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Abstract

A fundamental task in medicine is the understanding of the causes of diseases. Preeclampsia 

and eclampsia, an enigmatic and elusive disorder, have been labeled the “disease of theories.” 

Preeclampsia is one of the “great obstetrical syndromes” in which multiple and sometimes 

overlapping pathologic processes activate a common pathway composed of endothelial cell 

activation, intravascular inflammation, and syncytiotrophoblast stress. This article addresses the 

potential etiologies, or causal explanations, for preeclampsia. The role of uteroplacental ischemia 

is well established, based upon a solid body of clinical and experimental evidence. A causal role 

for microorganisms has gained recognition through the realization that periodontal disease and 
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maternal gut dysbiosis are linked to atherosclerosis, thus possibly to a subset of patients with 

preeclampsia. The recent reports indicating that SARS-CoV-2 infection appears to be causally 

linked to preeclampsia are reviewed as well as the mechanisms whereby this viral infection 

can cause this syndrome. Particular etiological factors, such as the breakdown of maternal-fetal 

immune tolerance, thought to account for the excess of preeclampsia in primipaternity and 

egg donation—may operate, in part, through uteroplacental ischemia, while another, such as 

placental aging, may operate largely through syncytiotrophoblast stress. This article also examines 

the nature of the association between gestational diabetes mellitus and maternal obesity in 

preeclampsia. The various roles of autoimmunity, fetal diseases, and endocrine disorders are also 

discussed. A greater understanding of the etiologic factors of preeclampsia is essential to improve 

treatment and prevention.

Condensation:

This article describes the causal risk factors, or etiology, of preeclampsia.
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Introduction

A fundamental task in medicine is the understanding of the causes of diseases. 

Preeclampsia and eclampsia, the enigmatic, elusive disorders of pregnancy, have been 

labeled the “diseases of theories”. Preeclampsia and eclampsia are among the “great 

obstetrical syndromes” in which multiple and sometimes overlapping pathologic processes 

activate a common pathway that leads to the clinical recognition of these disorders. 

Just as the syndrome of preterm labor is recognized by the clinical manifestations 

of activation of the common pathway of parturition (ie increased uterine contractility, 

cervical remodeling, and membrane and decidual activation), so are preeclampsia and 

eclampsia. Their common pathway consists of endothelial cell activation, intravascular 

inflammation, and syncytiotrophoblast stress, and the diagnosis has traditionally rested 

in the detection of hypertension and proteinuria, although professional organizations had 

recently recommended that the diagnosis can be made in the absence of proteinuria when 

patients have evidence of multi-systemic involvement.

A rich body of literature describes the risk factors for preeclampsia and eclampsia (ie the 

conditions that increase the likelihood of these syndromes but are not necessarily causal). 

However, the elucidation of etiologic, or causal, factors is necessary to successfully treat 

and prevent disease. This article reviews the evidence linking these etiologic factors with 

preeclampsia and eclampsia, which is summarized in Figure 1.

JUNG et al. Page 2

Am J Obstet Gynecol. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Uteroplacental ischemia

The principal mechanism of disease implicated in the etiology of preeclampsia and 

eclampsia is uteroplacental ischemia. In 1914, James Young proposed that interference of 

the uterine blood supply to the placenta would lead to placental infarctions that, in turn, 

would release toxins into the maternal circulation, thus causing eclampsia.1 This theory 

was based on the demonstration that placental infarctions were observed in patients with 

eclampsia and on animal studies that showed subcutaneous injections of extracts of the 

autolyzed human placenta into guinea pigs elicited convulsions, hepatic focal necrosis, and 

renal lesions, similar to those observed in women who died of eclampsia.1 Dixon and 

Taylor reported that intravenous injections of extracts of fresh human placenta induced an 

increase in blood pressure in cats, rabbits, and dogs, resembling the effects of adrenaline.2 

Therefore, the search for the causes of preeclampsia and eclampsia and for the identity of 

the circulating “toxins” began more than 100 years ago.

Additional evidence supporting a role for uteroplacental ischemia came from studies by 

Ogden, Hildebrand, and Page who reported that clamping of the abdominal aorta below the 

renal arteries (to avoid renovascular hypertension) in dogs reduced uteroplacental perfusion; 

furthermore, this response was followed by maternal hypertension that resolved after the 

clamp was released.3 Because this hypertensive response was not observed in non-pregnant 

animals, the investigators concluded that the signals responsible for hypertension must have 

originated within the gravid uterus.3 Another observation buttressed this interpretation: after 

removal of the pregnant uterus, the clamping of the aorta did not elicit hypertension (Figure 

2).3, 4

Subsequent studies strengthened this concept, demonstrating that placental ischemia, 

generated by placing silver clips in the uterine arteries of pregnant dogs, led to hypertension 

and proteinuria.5 Two lines of evidence supported the view that placental ischemia rather 

than uterine ischemia was key. First, patients with an abdominal pregnancy were known to 

develop preeclampsia given that the implantation site was outside of the uterus.6 Second, 

the placement of a Z suture through the placenta to generate ischemia resulted in the 

development of hypertension and proteinuria (Figure 3A-3C).7 Moreover, the existence of 

a circulating “toxin,” supported by the observation that the administration of blood from a 

rabbit with experimental placental ischemia caused by the Z suture, resulted in hypertension 

in non-pregnant animals (Figure 3D).7

The first in vivo evidence indicating that women with preeclampsia had decreased maternal-

placental blood flow was reported by McClure Browne and Veall,8 who described the 

injection of radioactive sodium into the choriodecidual space of women with a normal 

pregnancy and in those affected by preeclampsia. The investigators noted that the blood flow 

at term was 600 mL/minute, but it was substantially lower in patients with preeclampsia. 

These observations have been confirmed with different radioactive tracers in subsequent 

studies.9-13 For example, Lunell et al 13 reported that uteroplacental blood flow was reduced 

by 50% in patients with preeclampsia and that the reduction was greater in those with severe 

preeclampsia than in those with mild disease.
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The role of placental ischemia in the pathogenesis of preeclampsia is now well established. 

Indeed, the most frequently implemented animal model of the syndrome is chronic reduction 

of uteroplacental perfusion in pregnant rats, generated by the placement of a constriction 

clip around the aorta below the renal arteries and before the origin of the uterine arteries at 

14 days of gestation.14 In addition, this effect led to a reduction in placental blood flow by 

approximately 40%, an increase in arterial blood pressure by 20-25 mm Hg by day 19 of 

pregnancy, increased vascular resistance, decreased cardiac output and glomerular filtration 

rate, and the frequent appearance of proteinuria.14 This model recapitulated two of the many 

findings of preeclampsia: (1) an increase in circulating concentrations of soluble vascular 

endothelial growth factor receptor-1 (sVEGFR-1; also known as soluble fms-like tyrosine 

kinase 1 [sFlt-1]) and endoglin, and (2) a rise in the concentrations of pro-inflammatory 

cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). A similar 

non-human primate model of preeclampsia, developed in pregnant baboons by selective 

ligation of one uterine artery, led to the development of hypertension, proteinuria, and 

increased production of sFlt-1.15 Importantly, the administration of short interfering RNAs, 

which silence three of the sFlt-1 mRNA isoforms, suppressed sFlt-1 overexpression and 

reduced hypertension and proteinuria.16 These studies suggest that the soluble factor, or 

“toxin,” responsible for hypertension is, at least in part, sFlt-1. The reader is referred to the 

review by Bakrania, George, and Granger17 in this Supplement for more details about the 

model and the pathophysiologic events caused by uteroplacental ischemia.

