) gene in Pak Choi; the gene was shown
to be related to cold acclimation in a study that combined
transcriptomics methods.

As an example of metabolic profiling, Qing et al. (2021)
demonstrated the absence of genes and metabolites in the
biosynthesis of colchicine, which is concerned about a fac‐
tor for the limited market of Hemerocallis citrina Borani.
Yu et al. (2020) elucidated metabolic profiles of 136 acces‐
sions of tea trees as part of a study on characterizing tea

Table 1. Plants or plant classes used in breeding-related metabolome
analysis that were reviewed in this study (published from Jan 2019 to
July 2021)

Plant (classes) # Articles

Rice 24 (7%)
Tomato 22 (6%)
Maize 18 (5%)
Wheat 18 (5%)
Tea 13 (4%)
Brassicaceae except Arabidopsis 10 (3%)
Traditional Chinese medicine 10 (3%)
Poplar 8 (2%)
Soybean 8 (2%)
Grapevine 6 (2%)
Arabidopsis 5 (1%)
Barley 5 (1%)
Cassava 5 (1%)
Oat 5 (1%)
Sorghum 5 (1%)
Apple 4 (1%)
Medicago 4 (1%)
Olive 4 (1%)
Others 185 (52%)
Total 359
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genetic resources in China. In a study on marker discovery,
Lemaitre-Guillier et al. (2021) demonstrated that the pro‐
files of volatile organic compounds (VOCs) can be used as
diagnostic markers for stress in grapevines.

Metabolomics was also used to depict the metabolic
changes during the breeding and domestication processes
of the crops. Schouten et al. (2019) conducted metabolic
profiling of tomato cultivars in the Netherlands and con‐
cluded that increased diversity in the composition of aro‐
matic volatiles from the 1990s onwards might reflect the
efforts of breeders trying to improve fruit quality. Although
not included in Supplemental Table 1, the use of metabolo‐
mics to clarify the domestication process has been reported
in tomato (Zhu et al. 2018) and wheat (Batyrshina et al.
2020, Beleggia et al. 2016).

The use of metabolomics as an alternative to assessing
the phenotype of a plant using organoleptic tests, which are
difficult to standardize and perform at scale, was described
by Ferrão et al. (2021). The relative scarcity of MS- and
NMR-based metabolomics studies for large-scale pheno‐
typing using other methods, such as GWAS and genomic
predictions, is likely due to the lack of portable instru‐
ments. As a simple and portable phenotyping tool, near-
infrared (NIR) spectrometry was used recently (Alves Filho
et al. 2019, Lane et al. 2020, Rincent et al. 2018).

The stability of metabolome between crops grown under
different conditions is often argued when the metabolomic
data are subjected to statistical analysis. Chevalier et al.
(2021) evaluated phenotypic plasticity in carrot varieties
and concluded that a balance between constitutive content
and the environmental sensitivity of key metabolites should
be considered for quality improvement in carrot and other
vegetables. For the assessments of the unintended effects of
genetically modified crops, reports have been published on
maize varieties (Liu et al. 2021) and tomato rootstock
(Kodama et al. 2021).

Instruments and equipment used in metabolomics studies
In the 359 reviewed articles, liquid chromatography

(LC)-mass spectrometry (MS) was the most commonly used
instrument (239 articles, 67%), followed by gas chromatog‐
raphy (GC)-MS (104, 29%), nuclear magnetic resonance
(NMR) spectrometry (22, 6%), capillary electrophoresis
(CE)-MS (2, 1%), and others (19, 5%). LC-MS was often
used using established methods to detect polyphenols such
as flavonoids related to antioxidant activity and color pro‐
duction. GC-MS was used to obtain an overview of the
metabolites produced by primary metabolism (sugars,
amino acids, fatty acids, and organic acids), and also to
detect flavor compounds. In numerous studies, multi-
instrument platforms are used. Moing et al. (2020) used the
widest variety of methods including LC-MS, GC-MS,
NMR, and flow injection-MS (see section “Overview of
metabolomics technology”).

