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Abstract

Currently, there are two safe and effective therapeutic strategies for chronic hepatitis B

treatment, namely, nucleoside analogs and interferon alpha (pegylated or non-pegylated). These
treatments can control viral replication and improve survival; however, they do not eliminate

the virus and therefore require long-term continued therapy. In addition, there are significant
concerns about virus rebound on discontinuation of therapy and the development of fibrosis and
hepatocellular carcinoma despite therapy. Therefore, the search for new, more effective, and safer
antiviral agents that can cure hepatitis B virus (HBV) continues. Anti-HBV drug discovery and
development is fundamentally impacted by our current understanding of HBV replication, disease
physiopathology, and persistence of HBV covalently closed circular DNA (cccDNA). Several
HBYV replication targets are the basis for novel anti-HBV drug development strategies. Many of
them are already in clinical trial phase 1 or 2, while others with promising results are still in
preclinical stages. As research intensifies, potential HBV curative therapies and modalities in the
pipeline are now on the horizon.
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Introduction

Chronic hepatitis B virus (HBV) infection affects approximately 300 million people
worldwide [1], and while prophylactic vaccines and antiviral therapies are currently in

use, they do not provide a cure. Therefore, safe antiviral agents that target the HBV
replication cycle and sites of virus persistence are urgently needed to prevent the nearly
one million human deaths annually due to liver diseases associated with hepatitis B. HBV
is a hepadnavirus that replicates its DNA in the liver through two main steps: formation

of covalently closed circular DNA (cccDNA) and the reverse transcription of a pregenomic
RNA (pgRNA).

With current available antiviral therapies for chronic hepatitis B, it is possible to control
HBYV replication. However, treatment is non-curative and therefore requires long-term
continued use which has resulted in concerns for the development of antiviral resistance
and adverse events, such as renal impairment or gastrointestinal disorders (important issue
when considering adherence to treatment) [2—4]. The clinical endpoints now are focused

on suppressing viral replication and alanine aminotransferase (ALT) normalization. This
desirable endpoint of a functional cure (loss of HBsAQ) is unlikely with current nucleoside
analogs or pegylated interferons [5]. This may be due to cccDNA that persists in the

nuclei of infected hepatocytes where it forms the template for all viral transcripts and HBV
integration. New HBV targets and immune therapies are being sought, and we aim to review
them according to their stage in clinical development, focusing on medicinal chemistry
and/or biochemistry/molecular biology [6]. In addition, this review focuses on the outcomes
of antiviral drugs newly developed or in clinical evaluation, as well as novel experimental
drugs.

5.2 HBV Pathogenicity (Immunological Background)

HBYV is a hepatotropic virus and most of the time does not cause a cytopathic effect [7].
The host immune response determines whether the virus persists (chronic infection) or not
(cleared infection). In the natural history of chronic hepatitis B infection, initially there is
an immunotolerant phase characterized by the presence of HBeAg, high rates of HBV DNA
replication, and absence of inflammatory liver disease progression [3]. In this phase, the
innate immune system is poorly activated due to an intrinsic ability of the virus to escape
recognition [8].

In contrast, a persistent immune response to HBV-infected hepatocytes is the determinant
of chronic liver disease, with inflammation (with or without HBeAg) leading to progression
of fibrosis and cirrhosis, and ultimately hepatocellular carcinoma [3, 9, 10]. Individuals
who have resolved HBV infection, with HBsAg clearance with or without HBs antibody,
undetectable HBV DNA, and normal levels of ALT, are in the so-called functional cure
phase [11]. In this phase, HBV is not fully eliminated, with a few hepatocytes remaining
with the cccDNA form under a repressed translational control by innate and adaptive
immune mechanisms [9].
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In this regard, several immune pathways with the potential to suppress HBV replication in
infected hepatocytes are currently under consideration as targets for the development of new
therapeutic strategies for chronic hepatitis B infection. For example, retinoic acid-inducible
gene-l (RIG-I) and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)
[9] are among other pathways that will be discussed below.

5.3 HBV Replication

HBV is a 3200 bp partially double-stranded DNA (rcDNA, relaxed circular DNA) from
Hepadnaviridae family. Difference greater than 8% in nucleotide sequence across the
complete HBV genotype determines ten major genotypes (A to J) with differences in
replication, natural history, pathogenesis, and treatment response [12, 13]. HBV genome
encodes four overlapping genes. The HBV RNA transcripts are translated into seven
proteins: HBsAg (surface large [preS1+preS2+S domains], middle [preS2+S domain],
small [S domain]), HBeAg, HBcAg (core), RT-polymerase, and X protein. The HBV
virion particles have an outside envelope composed with three forms (large, middle, and
small) of surface proteins that encloses the capsid with the double-stranded DNA genome
(Fig. 5.1). An important intermediate form (occurring in the nucleus of infected cells) is
the covalently closed circular DNA (cccDNA) that is the template for pregenomic RNA
(pgRNA) transcription and produces the template for reverse transcription and viral genome
replication [14].