What is the cause of placental ischemia in women with preeclampsia? The traditional 

explanation has been that a defect in placentation leads to ischemia18, 19 but more recently, 

a dysfunctional maternal cardiovascular system has been implicated.20 The developmental 

abnormalities include failure of physiologic transformation of the spiral arteries which are 

characterized by a narrow diameter and retention of the muscle in the media of the vessel 

wall.18, 19 The persistence of the muscular coat is thought to make the vessels susceptible to 

the effect of vasoconstrictive agents. In addition, arteries affected by failure of physiologic 

transformation are more likely to develop atherosis (Figure 4), which also narrows the vessel 

lumen and further compromises placental perfusion.21-26 Atherosis is a lesion specific to the 

spiral arteries, which is equivalent to the atherosclerotic lesions observed in the coronary 

arteries. Figure 5 illustrates the typical lesions of atherosis in the spiral arteries and shows 

lipid-laden macrophages with the deposition of fat droplets detected with oil red-O stain. A 

systematic review and meta-analysis showed that placental lesions consistent with maternal 

vascular malperfusion (eg placental infarction, failure of physiologic transformation of the 

spiral arteries, acute atherosis) is four-fold to seven-fold higher in patients with preeclampsia 

than in those with a normal pregnancy.27 A comprehensive review of the failure of 

physiological transformation and spiral artery atherosis by Staff et al 28 is available as 

part of this Supplement. Atherosis is not specific to preeclampsia, and this type of lesion 

has been reported in other pregnancy-related conditions, such as spontaneous abortion,29 

preterm labor,30 preterm prelabor rupture of the membranes,31 fetal growth restriction,32, 33 

and fetal death.25, 29 We have proposed that placental ischemia is a major mechanism of 

disease in various obstetrical syndromes and that the timing, severity, and duration of the 

insult may explain the clinical occurrence of different obstetrical syndromes.34
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The following evidence supports a causal link between placental ischemia and preeclampsia: 

(1) experimentally induced ischemia in several animal models leads to hypertension and 

proteinuria;3, 5, 7 (2) uterine blood flow is lower in patients with preeclampsia than in 

normal pregnant women;8, 11, 13 (3) placental histopathologic lesions indicative of ischemia 

(often referred to as maternal vascular malperfusion) are frequent, consistent findings 

in preeclampsia and eclampsia; 27 (4) the failure of physiologic transformation of the 

spiral arteries and atherosis are typical features of preeclampsia;28, 35 (5) the pulsatility 

index of the uterine artery (a parameter to assess resistance to flow) is higher in patients 

with preeclampsia than in normal pregnant women; this finding can be observed during 

the midtrimester of pregnancy, weeks or even months before the development of the 

disease;36, 37 (6) the maternal plasma placental growth factor (PlGF)/sFlt-1 ratio, a non-

invasive marker of lesions of maternal vascular malperfusion, is elevated at the time of the 

onset of disease and prior to the development of preeclampsia;38-44 and (7) a blockade of 

sFlt-1 mRNA reduces hypertension and proteinuria.16 The frequency of placental lesions 

of maternal vascular malperfusion, of abnormalities in the uterine artery Doppler, and of 

alterations of biomarkers (eg PlGF/sFlt-1) is higher in preterm preeclampsia than in term 

preeclampsia, suggesting that ischemia plays a different role in early-onset versus late-onset 

preeclampsia.45-48

The case for ischemia as an etiologic factor could be even more persuasive if the treatment 

of ischemia could prevent the occurrence of preeclampsia. This evidence is difficult to 

generate in pregnant humans. Nonetheless, it can be argued that the efficacy of aspirin in 

reducing the rate of preterm preeclampsia49 is achieved through the prevention of arterial 

thrombosis in the spiral arteries and intervillous space, as this is the proposed mechanism 

for aspirin in the prevention of myocardial infarction in atherosclerosis.50 This interpretation 

would also explain the lack of efficacy of aspirin in preventing preeclampsia at term, given 

that ischemia seems to play a lesser role.

Maternal infection

Maternal infection has been implicated in the etiology for preeclampsia and eclampsia 

since the beginning of the 20th century. Albert51 proposed that the “toxins” responsible 

for eclampsia were the product of putrefactive changes in the uterine cavity caused by the 

action of bacteria (“a latent microbic endometritis”). Indeed, a microorganism ‘Bacillus 
eclampsiae’ was proposed to be the cause.52, 53 This view progressively fell out of favor 

because preeclampsia and eclampsia do not present the typical features, eg a fever, of 

an infectious disease. Nonetheless, the idea that microorganisms may be involved in the 

genesis of preeclampsia and eclampsia recurs in the literature every few years, and it has 

reemerged recently based on the relationship between periodontal disease, urinary tract 

infection, SARS-CoV-2 infection, and maternal gut dysbiosis.

Periodontal disease—The best evidence to support a relationship between 

microorganisms and preeclampsia derives from studies of periodontal disease, which 

increases the risk of developing this pregnancy-related syndrome (OR 1.76; 95% confidence 

interval (CI) 1.43-2.18).54 The term periodontal disease refers to an inflammatory condition 

caused by immune dysfunction initiated by bacteria within the oral cavity.55 The spectrum 
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of disease ranges from gingivitis (inflammation of the soft tissues only) to the destruction 

of the connective tissue attachment and alveolar bone, which can eventually lead to 

tooth loss.55 Bacteria in the periodontal space can be released during dental procedures 

or in the course of severe disease, leading to a systemic inflammatory response that 

can cause damage and seed sites in the cardiovascular system.56 Indeed, strong evidence 

indicates that periodontal disease is a risk factor for atherosclerotic cardiovascular diseases, 

including atherosclerosis, coronary artery disease, stroke, and atrial fibrillation.57, 58 In brief, 

such evidence denotes that 1) microorganisms found in the periodontal space can cause 

bacteremia;59 2) bacteria from the oral cavity have been found in atheromatous plaques;60 

and 3) periodontal infections can induce vascular lesions in the aorta and coronary 

arteries.57, 61 In an animal model of hyperlipidemia, ie apolipoprotein E null mice, an oral 

infection with Porphyromonas gingivalis led to plaque in the aorta (Figure 6).61 Similar 

findings have been reported in an integrin β6 null mice model with polymicrobial infection 

and periodontal pathogens.62 The etiologic role of periodontal disease in preeclampsia is 

predicated on the same mechanisms linking periodontal disease and atherosclerosis.

Offenbacher, Beck, Boggess, and Murtha63 have provided clinical, epidemiologic, and 

experimental evidence that periodontal disease is causally linked to preeclampsia. For 

example, women with periodontal disease who have an elevated C-reactive protein (CRP) 

concentration are at increased risk for the development of preeclampsia compared to those 

without periodontal disease (adjusted relative risk (aRR) 5.8; 95% CI 1.2–26.9).63 An 

elevated CRP would indicate that periodontal disease has led to a systemic inflammatory 

process, thus it provides a link between periodontal disease and preeclampsia.