Overview of metabolomics technology

Compared to transcriptome and proteome analysis, the
characteristics of metabolome analysis are as follows: 1) a
large variety of analytical instruments is used (Fig. 1), pri‐
marily because no single method is capable of covering the
wide range of physicochemical properties and concentra‐
tions of metabolites typically found in samples (Saito and
Matsuda 2010). 2) In terms of identifying metabolites, there
is often some ambiguity in the obtained results (Viant et al.
2017). This is because a comparison of metabolite signals
with those from the authentic standard chemical using the
same instrumental conditions is required for metabolite
identification. Therefore, the metabolomics data may con‐
tain known-, predicted- and unknown metabolites. A clear
indication of the certainty of the annotation (level 1 to 4) in
the results is strongly recommended by the Metabolomics
Standards Initiative (MSI) (Sumner et al. 2007). 3) There is
typically a difference in quantitative accuracy between the
data. The quantitative accuracy of metabolite measure‐
ments depends on a variety of factors, such as the concen‐
trations in the sample, pretreatment (extraction and concen‐
tration), analytical methods, and data processing methods.
As a result of these intrinsic features of the technology,
metabolome analysis can generally be divided into two
categories: targeted analysis, in which specific metabolites
are sought with high quantitative accuracy, and untargeted
analysis, which tries to comprehensively detect undefined
metabolites including unknowns (Gertsman and Barshop
2018). Combinations of targeted and untargeted metabo‐
lome analysis and other methods that are used to measure
specific compounds can be used in a study. Therefore, se‐
lecting the most appropriate analytical method depending
on the purpose of the study is necessary for robust metabo‐
lome analysis.

This section briefly describes the features of the instru‐
ments and some technical considerations for metabolomics
experiments, such as sampling and data analysis. Although
lipids are one of the largest chemical groups in organisms,
this section omits the details of lipid-focused metabolomics
(lipidomics). Lipids have multiple functions, and are in‐
volved in cellular compartmentation, energy storage, and
signaling. The reader is urged to refer to the review by
Zullig et al. (2020).

Analytical instruments
It is estimated that more than 1 million metabolites are

produced in the plant kingdom (Afendi et al. 2012). Two of
the most commonly used instruments in metabolomics,
mainly because of the wide range of chemicals that can be
assayed, are the mass spectrometer (MS), which measures
the weight of the ionized molecule, and the nuclear mag‐
netic resonance (NMR) spectrometer, which identifies fea‐
tures of the chemical structure of the molecule being
assayed. As the mass measurement in MS is based on the
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motility of charged ions, an ionization unit (ion source) is
placed in front of the MS. Several ionization methods are
used. To separate the isomers and isobars (molecules shar‐
ing the same mass number) which cannot be distinguished
based on mass values, a separation apparatus is coupled to
the MS apparatus; for example, LC-MS, GC-MS, and CE-
MS are often used.
Liquid chromatography-mass spectrometry (LC-MS)

A wide variety of metabolites can be separated and de‐
tected by selecting different column types and solvent con‐
ditions. Reversed-phase chromatography with a C18 column
is often used to detect secondary metabolites with a low to
moderate polarity, such as flavonoids, saponins, their gly‐
cosides, and polar lipids. Hydrophilic interaction chro‐
matography (HILIC) is also used to better separate amino
acids, sugars, and lipid classes. Electrospray ionization
(ESI) is the most commonly used, as are atmospheric pres‐
sure chemical ionization (APCI) (Hao et al. 2020) and
atmospheric pressure photoionization (APPI). By changing
the voltage polarity, the molecules in a sample can be ion‐
ized and detected as their cation (in the positive mode) or
anion (in the negative mode).

In addition to measuring the mass of the intact ionized
molecule, the mass spectrum of the fragmented ion can be
obtained using a modern LC-MS. Indeed, not only can 1)
the ion mass be measured, but the mass spectrometer can
also be used to 2) select ions with a specific mass value,
and 3) fragment the molecular ions via collisions with an