5.3.1 Replication Cycle

HBV binds to the hepatocyte at the sodium taurocholate cotransporting polypeptide (NTCP)
receptor and enters into the cells. HBV attachment is believed to be mediated through the
preS1 domain [15]. After entry, the viral particles containing the relaxed circular DNA
(rcDNA) are uncoated, and the nucleocapsid particle must be directed into the cellular
nucleus. HBV rcDNA is converted to an episomal cccDNA (see detailed information below).
HBYV cccDNA is the transcription template for all four viral RNAs (Fig. 5.1):

1. A 2.4-kb mRNA for the large (L) envelope protein, a 2.1-kb mRNA for the
middle (M), and major surface (S) proteins

2. A 0.7-kb mRNA for the X protein
3. A 3.5-kb pre-core mMRNA that encodes the pre-core protein
4. A 3.5-kb pregenomic RNA (pgRNA) that encodes the core and the polymerase

The pgRNA, upon being exported to the cytoplasm, is encapsidated together with viral
polymerase and subsequently reverse-transcribed into viral minus strand DNA. Then, the
plus-stranded DNA is synthesized to form the partially double-stranded relaxed circular
DNA. The mature nucleocapsid can either be recycled back to the nucleus to maintain the
pool of cccDNA or packed with envelope proteins and exported as infectious virions to
infect other cells [14, 16] (Fig. 5.1).
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5.3.2 Role of cccDNA

Intrahepatic cccDNA is the episomal virus template in the nucleus of HBV-infected
hepatocytes. It is considered an important cause of viral persistence and a key obstacle

for a cure of chronic hepatitis B [17]. This is especially true because current antiviral
therapies including nucleoside analogs do not eliminate HBV mini-chromosome (cccDNA)
or integrated HBV; therefore, continued virus gene expression from these templates will
drive pathogenesis toward hepatocellular carcinoma, one of the main complications of
chronic hepatitis B. Another currently used treatment for chronic hepatitis B, interferon
alpha, upregulates the expression of APOBEC3 nuclear deaminase resulting in a modest
reduction in cccDNA copy number via deamination [18].

Because cccDNA elimination is a major goal for the future HBV antiviral agents for the
treatment of chronic hepatitis B, it is important to monitor and study this particular HBV
form. However, the amount of cccDNA compared to pgRNA is very low (median 1.5 copies
and 6.5 per cell, respectively) [19]. Therefore, to detect HBV cccDNA unambiguously

is a great challenge [17]. Southern blotting is the gold standard test for detection and
quantification of HBV intermediates and cccDNA; however, few samples can be tested at
atime, and it requires high amounts of infected cells to detect cccDNA. Because it is not

a high-throughput system, other tests including cccDNA-specific PCR have been assessed
using specific primers located at each side of the gap region of rcDNA together with

the appropriate HBV DNA purification or nucleus enrichment and the use of appropriate
enzymes to selectively remove HBV rcDNA without degrading cccDNA [20]. Because liver
biopsy is required to quantify cccDNA in vivo, measurements of HBV RNA and HBcAg in
the serum may serve as surrogate biomarkers for cccDNA [11].

5.4 Overview of Current Therapies

Interferon alpha 2b (FDA approved in 1991) and peginterferon alpha-2a (approved in 2005)
are immunomodulators administered subcutaneously, but due to adverse effects treatment
duration varies up to 48 weeks (Table 5.1) [26, 27]. There are reports that HBV genotype A
may present a higher response rate considering HBeAg seroconversion [28, 29].

Lamivudine (approved in 1998), adefovir (approved in 2002), entecavir (approved in 2005),
telbivudine (approved in 2006), tenofovir (approved in 2008), and tenofovir alafenamide
(approved in 2016) are nucleoside analogs used orally, with fewer adverse events compared
to immunomodulators and very efficient to reduce viral load (Table 5.1 and Fig. 5.2) [27].
However, a functional cure (loss of HBsSAQ) is rarely seen with these therapies. Duration of
treatment varies, most of the time lasting several years. Because of the long-term need for
these medications, adhesion to treatment is a concern, together with the development of drug
resistance [21, 30].