Urinary tract infection—The relationship between microbial colonization of the maternal 

urinary tract and preeclampsia has also been reported. A systematic review noted that 

urinary tract infections are associated with preeclampsia (OR 1.57; 95% CI 1.45-1.70).54 

However, the case definitions have been broad and have included pyelonephritis, 

lower urinary tract infections, and asymptomatic bacteriuria as a group.64, 65 When 

subgroup analysis is performed, evidence for the association with preeclampsia either 

weakens or disappears. We have doubts that asymptomatic bacteriuria, which is not 

associated with a systemic inflammatory response,66 could cause preeclampsia. Isolated 

cases have documented instances in which preeclampsia is associated with malaria,67-69 

cytomegalovirus (CMV),70, 71 human immunodeficiency virus,72, 73 but the evidence is 

insufficient to support causality.

Experimental observations supporting a causal relationship between infection and systemic 

inflammation and preeclampsia indicate that intravenous low-dose endotoxin administration 

in pregnant rats on day 14 of gestation results in the development of high blood pressure, 

proteinuria, low platelet count, and glomerular fibrinogen deposits.74 Bacterial endotoxin is 

a method utilized to induce a systemic inflammatory response and the activation of thrombin 

through the release of tissue factor. These mechanisms are implicated in the pathogenesis of 

preeclampsia.

SARS-CoV-2 Infection—Early during the COVID-19 pandemic, it was recognized 

that a subset of non-pregnant patients developed hypertension,75-77 proteinuria,78-81 
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thrombocytopenia,82, 83 and elevated liver enzymes,84, 85 which resemble preeclampsia and 

hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome. A recent 

meta-analysis demonstrated that SARS-CoV-2 infection during pregnancy is associated with 

a significant increase in the odds of developing preeclampsia (OR 1.58; 95% CI 1.39-1.8), 

preeclampsia with severe features (OR 1.76; 95% CI 1.18-2.63), eclampsia (OR 1.97; 95% 

CI 1.01-3.84), and HELLP syndrome (OR 2.01; 95% CI 1.48-2.97).86 In addition, there is a 

dose-response relationship between SARS-CoV-2 infection and the subsequent development 

of preeclampsia (Figure 7).87 Patients with severe COVID-19 had a 5-fold greater risk of 

preeclampsia than those with asymptomatic COVID-19.87 The median interval between 

maternal SARS-CoV-2 infection and the subsequent development of preeclampsia is 3.8 

weeks (interquartile range, 0.29-11.5).88

One mechanism whereby SARS-CoV-2 infection can be causally linked to preeclampsia 

has been proposed to involve endothelial dysfunction. Indeed, SARS-CoV-2 can infect 

endothelial cells that normally express angiotensin-converting enzyme 2 (ACE2), one of 

the cell entry receptors for the virus, leading to endothelitis.89, 90 Endothelial infection 

can induce the activation of thrombin, intravascular inflammation (ie a cytokine storm), 

and damage of the microvasculature in target organs; this susceptibility ultimately leads 

to the multi-systemic nature of the syndrome, which includes not only renal involvement 

but also central nervous system dysfunction and seizures.91-93 Therefore, an infectious 

process, which targets the endothelium, could lead to a syndrome similar to preeclampsia 

and eclampsia (Figure 8).

Of interest, pregnant women with COVID-19 infection who developed preeclampsia-like 

symptoms: their recovery from SARS-CoV-2 infection, followed by the resolution of 

hypertension, occurred without the delivery of the fetus and placenta.94 It remains an 

open question whether preeclampsia, after SARS-CoV-2 infection, may or may not require 

placental involvement. Serum and plasma concentrations of sFlt-1, a marker of endothelial 

dysfunction, were elevated in non-pregnant subjects with COVID-19.95 This finding is 

consistent with another study in pregnant women with severe COVID-19 who presented 

an elevated maternal plasma concentration of sFlt-1 and a high sFlt-1/PlGF ratio.96 

Genetic susceptibility may explain why some women with COVID-19 infection develop 

preeclampsia but others do not.97, 98

Maternal intestinal dysbiosis—The human gut microbiota plays an important role in 

host nutrition, harvesting of energy, and immune responses to potential pathogens.99-103 

Normal pregnancy represents a state in which a major reorganization of energy distribution 

(harvesting, storage, and expenditure) is related to the need to support the growth and 

development of the fetus and placenta. Remodeling of the gut microbiota during normal 

human pregnancy, reported for the third trimester of pregnancy, indicated an overall increase 

in Proteobacteria and Actinobacteria and a reduction in microbial richness.104 When the 

intestinal content from normal pregnant women in the third trimester was administered to 

germ-free mice, it increased adiposity and insulin resistance,105 which have been attributed 

to the proinflammatory effects of the gut microbiota.104
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Gut dysbiosis, or an imbalance among the human gut’s microbial communities, is now 

implicated in the development of atherosclerosis,106, 107 hypertension,108, 109 proteinuria,110 

cardiometabolic syndrome,111, 112 and recently, preeclampsia.113-117 A causal link between 

gut dysbiosis and cardiovascular disease has been derived from an observation that the 

transplant of fecal material from hypertensive, non-pregnant, human subjects to germ-free 

mice led to hypertension.108 Similarly, fecal transplants from mice prone to atherosclerosis 

can transmit the condition to susceptible mice (eg apolipoprotein E null mice).118 This effect 

has been attributed, at least in part, to trimethylamine-N-oxide (TMAO), a bacteria-derived 

metabolite from choline and carnitine that is present in gut dysbiosis and has been shown to 

accelerate the development of atherosclerosis.107, 118

Changes in the human gut microbiota have been reported in preeclampsia,114, 115, 117, 119 

which persist 6 weeks postpartum.120 The changes include a reduction in microbial 

burden with Firmicutes, Clostridia, Clostridiales, and Ruminococcus and an increase 

in Bacteroidetes, Proteobacteria, Actinobacteria, Bacteroidia, Gammaproteobacteria, and 
Enterobacteriaceae (Figure 9A).119 Moreover, the study provides evidence to support 

causality: fecal transplants from pregnant women with preeclampsia into mice led to the 

development of the syndrome.115 The experimental paradigm required the administration of 

fecal material from pregnant women with and without preeclampsia to non-pregnant mice 

that had received antibiotics for 5 days (to change gut flora); the mice were housed in 

pathogen-free facilities.115 Six weeks after the first fecal inoculation, mice were mated.115 

Pregnant mice that had received the fecal microbiota transplantation from mothers with 

preeclampsia developed high systolic blood pressure and proteinuria, and they delivered 

less live pups than mice that receive fecal microbiota transplantation from women with 

normotensive pregnancy (Figure 9B).115 Collectively, this evidence suggests a role for 

gut dysbiosis in preeclampsia. However, further investigation into the precise mechanisms 

that may explain this phenomenon as well as the susceptibility of some pregnant women 

compared to others is necessary.