inactive gas (typically nitrogen) in a process referred to as
collision-induced dissociation (CID). By combining these
three functions of MS, the mass spectra of the fragmented
ions of the selected precursor ion can be measured. The
triple quadrupole-type MS (QqQ and Triple-Q) comprises
three MS systems that are connected in tandem, where an
ion is selected by the first MS, fragmented in the second
MS, and the mass spectra are recorded in the third MS
(MS/MS analysis). The Q-ToF-MS and Q-Exactive® have
high-resolution MS, namely, time-of-flight (ToF)-MS and
Orbitrap®-MS, respectively, as the third MS. The ion trap
(IT)-type MS can repeat multiple cycles of the selection,
fragmentation, and measurement processes (multiple-stage
MS analysis). An apparatus combining IT-MS with high-
resolution MS (IT-ToF-MS and Fusion Tribrid®) is also
available. The mass spectrum provides information for the
identification, prediction, and discrimination of the metabo‐
lites. Fragmentation is also used to quantify the metabolites
with high selectivity and sensitivity by selecting the spe‐
cific precursor ion and measuring the metabolite-specific
fragment ion. These approaches are referred to as selected
reaction monitoring (SRM), multiple reaction monitoring
(MRM), and parallel reaction monitoring (PRM).

LC-MS can be used to measure a wide range of chemi‐
cals, as mentioned above, but the variability of the experi‐
mental conditions often makes it difficult to compare the
results across studies. In addition, special procedures such
as the addition of stable isotope-labeled internal controls is

Fig. 1. Instruments used for metabolome analysis.
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required for highly accurate quantification of the metabo‐
lites in a crude sample, because ionization rate can be affect‐
ed by co-existing molecules that are ionized preferentially.
This phenomenon is called “ion suppression” or “matrix
effect”.
Gas chromatography-mass spectrometry (GC-MS)

GC-MS is widely used for the analysis of volatiles, such
as terpenes, alcohols, aldehydes, and fatty acid esters. The
metabolites that can be converted to volatile compounds by
silylation and esterification (sugars, amino acids, organic
acids, and fatty acids) can also be detected (Beale et al.
2018). An electron ionization (EI) setting of 70 eV is
typically used. Under this condition, the molecule is
fragmented during ionization and the mass spectrum is
measured as the primary information of the metabolite sig‐
nal. The fragmentation that occurs due to EI differs from
that which occurs in CID (see section on LC-MS) and is
more reproducible. Furthermore, the retention time of the
metabolites can be standardized by indexing them based on
the retention times of alkanes or fatty acid methyl esters.
Taken together, these features make it easy to compare the
data between studies. Numerous mass spectral libraries are
available for compound identification and annotation, in‐
cluding the mass spectral library provided by National
Institute of Standards and Technology (NIST, https://
chemdata.nist.gov/), Wiley Registry of Mass Spectral Data
(Wiley & Sons Inc.), the Golm Metabolome Database
(Kopka et al. 2005), the library developed by FihenLib
(Kind et al. 2009), FFNSC 3 for fragrances (Mondello
2015), as well as libraries for pesticides, pollutants, and
forensic purposes. As an alternative to MS, a flame ioniza‐
tion detector (FID) is often used. Three studies that used an
FID are given in Supplemental Table 1 (Dar et al. 2020,
Erzen et al. 2021, Klevorn et al. 2019).
Capillary electrophoresis-mass spectrometry (CE-MS)

CE-MS, which was first applied to metabolomics by
Soga et al. (2003), is well suited for the detection of hydro‐
philic ionic metabolites, such as amino acids, organic acids,
nucleic acids, and sugar phosphates, i.e., most of the pri‐
mary metabolites in cells (Buko 2017, Zhang and Ramautar
2021). While ESI is usually used for this purpose, APCI and
APPI are also applicable (Hommerson et al. 2009a, 2009b).
Nuclear magnetic resonance (NMR) spectroscopy

NMR is advantageous for high throughput targeted anal‐
ysis because the sample is measured in an enclosed glass
vial which prevents contamination of the detector. In addi‐
tion, sample preparation is straightforward as there is no
need for extraction and pretreatment, and samples can be
recovered after measurements and used for other experi‐
mental applications. Although 1H-NMR is generally used
for targeted analysis, NMR can also be used for untargeted
analyses. The chemical structure of unknown metabolites
can be directly elucidated or annotated by two-dimensional
NMR, which is a very important advantage of NMR over
MS (Emwas et al. 2019, Schripsema 2010). However,
NMR requires a higher concentration of target metabolite

(~μM), which is disadvantageous when compared to MS
(~nM). Nonetheless, quantitative accuracy is high (Pinu et
al. 2019, Razzaq et al. 2019).