Other nucleoside analogs approved are clevudine (approved for HBV in South Korea and the
Philippines) and besifovir (nucleotide approved in South Korea) [31]. Although clevudine
was approved as an antiviral agent for HBV without significant toxicity during the six-
month clinical trial, longer therapy (14 months) was found to cause reversible mitochondrial
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myopathy [32]. This nucleoside analog was one of the few drugs that seemed to have an
impact on HBV cccDNA in a woodchuck model (Tennant, personal communication).

Thymosin alpha-1 (Zadaxin) is an immune modulator, administered subcutaneously with
minimal side effects approved as monotherapy for chronic hepatitis B in Asian countries
[33]. The activity is via an enhancement of T cell differentiation and maturation and is
especially effective in settings where there is a reduction in T cell number and/or function
[33].

Drugs in the Pipeline

There are several novel antiviral agents being developed for chronic hepatitis B. The drugs
can be divided according to their strategies to eradicate chronic HBV infection (Table 5.2)
[34]:

1. Virologic (direct-acting agents or DAAS)

2. Host immune approaches (indirect-acting agents or immune therapy)

5.5.1 Direct-Acting Antiviral Agents (DAAS)

Virologic antiviral agents or DAAs are new therapies that could directly target HBV
replication steps without killing infected cells [35]. Nucleoside analogs target the viral
reverse transcriptase enzyme, thus inhibiting HBV replication. Several nucleoside analogs
are approved for chronic hepatitis B treatment as mentioned above, but because they require
long-term use and do not completely clear HBV from hepatocytes, new DAAS are being
developed, and next we will discuss different strategies used.

5.5.1.1 Capsid Assembly Effectors or Modulators (CAM)—The HBV
nucleocapsid plays an essential role in the viral replication cycle that includes HBV genome
packaging, reverse transcription, intracellular trafficking of relaxed circular DNA (rcDNA)
into the nucleus, and maintenance of chronic infection. Capsid assembly modulators (CAM)
are characterized by two types (Table 5.3 and Fig. 5.3): (1) class | or heteroarylpyrimidines
(HAP) are core protein allosteric modulators (CpAM) that upon binding to HBV capsids
promote their misassembled to aberrant non-capsid core polymers, and (2) class Il or
phenylpropanamides (PP), sulfamoylbenzamides (SBA), or derivatives are capsid assembly
modulators that upon binding to the capsid form normal but empty nonfunctional capsids
devoid of pgRNA/rcDNA.

Both classes of HBV capsid effectors can interfere with several steps of HBV replication
cycle including pre- and post-capsid formation, prevention of capsid assembly, perturbation
of capsid integrity of incoming virus particles, entry of HBV capsid and core particles into
the cell nucleus, pregenomic RNA encapsidation, and consequently its reverse transcription.
All these changes in the HBV replication cycle may ultimately prime inhibition of cccDNA
formation and/or amplification (Fig. 5.1).

There are five capsid effectors in phase 2 clinical trials. Morphothiadin (GLS4) is a class
I HAP compound developed from Bay41-4109 that has shown potent in vitro inhibition of
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HBYV DNA replication; nevertheless, in vivo studies with health volunteers have shown that
GLS4 needs an extra-booster (ritonavir) to increase its plasma concentration and achieve
effective antiviral activity in humans [36]. Two CpAM ABI-H0731 and ABI-H2158 are in
phase 2 clinical trials. ABI-H0731 has shown a decline in HBV RNA that correlated with
HBYV DNA decline in a 4-week therapy [37], and several phase 2 clinical trials are being
conducted with this compound in combination with nucleoside analogs, including entecavir
or tenofovir. ABI-H2158 has shown in vivo decline of HBV DNA and pgRNA by ~2 logsg
IU/ml and is in phase 2 clinical trial in combination with entecavir [38]. INJ56136379 is an
inducer of empty nonfunctional HBV capsids (CAM-N) that was well tolerated by healthy
volunteers in phase 1 and has shown reduced HBV DNA and RNA levels; in a 4-week phase
1b monotherapy study, baseline polymorphisms or enrichment of substitutions did not show
an impact on virological response, though the emergence of resistance to longer treatments
are underway in phase 2 studies [39]. QL-007 (Qilu, PR China) is in phase 2 clinical trials
with entecavir or tenofovir for both safety and efficacy evaluation (Table 5.3).