Gestational diabetes mellitus, maternal obesity, and the metabolic syndrome

Gestational diabetes mellitus—Gestational diabetes mellitus is an independent risk 

factor for preeclampsia, after adjusting for confounders.121, 122 In a retrospective study of 

647,392 pregnancies, women with gestational diabetes had an increased risk of preeclampsia 

(adjusted odds ratio (aOR) 1.29; 95% CI 1.19-1.41).121 Preexisting diabetes mellitus had 

also been linked to the development of preeclampsia: a systematic review reported that 

diabetes mellitus prior to pregnancy was associated with an increased risk of preeclampsia 

(aRR 3.56; 95% CI 2.54-4.99).123 Diabetes mellitus is considered to be strongly associated 

with late-onset rather than early-onset preeclampsia (early onset: aOR 1.87, 95% CI 

1.6-2.18; late onset: aOR 2.46, 95% CI 2.32-2.61).124 The Hyperglycemia and Adverse 

Pregnancy Outcome (HAPO) Study Cooperative Research Group reported a significant 

positive association between the degree of maternal hyperglycemia and preeclampsia: the 

odds ratio for each 1-SD increase in glucose concentrations (fasting, one hour, and two 

hours after a 75mg glucose tolerance test) ranged from 1.21 to 1.28.125
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A causal role was strengthened by the observation that the treatment of gestational diabetes 

mellitus with diet,126 insulin,127, 128 and metformin129-132 reduces the risk of preeclampsia. 

Two randomized clinical trials have shown that the treatment of gestational diabetes mellitus 

with insulin reduces the risk of preeclampsia (adjusted treatment effect: 0.70; 95% CI 

0.51-0.95).127, 128 Metformin is associated with a reduced risk of preeclampsia (RR 0.68; 

95% CI 0.48–0.95)131 and prolongation of gestation in women with preterm preeclampsia 

(median, 18 days).133 Prenatal exercise has also been reported to decrease the rate of 

gestational diabetes mellitus by 38% and preeclampsia by 41% based on the results of a 

systematic review and meta-analysis.134

Collectively, the evidence suggests a causal relationship between gestational diabetes 

mellitus and preeclampsia given the consistency of association, its magnitude, the temporal 

relationship, and the efficacy of interventions, such as insulin and metformin, in reducing the 

rate of preeclampsia.

Maternal obesity—Obesity, defined by a body mass index (BMI) of 30.0 kg/m2 or more, 

is strongly associated with preeclampsia.135-137 A meta-analysis of 29 prospective cohort 

studies (1,980,761 participants and 67,075 cases of preeclampsia) showed that maternal 

obesity was significantly associated with the development of preeclampsia (aOR 2.93; 95% 

CI 2.58-3.33), and the risk was even higher in severe obesity (BMI ≥ 35 kg/m2; aOR 4.14; 

95% CI 3.61-4.75).138 A similar finding was reported overweight women (BMI: 26.1-29.0 

kg/m2) who had an increased risk of preeclampsia in comparison to women with a normal 

BMI (RR 1.57; 95% CI 1.49-1.64).139

Moreover, a dose-dependent relationship was found between pre-pregnancy BMI and the 

risk of preeclampsia in both nulliparous and parous women in a large epidemiological 

study (41,000 nulliparous and 29,000 multiparous) (Figures 10).140 Data from the USA 

Collaborative Perinatal Project indicated similar results for Caucasian and for African-

American women (severe preeclampsia: African American, OR 3.2, 95% CI 2.5-5.0; 

Caucasian, OR 3.4, 95% CI 2.1-5.6).141 Most studies considered that obesity predisposes 

mainly to late-onset preeclampsia.123, 141 However, a recent population-based study, which 

used US vital statistics data and included 15.8 million women (48,007 cases of early-onset 

disease and 777,715 cases of late-onset disease), demonstrated that maternal obesity is 

associated with an increased risk of both early-onset and late-onset disease (eg BMI 40 

kg/m2 or greater: early-onset disease, aRR 2.18, 95% CI 2.12–2.24; late-onset disease: aRR 

3.93, 95% CI 3.91–3.96).142 In addition, preconceptional maternal weight loss, either with 

lifestyle modification or by bariatric surgery, was shown to be effective in reducing the risk 

of preeclampsia (OR 0.67; 95% CI 0.51-0.88).143

Metabolic syndrome—The term “metabolic syndrome” refers to a cluster of 

metabolic abnormalities that includes central obesity, insulin resistance, atherogenic 

dyslipidemia, and hypertension.144, 145 This syndrome is strongly associated with systemic 

inflammation, oxidative stress, and endothelial dysfunction, all of which are features of 

preeclampsia.146-149 A retrospective cohort study of 212,463 women showed that the 

presence of pre-pregnancy metabolic syndrome was associated with an increased risk of 

preeclampsia (aOR 1.48; 95% CI 1.26-1.74).150 Preeclampsia is also a risk factor for the 
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subsequent development of metabolic syndrome after delivery.151-154 Moreover, bariatric 

surgery performed before pregnancy as a treatment for metabolic syndrome was associated 

with a lower rate of preeclampsia or eclampsia (aOR 0.2; 95% CI 0.09-0.44).155

The mechanisms whereby insulin resistance predisposes to the development of preeclampsia 

are related to intravascular inflammation and endothelial cell dysfunction,156, 157 which is 

the common pathway of the syndrome. Nonetheless, insulin resistance is neither required 

nor sufficient for the development of preeclampsia. The reason why some, but not other, 

patients with insulin resistance develop preeclampsia is unknown.

Sleep disorders

Sleep-disordered breathing, a term encompassing obstructive sleep apnea, snoring, periodic 

episodes of hypoxia, central apnea, and sleep hypopnea, during pregnancy is a risk factor 

of preeclampsia. A systematic review and meta-analysis of 120 studies, which included 

a total of 58,123,250 pregnant women, indicated that maternal sleep disturbances during 

pregnancy were associated with an increased risk of preeclampsia (OR 2.80; 95% CI 

2.38-3.30);158 these disturbances included subjective sleep-disordered breathing (OR 3.52; 

95% CI 2.58-4.79), obstructive sleep apnea (OR 2.36; 95% CI 2.00-2.79), and the restless 

legs syndrome (OR 1.83; 95% CI 1.04-3.21).158

Snoring is defined as the vibration of respiratory structures resulting from turbulent 

flow when the upper airway narrows during sleep.159 It is more common in pregnant 

women than in non-pregnant women (14%-23% vs 4%)160, 161 and increases the risk of 

hypertension,162 and new-onset snoring during pregnancy is associated with preeclampsia 

(OR 1.59; 95% CI 1.06-2.37).163 Evidence supporting a causal relationship between snoring 

and preeclampsia indicated that treatment with nasal continuous positive airway pressure 

(CPAP) improved blood pressure in women with preeclampsia.164, 165 Edwards et al164 

reported that autosetting nasal CPAP administered through sleep resulted in a marked 

reduction in blood pressure (before treatment: mean systolic 146 mm Hg and mean diastolic 

92 mm Hg; after treatment: mean systolic 128 mm Hg and mean diastolic 73 mm Hg). 