Other methods
Direct injection methods

Samples can be ionized directly and MS measurements
can be performed without separating them by GC, LC, or
CE. The “direct infusion” method typically uses a single
syringe pump for injection of the sample. The “flow injec‐
tion” method uses an autosampler and the pump systems of
the LC without a column. The advantage of these direct
methods is the short time required for analysis which
makes this method well suited to high throughput analysis.
The major disadvantages include the lower sensitivity, dif‐
ficulties with elucidating the mass spectral data obtained
from the mixture of metabolites in the samples, and the ion
suppression unavoidable for the mixture. To overcome
these issues, a spectral stitching method in which each mass
scan is first separated into smaller mass ranges, which are
then stitched together (Sarvin et al. 2020, Southam et al.
2016). Three examples of the use of direct injection-MS are
provided in Supplemental Table 1: tomato fertilized with
different nitrogen sources (Garcia-Casarrubias et al. 2019),
metabolic profiling of melon (Moing et al. 2020), and
polyphenol analysis of sorghum (Hodges et al. 2021)
Ambient ionization

Ambient ionization is a method that is used for direct
ionization of the chemicals on the surface of an object un‐
der atmospheric pressure, such as chemicals on the leaves
of a plant (Feider et al. 2019). Numerous methods based on
a variety of principles have been reported to date, including
solvent-based desorption electrospray ionization (DESI)
and plasma-based direct analysis in real-time (DART)
which is based on the same principle as APCI. These ion‐
ization techniques are advantageous for real-time monitor‐
ing of chemicals on a small area of an object’s surface
without pretreatment. These features of ambient ionization
methods make them well suited to mass spectrometry imag‐
ing. The reader is urged to refer to other reviews on mass
spectrometry imaging (Ferguson et al. 2019, Hu et al.
2021) as a description of these methods is beyond the scope
of this review.
Ion mobility

This technique is well suited for high-throughput identi‐
fication or discrimination of isomers or isobars which can
be separated based on their molecular shape (collision cross
section, CCS). Numerous MS devices are equipped with an
ion mobility unit and CCS libraries of metabolites have
recently been constructed (Dodds and Baker 2019, Zhou
et al. 2020).
Supercritical fluid chromatography (SFC)

SFC is a separation technique that uses supercritical flu‐
ids with high diffusivity and low viscosity (Bamba et al.
2008, Gordillo 2021, van de Velde et al. 2020). These fea‐
tures enable a high-speed and high-resolution separation
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using a long column. SFC is considered to be a prospective
method for the comprehensive analysis of lipids.

Sample preparation
Sampling

Given the lack of portable instruments for MS- or NMR-
based metabolomics analysis in the field, destructive sam‐
pling methods are usually necessary. In the case of NMR,
non-destructive sampling can be performed if individuals
can fit into sample vials. The amount of sample required
for the analysis depends on the concentration of the target
metabolites, pretreatment methods, and analytical methods,
but it typically ranges from 10 to 100 mg fresh weight.
Since the metabolome is sensitive to environmental factors,
for large-scale sampling such as that required for mGWAS
studies, controls for uniform sampling in a short time are
required (Gemmer et al. 2020, 2021, Song et al. 2021, Yao
et al. 2021). Immediately after sampling, a quenching pro‐
cedure such as freezing in liquid nitrogen and extraction
with organic solvents should be performed in order to avoid
chemical changes by enzymatic and chemical reactions.
Metabolite extraction

Metabolite extraction should be performed appropriately
for the metabolites targeted for the analysis. The major pur‐
pose of extraction is to improve the sensitivity of the analy‐
sis by concentrating the targeted metabolites and excluding
contaminants, to protect instruments, to stop enzymatic re‐
actions, and to remove proteins. Frequently used methods
include the following: solid-phase microextraction (SPME)
for volatiles (GC-MS); using a mixture of water, methanol,
and chloroform for polar/lipid phase separation, including
the Bligh and Dyer protocol and the Folch protocol (GC-
MS, lipidome); and using 70–80% methanol for untargeted
analyses (LC-MS). In sample preparation for 1H-NMR,
extraction can be omitted, but dilution with deuterated
solvents is necessary in order to avoid absorption by the
1H-containing solvents and to stabilize the magnetic field.
Derivatization