Four capsid effectors are in phase 1 clinical trial including RG7907, EDP-514, ABI-H3733,
and ZM-H1505R. RG7907 (RO7049389), a class | CpAM, reduced both HBV DNA and
RNA levels at the end of 28-days treatment, with favorable PK profiles [40]. EDP-514 is a
class Il core inhibitor that has shown to prevent de novo formation of cccDNA in human
primary hepatocytes, and it is in phase 1a/1b study with healthy volunteers [41]. ABI-H3733
is a class Il capsid inhibitor that has shown to be a potent inhibitor of HBV DNA (ECsgg

=5 nM) and cccDNA formation (ECsg = 125 nM) in vitro [42]. ZM-H1505R is a new
pyrazole compound that inhibits HBV DNA replication by inhibiting pgRNA encapsidation
and cccDNA formation.

Three main capsid effectors are in preclinical studies: GLP-26, ALG-000184, and
CB-HBV-001. GLP-26 (Emory University) is a novel class Il CAM, with a unique
glyoxamidopyrrolo backbone. It showed substantial in vitro effects in HBV DNA replication
and HBe antigen with low nanomolar ranges (ECsg = 3 nM for both markers), with >1

log reduction in cccDNA, and no apparent cytotoxicity. Sustained decreases in HBeAg

and HBsAg levels were also observed in HBV-infected humanized mouse model treated
with GLP-26 in combination with entecavir up to 3 months after drug cessation [43-46].
ALG-000184 (Aligos Therapeutics/Emory University) is the prodrug of ALG-001075,
another potent class Il CAM that has shown picomolar activity in vitro and substantial
effects in HBV DNA replication in mouse model, with no apparent signs of toxicity and
markedly improved solubility [47]. This drug is now entering phase 1a/1b clinical trial in
New Zealand, Hong Kong and Republic of Moldova. CB-HBV-001 is a new oxazolidinone,
pyrazole capsid inhibitor that is being evaluated in preclinical trials (AASLD 2018).

5.5.1.2 Entry Inhibitors—HBYV enters the cell by attaching the receptor binding region
of pre-S1 to the NTCP receptor at the membrane of the hepatocyte [48] (Fig. 5.1).
Bulevirtide (Myrcludex B) binds irreversibly to NTCP inhibiting the HBV entry into the
hepatocyte [49]. This drug is administered subcutaneously and is being studied for chronic
hepatitis B and delta in phase 2b with or without peginterferon (PEG-IFN) alfa-2a (Table
5.4) [49]. Preliminary results showed that 12/30 (40%) of individuals treated with bulevirtide
plus PEG-IFN for 48 weeks had alanine aminotransferase (ALT) normalization and HDV
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RNA negative. In the follow-up of 24 weeks of treatment, 4 out 15 individuals treated with
2 mg bulevirtide plus PEG-IFN had undetectable HBsAg, and three out four had HBsAg
seroconversion [50]. Bulevirtide was well tolerated, with some drug-related adverse events
primarily caused by an increase in total bile salts [50]. This is explained because the drug
binding to NTCP prevents infection but also inhibits hepatic bile salt uptake leading to the
transiently elevated bile salt level [51].

5.5.1.3 Small Interfering RNA (siRNA)—RNA interference (RNAI) is the mechanism
through which double-stranded RNAs silence cognate genes (Fig. 5.1). It is characterized by
the presence of RNAs about 22 nucleotides homologous to the gene that is being suppressed.
Dicer is the cellular nuclease that cleaves double-stranded RNAs and can produce putative
guide RNAs or small interfering RNA (SiRNA) [52]. After the sense strand is removed and
the antisense strand is loaded on the RNA-induced silence complex (RISC), it hybridizes

to a complementary region of a target mMRNA, which results in its degradation [53]. This
phenomenon provides effective agents for inhibiting infectious, metabolic, cancer, and
genetic diseases [53]. A critical issue in the development of siRNA-based drugs is to avoid
toxicity such as (1) immunogenic reactions to dsSRNA (2”-O-methyl base modifications
have largely avoided this issue), (2) toxicity of excipients (work continues on developing
potent and nontoxic nanoparticles), (3) unintended RNA. activity (avoided by detailed
screening target sites against human genome sequences), and (4) on target RNAI activity

in nontarget tissues (selection of highly diseased selective genes and delivery routes which
reduce accumulation in nontarget tissues) [54]. Previous studies showed that siRNA could
significantly inhibit HBV transcripts and cccDNA in vitro in HepG2 cells and in vivo in
mice [53, 55, 56]. Currently, several sSiRNAs are being evaluated in preclinical and phases

1, 1/2, and 2 clinical trials shown in Table 5.5. VIR-2218 has shown dose-dependent
HBsAg reductions (mean decline of 1.0 logyg) in HBeAg negative or positive patients virally
suppressed on nucleos (t)ide analogs without significant fibrosis [58]. Another siRNA drug,
JNJ-3989 (ARO-HBV) that is in a phase 2a study, has demonstrated a =logyq reduction in
HBsAg at nadir was achieved in 98% of patients [59]. In total, 15/38 (39%) of patients who
were responders throughout the study were sustained responder at day 392 [59].