Recently, Bourjeily et al166 reported that pregnant women with obstructive sleep apnea 

presented a higher maternal plasma sFlt-1/PlGF concentration ratio than those in a control 

group and that maternal sFlt-1 concentrations were decreased after CPAP treatment.167

In normal pregnancy, blood pressure has a circadian rhythm and is at its highest during 

the daytime. A reversed diurnal blood-pressure rhythm (ie the nocturnal blood pressure 

was higher than the diurnal blood pressure) has been reported in preeclampsia.168, 169 

Sleep architecture, using polysomnography, has shown that patients with preeclampsia 

had altered sleeping patterns,170 specifically spending more time in slow-wave sleep, in 

comparison to those with a normal pregnancy (43 ± 3 vs 21 ± 2; p < 0.001).170 One possible 

explanation for this finding is that cytokines, such as IL-1 and TNF-α, can increase the 

amount of slow-wave sleep,170 as they are elevated in the maternal circulation of those 

with preeclampsia.171-173 Collectively, the proposed mechanisms linking sleep disorders and 

preeclampsia involve intravascular inflammation and endothelial cell dysfunction.
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Molar pregnancy

A hydatidiform mole, a gestational trophoblastic disease characterized by abnormal 

proliferation of trophoblast and hydropic changes of the chorionic villi, is associated with 

preeclampsia174 and sometimes presents before 20 weeks of gestation.175-178 The frequency 

of preeclampsia in patients with a hydatidiform mole ranges from 27% to 40% and is 

probably higher in patients who are left untreated until the second trimester.175-178

The mechanism whereby a complete hydatidiform mole causes preeclampsia involves 

the excess production of sFlt-1. Maternal serum sFlt-1 concentrations were 2-fold to 

3-fold higher in patients with a hydatidiform mole than in those with a gestational age-

matched control;179 an increased expression of sFlt-1 within the molar tissue has also been 

reported.180 Moreover, placentas with a hydatidiform mole had an increased expression of 

LIGHT (TNFSF14, or TNF superfamily member 14), which was co-localized with sFlt-1 

in the molar tissue.181 Chorionic villi in the molar tissue are edematous or hydropic, which 

are often avascular or display markedly reduced vessel density.175 These villus capillary 

changes may lead to excessive production of sFlt-1 that enters maternal circulation and, 

consequently, to the development of the preeclampsia syndrome.

Fetal diseases

Specific fetal diseases associated with the development of preeclampsia include 1) 

Ballantyne or mirror syndrome;225, 226 2) Trisomy 13 or triploidy;227, 228 and 3) a unique 

complication of multiple gestations (eg twin-to-twin transfusion syndrome or selective 

fetal growth restriction).229 Ballantyne or mirror syndrome reflects the simultaneously 

edematous state of the mother, fetus, and placenta (also called triple edema).230, 231 

This syndrome has been observed in fetal hydrops caused by rhesus isoimmunization,230 

CMV,232 or parvovirus 19 infections,233 Ebstein’s anomaly,234 aneurysms of the vein 

of Galen,235 fetal supraventricular tachycardia,236, 237 and placental chorioangioma.238 

In mirror syndrome, the mother may develop proteinuria, hypertension, and even severe 

preeclampsia.225, 226, 234, 239 The frequency of hypertension in patients with mirror 

syndrome is about 60%.225, 226, 234, 239 The reversal of preeclampsia and Ballantyne 

syndrome can occur after intrauterine transfusion in parvovirus-induced hydrops without 

delivery.240 All patients with mirror syndrome presented an increased maternal plasma 

concentration of sFlt-1 (above the 95th percentile for gestational age).241 In addition, it 

has been shown that the maternal sFlt-1 concentration returns to normal after intrauterine 

transfusion.242, 243

Another example of preeclampsia with fetal disease is Trisomy 13 or triploidy.227, 228, 244 A 

case control study of 25 cases with Trisomy 13 showed that the incidence of preeclampsia 

was significantly higher than detected in the normal karyotype control (44% vs 8%, 

p=0.001).245 Women with a Trisomy 13 pregnancy have a higher serum concentration of 

sFlt-1/PlGF ratio,246 and the placentas had an increased staining for sFlt-1 when compared 

to euploid as well as Trisomy 21.247 Interestingly, sFlt-1 is located on chromosome 13, 

suggesting the possibility that an extra copy of chromosome 13 may lead to increased 

production of sFlt-1.244, 247
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Multiple gestations with twin-to-twin transfusion syndrome or selective fetal growth 

restriction can also predispose to the development of preeclampsia.229 Resolution 

of hypertension and proteinuria generally occur after the selective termination of 

pregnancy248-251 or after the fetal death of one twin.252 An improvement in angiogenic 

and anti-antiangiogenic profiles has also been demonstrated after selective termination or 

fetal demise of one twin.253, 254 Collectively, these observations indicate that preeclampsia 

can resolve without delivery and suggest that fetal compromise may induce the syndrome in 

some cases.

Autoimmune mechanisms: a role for antibodies against angiotensin II type I receptor

Preeclampsia is not traditionally considered an autoimmune disorder. However, a role 

for autoimmune mechanisms of disease has been investigated for several decades, given 

that patients with a systemic autoimmune disease, such as systemic lupus erythematosus 

(SLE) or antiphospholipid syndrome (APS), were at an increased risk for preeclampsia 

(SLE: RR 1.91, 95% CI 1.44-2.53; APS: RR 1.81, 95% CI 1.33-2.45).255-258 Similarly, 

several studies have shown that some specific autoantibodies, such as anti-β2 glycoprotein-I 

(ab2GPI), anti-cardiolipin antibodies (aCL), or lupus anti-coagulant (LA), are associated 

with preeclampsia.256, 259 However, the most compelling case for a role of an autoimmune 

mechanism is exemplified by antibodies against the angiotensin II receptor.

Nearly two decades ago, Wallukat et al260 reported that women with preeclampsia 

had antibodies that bind to the angiotensin II type I receptor (AT1-AA). Subsequently, 

substantial evidence has accumulated that supports a role for AT1-AA in the pathogenesis 

of preeclampsia. Such evidence comprises the following findings: 1) 80% of women with 

preeclampsia have increased concentrations of AT1-AA in maternal serum at the time of 

diagnosis;261 2) the concentration of AT1-AA in maternal serum correlates with the severity 

of hypertension and proteinuria;262 and 3) the administration of AT1-AA (either produced 

endogenously in response to transgenic expression of human renin and angiotensinogen, 

or administered by an injection of purified AT1-AA from women with preeclampsia) to 

pregnant rats led to hypertension, proteinuria, glomerular capillary endotheliosis,263 and the 

increased production of sFlt-1 as well as soluble endoglin,264 which can be attenuated by 

the administration of an AT1-receptor blocker (Losartan). However, one longitudinal study, 

conducted to determine whether the concentration of AT1-AA is increased before the onset 

of preeclampsia, did not produce such a result.265

What causes the production of AT1-AA? Placental ischemia after a reduction in uterine 

perfusion pressure has been shown to increase the concentration of serum AT1-AA.266 Also, 

the inhibition of AT1-AA by the administration of an epitope-binding peptide (‘n7AAc’) 

can reduce maternal blood pressure and plasma concentrations of endothelin-1, sFlt-1, 

and isoprostanes, a marker of oxidative stress.267 Moreover, the administration of the 

inflammatory mediators TNF-α,266, 268 IL-6,268, 269 and IL-17270 to pregnant rats can 

induce preeclampsia and enhance AT1-AA activity, which is abrogated by an AT1-AA 

blockade.267
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Placental Aging

Cells and organisms have a finite lifespan. Human cells in culture can multiply (mitosis) 

a limited number of times (Hayflick limit) before they stop dividing and, subsequently, 

undergo programmed cell death, or apoptosis.271 The placenta is also thought to have a pre-

specified lifetime, and as age advances, the functional capacity of placental cells declines. 