Based on the purpose or limitations of the study, derivati‐
zation of metabolites is conducted. The major reasons for
performing derivatization are to improve the sensitivity of
the analysis, to detect metabolites with specific functional
groups, to protect instruments, to alter the preference of the
detection instruments for specific moieties, and to improve
the accuracy of quantification by stable isotope labeling. As
mentioned in the section on GC-MS, less volatile com‐
pounds such as sugars, amino acids, organic acids, and fatty
acids become detectable using GC-MS by converting them
to volatile derivatives by silylation and esterification (Beale
et al. 2018). GC-MS has been used for comprehensive de‐
tection of steroids. The derivatization of them to picolinyl
esters facilitates the high sensitivity detection of steroids
using standard LC-MS conditions with ESI (Honda et al.
2010).
Controls

Performing appropriate controls is essential for eliminat‐

ing false positives, especially for high-sensitivity detection
of metabolites by MS. Blank samples, which are prepared
excluding the addition of the samples and using the same
procedures that are used to prepare the experimental sam‐
ples, are used to subtract false-positive peaks which can be
attributed to contaminants in the solvents and solvent-
leaching compounds from plastic tubes and pipette tips.
The internal standards (IS) added to the samples at fixed
concentration are used to check for, and correct, the repro‐
ducibility of retention times and detector sensitivity. Precise
checking and correction of the reproducibility and sensi‐
tivity can be performed by performing quality control (QC)
of samples that contain a larger variety of metabolites.
The QC samples are typically prepared by mixing an equal
amount of all samples for testing.

Data analysis
Before analyzing and mining metabolomic data using

computational methods such as statistical multivariate anal‐
yses, the raw data generated by the MS- and NMR-based
instruments should be properly processed and compiled
into a data matrix that contains the metabolite signal inten‐
sities (concentrations) of each sample to be compared. This
preprocessing procedure is comprised of several steps: 1)
peak detection and characterization; 2) peak alignment be‐
tween the samples; and 3) peak identification or annotation.

In GC-MS analysis, the peak signal is represented as a
mass spectrum (see the section on GC-MS). When frag‐
ment ions with the same mass values are shared among
metabolites that are eluted at adjacent retention times, the
signals of each fragment ion needs to be assigned appropri‐
ately to each metabolite. This process is called deconvolu‐
tion and is included in step 1.

In LC-MS analysis, the mass values of the ions of intact
molecules are detected in step 1. Here, discrimination of
the type of the ion has to be performed to estimate the mass
values of the original (usually uncharged) molecule. During
the ESI process, the neutral molecules are ionized with ions
in the peripheral environment (mainly from solvents) to
produce adduct ions, such as protonated/deprotonated mole‐
cules ([M + H]+/[M – H]–) and sodium cationized molecules
([M + Na]+). Discrimination of the adduct ions is based on
the mass differences between the co-eluting mass peaks in
the chromatogram. Using the same calculation, identification
of the 13C-derived stable isotopic peaks, multiply charged
ion peaks, and peaks derived from in-source fragmentation
in the MS needs to be performed. The proper assignment of
MS/MS or a multi-stage MS spectrum to the precursor ion
peak is performed in step 1.

Before or after constructing the data matrix by the peak
alignment in step 2, normalization of the signals by QC or
use of ISs, noise filtering based on the technical replicates
and blank filtering are performed. Then the data calculated
in step 1 are integrated into the data matrix and used for
peak identification and annotation in step 3. The metabolite
peaks are identified if the peak of the authentic standard is
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present and aligned at the same metabolite on the matrix. If
authentic standards are not available, the peaks are anno‐
tated by searching known metabolite databases and mass
spectral libraries, and the structure of the underlying
metabolites can then be predicted using the calculated de‐
ionized mass values and mass spectra; numerous databases,
libraries, and predictive software tools have been developed
for this purpose (Misra 2021, O’Shea and Misra 2020).