5.5.1.4 Nucleic Acid Polymers (NAPs)—NAPs are phosphorothioate
oligonucleotides (PS-ONs) that inhibit HBV via a post-entry mechanism blocking the
assembly/release of HBV subviral particles (Fig. 5.1). The universal model for NAP
pharmacology is based on the interaction of the amphipathic protein domain and the
hydrophobic side of NAPs, preventing the conformational changes in the target or its
interaction with other amphipathic helices [60]. In this class of antivirals, there are the
HBsAg inhibitors and the STOPs (s-antigen transport inhibiting oligonucleotide polymers).

HBsAg Inhibitors: Aside from the ability of HBsAg to sequester anti-HBs from the

blood system, HBsAg has direct immunoinhibitory action against both innate and adaptive
immune responses (Fig. 5.1). HBsAg loss is infrequently achieved with the current therapy;
therefore, antivirals targeting the inhibition of HBsAg are being developed. NAPs have

the ability to interact with hydrophobic surfaces of proteins and have emerged as the first
therapy to be able to achieve rapid HBsAg loss [61].
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REP 2139 is a phosphorothioate oligodeoxyribonucleotide (PS-ONs) with the sequence
(dAdC)yq (Table 5.6 and Fig. 5.4) [62]. Clinical studies of REP 2139 in combination

with thymosin or PEG-IFN was well tolerated and resulted in liver flares (without liver
dysfunctions) following initial reductions of serum HBsAg and HBV DNA [62]. REP 2165
is a version of REP 2139 which has been shown preclinically to retain antiviral activity with
lower accumulation in the liver. The results of phase 2 randomized trial showed that addition
of NAPs to tenofovir and PEG-IFN increased functional cure after therapy without altering
tolerability [63].

STOPs (s-Antigen Transport Inhibiting Oligonucleotide Polymers): STOPs are
oligonucleotide aptamers (protein binding) comprised of a repeating poly AC sequence (Fig.
5.1). STOPs share the structural similarity with NAPs but contain several novel chemical
features. STOPs can reduce HBsAg secretion by affecting protein trafficking from the
infected cell resulting in its degradation [64]. In HepG2.2.15 cells, ALG-10133 reduced
HBsAg secretion in nanomolar range and with synergistic effects when combined with class
I CAMs [65]. ALG-10133 has been selected as the lead candidate, starting clinical trials on
2020 with projected human efficacious dose of 30-75 mg delivered SC weekly (Table 5.7)
[66].

5.5.1.5 Antisense Molecules—Antisense oligonucleotides (ASO) (Table 5.8.) are
small single-stranded nucleic acid sequences that bind with high selectivity to their target
RNAs. This triggers degradation via an RNAse H-dependent pathway [68]. GSK 3228836
is a 2’-0O-methoxyethyl free ASO currently in development for the treatment of chronic
hepatitis B. It has been tested as a subcutaneous injection in doses up to 120 mg, and

no safety concerns were identified [69]. GSK3389404 (GSK404) is a second-generation
ASO that showed an acceptable safety profile [70]. GSK3389404 presented platelet dose-
dependent declines that plateaued on treatment and started to recover after dose completion
[70, 71]. RO7062931 is an N-acetylgalactosamine (GalNAC) conjugated single-stranded
oligonucleotide (SSO) with locked nucleic acid (LNA) that is complementary to messenger
RNAs (mRNAs) of the HBV genome [72, 73]. Gal-Nac conjugation should reduce ASO
renal and platelet toxicities. It was well tolerated in healthy volunteers. Phase 1 studies
showed a mean nadir of HBsAg of —0.5 logg IU/mL, with treatment emergent ALT
elevations with transient concurrent HBsAg decline (0.6-0.8 logyg 1U/mL) with no changes
in liver function [74].

5.5.1.6 Nucleoside Analogs—ATI-2173 is a novel phosphoramidate prodrug of
clevudine in preclinical studies for chronic hepatitis B (Table 5.9 and Fig. 5.4) [67]. Long-
term use of clevudine was found to exhibit reversible skeletal myopathy in a small group

of individuals and therefore subsequently discontinued from development. AT1-2173 was
designed by modifying clevudine that bypasses the first phosphorylation step where the 5'-
monophosphate is converted to the active 5 -triphosphate in the liver [67]. AT1-2173 activity
was decreased by 25 viral polymerase mutations associated with entecavir, lamivudine, and
adefovir resistance, but not capsid inhibitor resistance mutations [67]. It has been claimed
that this compound could behave as a non-nucleoside antiviral agent.