Placental aging has been described for several decades,272, 273 and premature aging has been 

implicated as a mechanism of disease for obstetric outcomes, eg preeclampsia,274, 275 fetal 

growth restriction,274, 276 fetal death,277 and preterm labor.278

Cytotrophoblasts are replicating cells, but the syncytiotrophoblast is generated by fusion 

and, therefore, is in a state of senescence (ie defined as the inability to multiply). Evidence 

supporting the concept that senescence is present in the normal syncytiotrophoblast 

includes the following findings: 1) high lysosomal activity indicated by staining with 

beta-galactosidase; 2) increased expression of cyclin-dependent kinase, p53, p21, p16; and 

3) the presence of syncytial knots, proposed to be equivalent to senescence-associated 

heterochromatic foci, which are clusters of chromatin in the nucleus of senescent 

cells.279-281 Cindrova-Davies et al 280 demonstrated that markers of senescence increase 

in normal placentas as a function of advancing gestational age.

Placentas of patients with preeclampsia exhibit greater expression of p53, p21, and p16, 

shorter telomeres,274 and reduced telomerase activity.282, 283 Redman et al 279 proposed 

that with advancing gestational age some patients develop a “twilight placenta,” a condition 

in which the organ is affected by senescence. When placental growth reaches its limits 

at term, terminal villi become overcrowded with diminished intervillous pore size, leading 

to respiratory failure of the placenta (Figure 12) and contributing to intervillous hypoxia 

and syncytiotrophoblast stress.284-286 A twilight placenta has been invoked as a potential 

cause for late pregnancy problems such as late-onset preeclampsia,46, 287 unexplained term 

stillbirth, or fetal death in prolonged pregnancy.277, 283, 288 At present, there is not an easy 

or practical way to determine placental age; however, recent studies have identified an 

epigenetic clock for placental dating,289 which may be used to examine the role of placental 

aging in pregnancy complications in the future.

Breakdown of maternal-fetal immune tolerance

Viviparity involves the temporal coexistence of two individuals (mother and fetus) with 

different genetic makeup. The placenta and fetus together are viewed as the most successful 

semi-allograft (with maternal and paternal contributions), and the mechanisms responsible 

for the immune tolerance have been the subject of investigation for decades.182-187 

Two typical features of the adaptive immune system are memory and specificity.188-190 

A role for the immune system has been proposed because preeclampsia is more 

common in primigravidas than in parous women and in multigravidas with different 

fathers (primipaternity) than in subsequent pregnancies with the same father.191, 192 

The predilection for primigravidas has been attributed to a memory-like phenomenon 

that protects mothers against paternal antigens in subsequent pregnancies.193 The higher 

frequency of preeclampsia in multigravidas whose pregnancy is from a different father 

supports the concept that the immune phenomenon is specific to paternally derived 
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antigens.194, 195 Moreover, this syndrome is more common in pregnancies that occur from 

an egg donation in which the placenta and fetus represent a full allograft rather than a 

semi-allograft.196

The placenta and fetus express both paternal and maternal antigens; they are a 

semiallograft.197-199 The syncytiotrophoblast is in direct contact with maternal blood and 

the decidua, thus the maternal immune system is exposed to paternal antigens expressed 

by the fetus.182 Immune tolerance is a requirement for a successful pregnancy,185, 200, 201 

and a breakdown of tolerance leads to maternal anti-fetal rejection, placental damage, and 

pregnancy complications that may include preeclampsia. Placental lesions, which represent 

manifestations of maternal anti-fetal rejection, are villitis of unknown etiology,202-205 

massive perivillous fibrin deposition,206, 207 chronic chorioamnionitis,208-210 and chronic 

deciduitis of the placental basal plate.209 The frequency of chronic villitis is higher in 

preeclampsia than in normal pregnancy (25% vs 17%).203, 211 Massive perivillous fibrin 

deposition was present in 20% of patients with preeclampsia.212

Maternal-fetal genetic incompatibility has been implicated in preeclampsia. Placentation is 

regulated by interactions between members of the killer cell immunoglobulin-like receptors 

(KIRs) expressed by decidual natural killer (dNK) cells and trophoblast human leukocyte 

antigen-C (HLA-C) molecules (Figure 11).213-216 Extravillous trophoblasts are specialized 

fetal cells that invade the decidua basalis, where they come into direct contact with 

maternal immune cells, eg dNK cells, macrophages, T cells, B cells, and dendritic cells.217 

Extravillous trophoblasts do not express major T-cell ligands such as HLA-A and HLA-B 

molecules. Instead, these fetal cells express HLA-C, HLA-E, and HLA-G.218 The latter two 

are largely monomorphic, while HLA-C is polymorphic, and therefore will vary according 

to the genetic makeup of the father.219 On the other hand, the dNK cells express the 

receptors for HLA-C proteins; these receptors are called KIRs.220 Both maternal KIR and 

fetal HLA-C genes are highly polymorphic, and the interaction between HLA-C and KIR 

has a unique role in placentation through the facilitation of trophoblast invasion of the 

decidua and the physiologic transformation of the spiral artery. The molecular machinery 

implicated in this process involves chemokines (CXCL-10 and CXCL8, or IL-8) that can 

attract trophoblasts expressing their receptors (CXCR3 and CXCR1), metalloproteinases, 

and growth factors, including the angiogenic factors (PlGF, VEGF, etc.).221, 222 Moffett 

et al 213-215 has shown that normal pregnancy is more common when a mother has 

the KIR BB genotype and the fetus has HLA-C1 genes, whereas preeclampsia is more 

frequent when a mother has the KIR AA genotype with additional fetal HLA-C2 genes 

(HLA-C2 vs HLA-C1 in KIR AA mothers: 45% vs 20%; OR 2.38; 95% CI 1.45-3.90). By 

contrast, Staff et al 223 reported that fetal HLA-C2 combined with maternal KIR-BB was 

associated with placental lesions of acute atherosis. Patients with preeclampsia and acute 

atherosis presented this specific genetic combination in 60% of cases.223 The mechanisms 

whereby a breakdown of maternal-fetal immune tolerance leads to preeclampsia appear to 

involve defective placentation, an example of the convergence of an immune disorder with 

uteroplacental ischemia. Such can be the case for other etiologic factors in preeclampsia. For 

further details of immunological mechanisms of preeclampsia, the reader is referred to the 

review article by Robillard et al 224 in this Supplement.
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Endocrine disorders

An association among several endocrine disorders and preeclampsia has been 

reported,290-297 yet the evidence for causality is the weakest among those reviewed in 

this article. Two explanations are plausible: the low frequency of endocrine disorders in 

pregnancy and the paucity of experimental evidence from animal studies of endocrine 

disorders. These investigations have not focused on the effect of such disorders in the 

development of preeclampsia. Hence, this section will review the evidence of an association 

and the proposed mechanism for activation of the common pathway.