The same statistical analysis and data mining procedures
that are used for the other omics analysis can then be ap‐
plied using the resulting data matrix.

Future perspectives

Metabolomic analysis will be applied to the breeding and
improvement of a much larger variety of crops in future. In
addition to the major crops, minor crops are an important
target for future food security (Tadele 2019). For the
breeding of roots, tubers, and bananas (RTB), for which
the underlying genetic mechanisms are generally poorly
understood, large-scale metabolome data have been ob‐
tained and a chemotype core collection has been developed
(Price et al. 2020). It has been reported that integrating the
analysis of metabolome data with genomic data increases
the predictability of crop traits, such as estimating lipid
composition and yields (Campbell et al. 2021, Wang et al.
2019, Xu et al. 2021). However, it has also been suggested
that the integration and standalone use of metabolome data
does not increase the predictability of yield and plant
height, respectively (Gemmer et al. 2020, Thorwarth et al.
2019). This discrepancy can partly be attributed to the fact
that the plant metabolome is markedly affected by environ‐
mental factors. In order to more precisely predict complex
and environmentally dependent traits, such as yield, further
improvements in the selection of an appropriate set of
metabolome data for each crop, development of species-
specific bioinformatics techniques, and publication of an
easy-to-use dataset for bioinformatics researchers are de‐
sired.

Improvements in accessibility to metabolomics technolo‐
gies should also be considered to extend the range of appli‐
cations of metabolomics to plant breeding because, as
stated in this review, there are large variety of the instru‐
ments and their data quality. The establishment of networks
between metabolomics laboratories and sharing informa‐
tion with plant breeders in each country should also be ac‐
celerated. Establishing a metabolomics center that can
accommodate a variety of analytical requests, Wuhan
MetWare Biotechnology Co., Ltd. in China as an example,
is another solution.

Given the increasing demand for high-throughput analy‐
ses in mGWAS and prediction studies, the development of
rapid and simple techniques is also required. The probe
electrospray ionization (PESI) method—an ambient ioniza‐
tion method—is one such prospective technology. Using
PESI-MS, the metabolites in a small amount of sample

which is collected discontinuously using a probe can be
measured rapidly. The advantage of the PESI method is the
moderation of ion suppression by sequential and exhaustive
ionization (Hiraoka et al. 2020, Mandal et al. 2011). In ad‐
dition, vibrating sharp-edge spray ionization (VSSI), which
does not require a high voltage, was recently proposed as a
compact and inexpensive ionization method (Li et al.
2021). Beck et al. (2015) described a portable GC-MS for
VOC detection in the field. Such technological develop‐
ments for minimizing the size of detectors are desired. In
addition to the methods for precisely detecting individual
metabolites described above, improvements in the practical
application of portable phenotyping devices is also neces‐
sary. For example, the application of near-infrared spec‐
troscopy (NIR) for phenotyping has been recently reported
(Alves Filho et al. 2019, Lane et al. 2020, Rincent et al.
2018). The use of chemical sensors, such as electronic
noses, is also being investigated (Cui et al. 2018, Tholl
et al. 2021). The development of portable, non-destructive,
and inexpensive, but robust chemical detectors, combined
with efficient methods reliably correlate device signals to
accurate metabolite data will be a major breakthrough in
this research area.

The identification of unknown peaks detected by MS-
and NMR-based metabolomics is a necessary step for eluci‐
dating the underlying mechanisms of the phenotypes. In
future breeding studies, crops harboring a wider range of
specialized metabolites that characterize the crop pheno‐
types will be targeted. Among the large number of un‐
known peaks, such specialized metabolites should be
prioritized for further detailed analysis, such as identifica‐
tion, annotation, and examination of functionality. In order
to such prioritization, metabolome databases which facili‐
tate comparisons among a wider range of species is needed.
An example of a database is the Food Metabolome Reposi‐
tory (http://metabolites.in/foods/) (Sakurai and Shibata
2017), in which untargeted LC-MS data are compared
among 222 foodstuffs, including more than 96 raw materi‐
als derived from plants. The expansion of such a concept is
required in future studies.
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