Adv Exp Med Biol. Author manuscript; available in PMC 2022 April 07.
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5.5.1.7 RNAseH Inhibitors—RNAseH is one of the two enzymatically active domains
on HBV polymerase and destroys the HBV RNA after it has been copied into DNA by the
reverse transcriptase [75]. RNAseH is a potential target for antiviral drugs, and over 150
RNAseH inhibitors are divided in four compound classes: (1) a-hydroxytropolones (aHT),
(2) N-hydroxyisoquinolinediones (HID), (3) N-hydroxypyridinediones (HPD), and (4) and
N-hydroxynapthyridinones [76-81]. Novel amide aHT were studied with ECgq values from
0.31 to 54 uM [79]. Studies in chimeric mouse showed that an HPD and an aHT suppressed
HBYV replication to up to 1.4 logqq after two weeks of treatment followed by a rebound in
the viral titers [82].

Indirectly Acting Antiviral Agents (Immune Therapy)

Specific immune therapy can maintain the HBV replication under control of a functional
host antiviral response [9] (Fig. 5.1). An example of approved immune therapy for chronic
hepatitis B is interferon alpha (pegylated or not). Pegylated interferon alpha alone or in
combination therapy can achieve sustained off-treatment control but in only a small portion
of individuals [26].

Therapeutic restoration of protective immunity is a strategy that can be considered to
achieve the functional cure of HBV [83]. Several approaches are being considered such

as therapeutic vaccines, innate immune stimulation (TLR-8 and TLR-7 agonists), host
acting pathway (apoptosis inducer and cyclophilin inhibitor), gene editing, and many other
mechanisms.

5.5.2.1 Therapeutic Vaccines—There is a renewed interest in therapeutic vaccines
with the development of novel formulations, suitable immunization routes for designed
adequate antigens, and adjuvant strategies (Table 5.10). In addition, it is important to
consider adequate strategies, including combination therapy with other antivirals, either
concomitant or sequential strategies.

5.5.2.2 Innate Immune Stimulation—The host immune responses to HBV determine
if the individuals will clear (functional cure) or fail to clear the virus (chronic hepatitis

B). Toll-like receptor (TLR) family and its functions are one way to modulate the
immunological host responses [96]. TLR8 and TLR7 are endosomal TLRs members with

a high degree of sequence and function similarity. They recognize pathogen-associated
molecular patterns (viral single-stranded RNA fragments) and trigger innate and adaptive
immune responses[96, 97]. Agonist ligands of Toll-like receptors 7 and 8 have immune-
stimulating activity allowing to intervene several diseases and to be valuable vaccine
adjuvant candidates [96].

Selgantolimod (formerly GS-9688) is a small molecular agonist of Toll-like receptor 8
(TLRS8) [98]. It sustained reduced intrahepatic RNA and DNA of woodchuck hepatitis virus
(WHYV) in animal model. With a finite, short duration treatment, the serum WHsAg level
reduced with half of animals with levels below the limit of detection [97]. Selgantolimod is
an oral drug under phase 2 clinical trial (Table 5.11 and Fig. 5.4). RO7020531 (RG7854) is
an oral prodrug of a TLR-7 agonist in phase 2 clinical trial (Table 5.11). Carboxylesterase
(mainly CES2) and oxidation by aldehyde oxidase converts RO702053 into the active

Adv Exp Med Biol. Author manuscript; available in PMC 2022 April 07.
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metabolite RO7011785 [99]. Preclinical data showed that a combination of HBV locked
nucleic acid antisense oligonucleotide (HBV-LNA ASO) with RO7020531 reduced HBsAg
and HBV DNA with delayed rebound off-treatment in mice [100].

5.5.2.3 Host Acting Pathway—Cellular inhibitor of apoptosis proteins (clAPs) impairs
clearance of hepatitis B virus (HBV) infection by preventing TNF-mediated killing/death

of infected cells. Animal studies showed that drug inhibitors of clAPs were able to reduce
serum HBV DNA, hepatitis B surface, and core antigens [101]. APG-1387 is an apoptosis
inducer; it is a second mitochondria-derived activator of caspase (SMAC) mimetic, and it
targets inhibitors of apoptosis proteins (IAPs) [102]. Currently, APG-1387 is under clinical
trial phase 1 study for chronic hepatitis B (Table 5.9 and Fig. 5.4).