Hyperparathyroidism—Normal pregnancy is characterized by changes in maternal 

calcium hemostasis, which are thought to occur to meet fetal demands. By term, the fetus 

has 30g of calcium, 20g of phosphorus, and 0.8g of magnesium, and 80% of calcium is 

deposited during the third trimester.298 The evidence that links altered calcium hemostasis 

to preeclampsia is as follows: 1) hypocalcemia is a risk factor for preeclampsia (OR 7.63; 

95% CI 1.64-35.37);290 2) low vitamin D concentration in early pregnancy is associated 

with a 5-fold increased risk for preeclampsia;299 3) hyperparathyroidism is commonly 

found in pregnant women with low calcium and vitamin D;300, 301 4) patients diagnosed 

with parathyroid adenoma are at an increased risk for preeclampsia (OR 6.89; 95% CI 

2.30-20.58);291 5) the absence of a vitamin D prophylaxis in the mother’s childhood is 

associated with a subsequent higher risk of preeclampsia;302 and 6) the administration of 

vitamin D combined with calcium or a multivitamin supplement has been shown to reduce 

blood pressure and the frequency of preeclampsia in a randomized trial.303, 304 The proposed 

mechanisms whereby primary hyperparathyroidism leads to preeclampsia are thought to 

involve endothelial cell damage, increased insulin resistance, left ventricular hypertrophy, 

and dyslipidemia.305, 306

Cushing’s syndrome, aldosteronism, pheochromocytoma, and paraganglioma
—Cushing’s syndrome is associated with an increased risk of preeclampsia (aOR 2.20; 

95% CI 1.18–4.41).292, 293 In non-pregnant subjects, the chronic glucocorticoid excess 

of Cushing’s syndrome is commonly associated with an increased cardiometabolic risk 

through an increase in pro-inflammatory adipokine production, alteration of coagulation and 

thrombosis factor, platelet function, and endothelial activation.307-309

Primary aldosteronism is the most common form of endocrine hypertension, and it can be 

caused by aldosterone-producing adenoma or bilateral adrenal hyperplasia.310, 311 Increased 

aldosterone secretion suppresses renin activity, leading to hypertension, hypokalemia, 

and hypernatremia.312, 313 Twenty-five percent of women with this disorder develop 

preeclampsia.294, 295

Pheochromocytoma and paraganglioma are rare catecholamine-producing tumors, with 

a reported frequency of 1/54,000 pregnancies.314 An excess of catecholamine released 

by these tumors can elicit signs or symptoms similar to preeclampsia (eg hypertension, 

headache, and proteinuria), making the diagnosis of pheochromocytoma during pregnancy 

difficult.314, 315 A recent meta-analysis that included 204 pregnant patients with 

pheochromocytoma paraganglioma showed that 20% of patients are initially misdiagnosed 
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as preeclampsia.316 Maternal and fetal mortality are as high as 28% and 27%, respectively, 

when there is a delay in diagnosis and treatment.316, 317 Only a few studies have reported 

that patients with pheochromocytoma developed superimposed preeclampsia;296, 297 

therefore, the existence of such a relationship is not clear yet.316

Conclusion

Multiple and sometimes overlapping insults can induce an adaptive homeostatic vascular 

response in pregnancy, which can be recognized clinically by the presence of hypertension 

and proteinuria (or other signs of multi-systemic involvement). When this response becomes 

maladaptive, it can cause target organ damage and becomes potentially life-threatening 

to the mother and fetus. This article has reviewed the etiological factors responsible for 

preeclampsia and eclampsia.

At present, the classification of the syndrome is largely based on the gestational age at 

the time of diagnosis (early-onset vs late-onset preeclampsia). Early-onset preeclampsia is 

associated with defective placentation, while late-onset preeclampsia appears to be related 

to the mismatch between maternal perfusion and feto-placental demands, together with a 

maternal predisposition to cardiovascular disease. However, it is necessary to identify the 

fundamental causes of the vascular dysfunction responsible for preeclampsia and to develop 

comprehensive predictive models and preventive interventions. This review highlights the 

multiple etiologies of the syndrome of preeclampsia. We propose that multiple etiologic 

factors converge to cause endothelial cell dysfunction, intravascular inflammation, and 

syncytiotrophoblast stress. The recognition that a viral infection as a result of SARS-CoV-2 

infection can induce preeclampsia brings challenging questions of whether preeclampsia is 

a pregnancy-specific disorder caused by the placenta and cured only by delivery. Further 

research is required to assess the relative contribution of each cause and the effect of 

interventions to prevent this syndrome. A greater understanding of the differences in the 

etiology of each subtype of preeclampsia and the pathophysiology of other great obstetrical 

syndromes are required in order to improve the understanding of this elusive disease.
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Figure 1. 
Multiple etiologies implicated in preeclampsia. Uteroplacental ischemia, maternal infection 

and inflammation (eg periodontal disease, urinary tract infection, COVID-19), maternal 

intestinal dysbiosis, maternal obesity, sleep disorders, hydatidiform mole, fetal diseases (eg 

hydrops fetalis, viral infection, Trisomy 13, and unique complications of multiple gestation), 

autoimmune disorders, placental aging, breakdown of maternal-fetal immune tolerance, and 

endocrine disorders (eg hyperparathyroidism, Cushing’s syndrome, hyperaldosteronism).
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Figure 2. 
A diagrammatic depiction of experiments demonstrating that uterine ischemia in pregnant 

animals, but not in non-pregnant animals, can cause hypertension. A. In the Goldblatt 

model of renovascular hypertension, clamping the renal artery leads to development of 

hypertension through renal ischemia and the release of renin in non-pregnant animals. 

B. By contrast, clamping the aorta below the renal arteries does not induce hypertension 

in non-pregnant animals. C. Clamping of the aorta in pregnant animals below the renal 

arteries leads to hypertension. D. The hypertension disappears after a hysterectomy has 

been performed; this suggests that the source of the signals leading to maternal systemic 

hypertension are derived from the gravid uterus. Modified from Chaiworapongsa T. et al. 
Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014 
Aug; 10 (8):466-80.
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Figure 3. 
Experimental demonstration that placental ischemia causes maternal hypertension and that a 

soluble factor in the blood of an animal with placental ischemia can induce hypertension in a 

non-pregnant animal. A. The Z suture is placed in the uterus to generate placental ischemia. 

B. Placental ischemia causes hypertension. Rabbit A had undergone a bilateral nephrectomy; 

therefore, the kidney is not a cause of the hypertension. After Z sutures were placed through 

several placentas, hypertension developed. C. Gross evidence that the suture has caused 

a placental infarction. The pale portion of the placenta with the arrow represents a large 

infarction. A control placenta of the same animal is illustrated on the right. D. Transfusions 

of blood from Rabbit A (a pregnant rabbit with placental ischemia) to a non-pregnant 

rabbit (Rabbit B) caused hypertension; this suggests that a circulating factor generated after 

placental ischemia is present in the maternal blood and that it can induce hypertension in a 

non-pregnant rabbit. Modified from Berger M. and Cavanagh D. Toxemia of pregnancy: The 
hypertensive effect of acute experimental placental ischemia. Am J Obstet Gynecol. 1963 
Oct 1;87:293-305.
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Figure 4. 
A. Diagram of maternal blood supply to the placenta. The spiral arteries undergo 

physiologic changes in normal pregnancy (grey). In preeclampsia, the myometrial segment 

of the spiral artery fails to undergo physiological transformation (blue), which is thought to 

explain the uteroplacental ischemia observed in preeclampsia. Moreover, non-transformed 

spiral arteries are prone to atherosis (yellow), characterized by the presence of lipid-laden 

macrophages within the lumen. Placental basal plate spiral arteries with hematoxylin-eosin 

stain (B, C, and D). B. Transformed spiral arteries are characterized by the presence of 

intramural trophoblasts (arrowheads) and fibrinoid degeneration (arrows) of the arterial wall. 