CRV-431 is an oral cyclophilin inhibitor, non-immunosuppressive analog of cyclosporine A.
CRV 431 is a small molecule under clinical development for the treatment of liver diseases
including fibrosis and hepatocellular carcinoma [103]. Preclinical studies showed antiviral
activity against hepatitis B reducing HBV DNA and HBsAg levels in transgenic mice and a
phase 1 is ongoing (Table 5.12 and Fig. 5.4) [104].

5.5.2.4 Gene Editing—Clustered regularly interspaced short palindrome repeats
(CRISPR)/Cas9-based antiviral strategy is one of the most versatile gene-editing tools,
discovered as a bacterial adaptive immune system [105]. The CRISPR/Cas9 system can
specifically destruct HBV genomes in vitro and in vivo, mediating specific cleavage

of cccDNA [106-108] (Fig. 5.1). Several optimal targets in HBV genome have been
described, such as the surface and polymerase overlap region; the YMDD RT motif and
the HBV enhancer I, 11, X protein; and pre-core regions with high efficacy [109]. However,
CRISPR/Cas system inevitably targets integrated HBV DNA and induces double-strand
breaks (DSBs) of host genome, raising concerns of genome instability and carcinogenicity
[108, 110]. To avoid DSBs of the host genome, recently it was described a permanently
Cas9-mediated base editors that effectively introduced nonsense mutations that generated
premature stop codons of surface gene in both integrated and cccDNA reducing HBsAg
secretion [110]. EBT107 is a gene-editing CRISPR/Cas 9 drug that uses a duplex gRNA
excision knockout as a candidate for HBV in preclinical studies (Table 5.13) [111].

ARCUS genome-editing technology is another platform of gene editing being developed for
chronic hepatitis B [112]. The ARCUS technology is based on the properties of a naturally
occurring gene-editing enzyme — the homing endonuclease 1-Crel—and reduces the risk of
additional off-target DNA edits [113].

5.5.2.5 Other Mechanisms

Recombinant hepatitis B human monoclonal antibody: Lenvervimab (GC1102) is

a recombinant hepatitis B human monoclonal antibody expected to improve sustained
virological response reducing HBsAg levels in individuals with chronic hepatitis B infection
[114]. It is under study for HBV-related liver transplant recipients (Table 5.14).

Farnesoid X receptor (FXR) agonist: HBV enters the hepatocyte by binding to NTCP, the
genome of which contains two active farnesoid X receptor (FXR)a response elements that
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participate in HBV transcriptional activity [115]. In vitro studies showed that FXR agonists
inhibited viral mMRNA, DNA, and protein production and reduced the cccDNA pool size
[115]. Vonafexor (EYPQO01) is a farnesoid X receptor (FXR) agonist with anti-HBV effects
[116, 117]. It is under study in combination with PEG-IFN, nucleoside analogs in double or
triple therapy (Table 5.14).

PD-L1 pathway: The programmed cell death protein 1 (PD-1)/programmed death-ligand
1(PD-L1) pathway is a key immune checkpoint regulator that controls the induction and
maintenance of immune tolerance in chronic hepatitis B infection [118]. ASC22 (KN035)
is a novel fusion anti-PDL1 antibody being studied for the treatment of solid tumors and in
clinical trials for chronic hepatitis B phase 2a (Table 5.14).

T cell immunotherapy: LTCR-H2-1 (Table 5.14) is a preclinical drug that boosts adaptive
immune response through T cell receptor (TCR) gene transfer [119]. It is engineered to
target virus-derived peptides presented on MHC class | on the surface of virus-infected
cells. This technology is based on leukapheresis to isolate white blood cells, followed by

T cell expansion; HBV targeting TCR are introduced into the activated T cells by viral
transduction or electroporation, and then after phenotypic and functional validation, the
TCR-engineered T cells are infused back into the individual [120].

5.6 Conclusions

Currently, nucleoside analogs and peginterferon are available for chronic hepatitis B
treatment and are quite effective and safe. They can prevent progression of disease, but

even persons treated with these drugs can develop hepatocellular carcinoma. The treatments
can achieve inhibition of HBV replication; however, few individuals achieve “functional
cure” status (HBsAg clearance with or without surface antibody). Several novel drugs are in
the pipeline for treatment and elimination of chronic hepatitis B. The drugs are at different
stages of development from preclinical to phase 2 clinical trials, and some of them are
considered for combination strategies. These drugs will be instrumental for a sustained HBV
DNA undetectability with sustained clearance of HBsAg and for preventing liver cancer.
Elimination of cccDNA and integrated HBV DNA will be key to eradicate chronic hepatitis
B infection. Currently, there are numerous drugs that have the potential to cure HBV, but
most do not have the necessary potency to clear all cccDNA. We now know that the half-life
of cccDNA (several months and not decades) is shorter than was previously reported [121].
Thus, it may be possible to eliminate cccDNA in approximately 1 year with more potent
agents or more likely a combined modality (e.g., capsid effector plus STOPS). As expounded
above, a great number of approaches are being tried to eliminate HBV, and it is clear that we
are beginning to turn the tide.
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Abbreviations

Ad Adenovirus

ALT Alanine aminotransferase

APOBEC Apolipoprotein B mRNA editing catalytic polypeptide-like
ARCUS Gene-editing platform

ASO Antisense oligonucleotide

CAM Capsid assembly effectors or modulators

CAS CRISPR associated

cccDNA Covalently closed circular DNA

CES Carboxylesterase

clAPS Cellular inhibitor of apoptosis proteins

CpAM Core protein allosteric modulators

CRISPR Clustered regularly interspaced short palindrome repeats
DAAs Direct-acting agents

DS Double stranded

DSBs Double-strand breaks

ECso Median effective concentration to inhibit HBV DNA replication
ENV Envelope

FXR Farnesoid X receptor

GalNAc N-acetylgalactosamine

GLS4 Morphothiadin

HAP Heteroarylpyrimidines

HBCcAg HBYV core antigen

HBeAg HBYV e antigen

HBsAg HBYV surface antigen

HBV Hepatitis B virus

HID N-hydroxyisoquinolinediones

HPD N-hydroxypyridinediones

1APs Inhibitors of apoptosis proteins
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LNA
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NTCP
PD-1
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PEG-IFN
pgRNA
PK
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PP
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rcDNA
RIG-I
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RNAI

RT
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SiRNA
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Intravenous

HBYV large surface protein
Locked nucleic acid

HBYV middle surface protein
Major histocompatibility complex
Messenger RNA

Not applicable

Nucleic acid polymers

Nanomolar

Sodium taurocholate cotransporting polypeptide

Programed cell death protein 1
Programed death ligand protein 1
Peginterferon

Pregenomic RNA
Pharmacokinetics

Polymerase

Phenylpropanamides
Phosphorothioate oligonucleotides
Relaxed circular DNA

Retinoic acid-inducible gene-I
RNA-induced silence complex
RNA interference

Reverse transcriptase

HBYV small surface protein
Sulfamoylbenzamides
Subcutaneous

Small interfering RNA
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Key Points

. Current treatments do not completely clear HBV from hepatocytes leading to
the establishment of lifetime chronic infection.

. Novel anti-HBV therapies targeting different steps of HBV replication cycle
with the potential of curing individuals chronically infected are needed.

. Elimination of cccDNA from the nuclei of hepatocytes and clearance of HBV
surface antigen (HBsAg) from blood are crucial to achieving a functional and
complete cure.

. Drug-drug combinations synergistically targeting key steps of HBV
replication cycle and immunomodulators boosting the host immune response
may lead to a functional cure.

. Novel strategies including CRISPR and siRNA technologies which can
inactivate persistent HBV cccDNA and also target integrated viral DNA may
eliminate HBV from chronically infected human hepatocytes.
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(a, b) HBV replication mechanism, genome structure, and schematic representation of
inhibition sites. (a) The HBV has an envelope composed with three forms (large, middle,
and small) of surface proteins that encloses the capsid with the double-stranded DNA
genome. (b) Replication starts with HBV binding to the hepatocyte at the NTCP receptor.
After entry, the viral particles are uncoated, and the nucleocapsid particle goes to the
cellular nucleus. HBV protein free rcDNA (Pf-rcDNA) is converted to an episomal cccDNA,
which is the transcription template for all four viral RNAs. The pgRNA is encapsidated
together with viral polymerase and subsequently reverse-transcribed into viral minus
strand DNA, followed by degradation of the RNA by RNAseH. Then, the plus-stranded
DNA is synthesized to form the partially double-stranded relaxed circular DNA. Mature
nucleocapsid can either be recycled back to the nucleus to maintain the pool of cccDNA
or packed with envelope proteins and exported as infectious virions to infect other cells.
pgRNA containing nucleocapsid and empty nucleocapsids are also packed with envelope
proteins and released. Ssmall, M medium, L large, DS double stranded, N7CPsodium
taurocholate cotransporting polypeptide, CR/SPR clustered regularly interspaced short
palindrome repeats; CAS9 CRISPR associated 9
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