C. Non-transformed spiral arteries lack intramural trophoblasts and fibrinoid degeneration, 

and they retain smooth muscle. Arrowheads indicate the presence of trophoblasts in 
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myometrium, but not in the wall of the spiral artery. D. Acute atherosis in decidual spiral 

artery. Many lipid-laden macrophages (arrows) are seen in the spiral artery with the lack 

of invasion of the trophoblast (arrowhead) into myometrial segment of the spiral artery. 

Images (B, C, and D) stained with cytokeratin 7 (brown) and periodic acid–Schiff (pink), 

original magnification ×200. Immunohistochemistry of placental basal plate spiral arteries 

(E, F, and G). E. Presence of endothelium (arrow, blue) in vessels with normal trophoblastic 

invasion, original magnification × 640. F. spiral artery with presence of endothelium 

(blue, arrowhead) and smooth muscle cells (green, arrow), original magnification ×640. 

G. Atherosis lesions show the presence of numerous macrophages CD36-reactive (red 

reactivity, blue arrow) and smooth muscle cells in the vessel wall (green reactivity, yellow 

arrow), original magnification x400. *lumen of spiral artery. Modified from McMaster-Fay 
RA. Uteroplacental vascular syndromes: theories, hypotheses and controversies. Clin Obstet 
Gynecol Reprod Med 2018;4:1–5. Espinoza J et al. Normal and abnormal transformation 
of the spiral arteries during pregnancy. J Perinat Med. 2006;34(6):447-58. Labarrere CA et 
al. Failure of physiologic transformation of spiral arteries, endothelial and trophoblast cell 
activation, and acute atherosis in the basal plate of the placenta. Am J Obstet Gynecol. 2017 
Mar;216(3):287.e1-287.e16.
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Figure 5. 
Acute atherosis on oil-red O staining. Fat droplets (arrows) in the non-transformed spiral 

artery are stained red. *Lumen of spiral artery. Cover, Am J Obstet Gynecol. November 
2014 Yeon Mee Kim, Roberto Romero.
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Figure 6. 
Periodontal diseases and association with atherosclerotic disease. A. Bacteria found in the 

periodontal space can enter the bloodstream (bacteremia) and eventually the heart, resulting 

in atherosclerotic plaque in the heart blood vessels. Compared with uninfected control 

(B), periodontal infection with Porphyromonas gingivalis causes atherosclerotic aortic arch 

plaques (C, arrow) in apoE-null mice. Scale bar =1 mm. Oil red O staining of cryosections 

at the aortic sinus shows few small fatty streaks (control, D), whereas atherosclerotic lesions 

were greater in number and size (arrow) in infected animals (E). Scale bar=50 μm. Modified 
from Hajishengallis G et al. Local and systemic mechanisms linking periodontal disease 
and inflammatory comorbidities. Nat Rev Immunol. 2021 Jul;21(7):426-440 and Lalla 
E. et al, Oral infection with a periodontal pathogen accelerates early atherosclerosis in 
apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol. 2003 Aug 1;23(8):1405-11.

JUNG et al. Page 38

Am J Obstet Gynecol. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Association between SARS-CoV-2 infection severity and subsequent development of 

preeclampsia. The most severe COVID-19, the greater the risk of preeclampsia.

Modified from Lai J et al. SARS-COV-2 and the subsequent development of preeclampsia 

and preterm birth: evidence of a dose response relationship supporting causality. Am J 

Obstet Gynecol. 2021 Aug 26:S0002-9378(21)00947-9.
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Figure 8. 
Placental syncytiotrophoblast stress induces excessive sFlt-1 into the maternal circulation. 

sFlt-1 binds to free PlGF or VEGF (proangiogenic factors) with high affinity, thus 

preventing their interaction with their cell-surface receptors (i.e. VEGR-1) on the endothelial 

cells, leading to endothelial dysfunction. SARS-CoV-2 also targets the endothelium which 

normally express angiotensin-converting-enzyme 2 (ACE-2), one of the cell entry receptors 

for the virus, leading to endothelitis, which induces intravascular inflammation (i.e. cytokine 

storm) and endothelial dysfunction.

ACE2; angiotensin-converting enzyme 2, COVID-19; Coronavirus disease 2019, SARS-

CoV-2; severe acute respiratory syndrome coronavirus 2, sFlt-1; Soluble Fms-Like Tyrosine 

Kinase-1, VEGFR-1; vascular endothelial growth factor receptor-1
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Figure 9. 
(A) Gut microbiota in patients with preeclampsia (red) and those with normal pregnancy 

(blue). The significantly different genera (Firmicutes, Bacteroidetes, Proteobacterias, and 

Actinobacteria) at the phylum level in the two groups. The boxes represent the interquartile 

range (IQR) between first and third quartiles and the line inside represents the median. 

*p < 0.05. (B) Maternal intestinal dysbiosis and preeclampsia. Mice that received fecal 

microbiota from patients with preeclampsia (red) had higher systolic blood pressure than 

mice that received fecal microbiota from normotensive pregnant women (blue) or those 

that received the phosphate-buffered saline (control, grey). Modified from Wang J et al. 
Gut Microbiota Dysbiosis and Increased Plasma LPS and TMAO Levels in Patients with 
Preeclampsia. Front Cell Infect Microbiol. 2019 Dec 3;9:409 and Chen X. et al. Gut 
dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut. 
2020 Mar;69(3):513-522.
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Figure 10. 
Probability of preeclampsia according to the pre-pregnancy body mass index in both 

nulliparous (top line, red) and multiparous (bottom line, blue) women. Modified from Catov 
JM et al. Risk of early or severe pre-eclampsia related to pre-existing conditions. Int J 
Epidemiol. 2007 Apr;36(2):412-9.
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Figure 11. 
Interactions between maternal KIR and fetal HLA-C at the site of placentation. If the mother 

has a KIR BB genotype, which binds to trophoblast HLA-C1 molecules, this activates 

dNK cells, producing increased levels of cytokines such as GM-CSF that can enhance 

placentation. In contrast, when the mother has a KIR AA genotype and fetal HLA-C2 

alleles, this inhibits dNK cells, leading to defective placentation.

KIR; killer cell immunoglobulin like receptors, HLA; human leukocyte antigen, 

dNK; decidual natural killer cells, GM-CSF; granulocyte-macrophage colony-stimulating 

factor. Modified from https://www.ivi-rmainnovation.com/maternal-killer-immunoglobulin-

receptors-predictive-live-birth-rate/
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Figure 12. 
A. Optimal villi density for maximal oxygen uptake in the human placenta. Placentas with 

low villi density (rarefied villi) have low oxygen uptake, as fetal villi are rare. By contrast, in 

placentas with high villous density (villous overcrowding), there is no space for intervillous 

space for oxygen exchange. The optimal villi density for the oxygen uptake was 0.47 ± 0.06, 

calculated from histomorphometrical data for villi and intervillous volumes of placentas. 

B. Cross-section of the placenta: 1) rarefied villi in preeclampsia; 2) normal placenta; and 

3) villous overcrowding in diabetes mellitus. H&E stained and scale represents 50 μm. 

Modified from Serov AS et al. Optimal villi density for maximal oxygen uptake in the 
human placenta. J Theor Biol. 2015 Jan 7;364:383-96.
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