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Abstract

The NIEHS GuLF STUDY is an epidemiologic study of the health of workers who participated in the 
2010 Deepwater Horizon oil spill response and clean-up effort. Even with a large database of ap-
proximately 28 000 personal samples that were analyzed for total hydrocarbons (THCs) and other 
oil-related chemicals, resulting in nearly 160 000 full-shift personal measurements, there were still 
exposure scenarios where the number of measurements was too limited to rigorously assess ex-
posures. Also available were over 26 million volatile organic compounds (VOCs) area air meas-
urements of approximately 1-min duration, collected from direct-reading instruments on 38 large 
vessels generally located near the leaking well. This paper presents a strategy for converting the VOC 
database into hourly average air concentrations by vessel as the first step of a larger process de-
signed to use these data to supplement full-shift THC personal exposure measurements. We applied 
a Bayesian method to account for measurements with values below the analytic instrument’s limit 
of detection while processing the large database into average instrument-hour concentrations and 
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then hourly concentrations across instruments on each day of measurement on each of the vessels. 
To illustrate this process, we present results on the drilling rig ship, the Discoverer Enterprise. The 
methods reduced the 26 million measurements to 21 900 hourly averages, which later contributed to 
the development of additional full-shift THC observations. The approach used here can be applied by 
occupational health professionals with large datasets of direct-reading instruments to better under-
stand workplace exposures.

Keywords:  Deepwater Horizon oil spill; direct-reading instruments; high volume data; volatile organic compounds

Introduction

The Deepwater Horizon oil drilling rig exploded on 20 
April 2010 and sank 2 days later (DWH disaster). Nearly 
5 million barrels (779 million L) of oil were released in 
the ensuing 3 months following the explosion. Tens of 
thousands of workers were involved in the oil spill re-
sponse and clean-up (OSRC). Volatile components of 
crude oil, along with other compounds associated with 
the OSRC effort, were released into the air. Oil clean-up 
work has been associated with detrimental health 
outcomes in previous oil spills (Laffon et al., 2016). 
Using surveys and health evaluations of the DWH dis-
aster workers, the National Institute of Environmental 
Health Sciences’ GuLF Long-term Follow-up Study 
(GuLF STUDY) is investigating the relationship between 
OSRC work and potential health outcomes, in part by 
evaluating exposure–response relationships in epidemio-
logic analyses (Kwok et al., 2017).

Among the oil-related exposures of interest are total 
hydrocarbons (measured as total petroleum hydrocar-
bons, THCs) and some of its volatile components, i.e. ben-
zene, toluene, ethylbenzene, xylene (o-, m-, and p-isomers 
combined), and n-hexane (BTEX-H). For each of these 
exposures, we developed quantitative estimates for ex-
posure groups (EGs), unique combinations of job/activity, 
location, and time period, that were linked to study par-
ticipants through their reported work histories (Stenzel, 
Groth, Huynh et al., 2021; Stewart, Groth et al., 2021).

The DWH disaster was characterized by the collec-
tion of a large number of full-shift personal samples 
analyzed for THC and related crude oil chemicals over 
a short period of time (28 000 personal samples over 
14 months). Nearly 26 200 samples met the study inclu-
sion criteria, resulting in ~134 000 THC and BTEX-H 
measurements (Stenzel, Groth, Banerjee et al., 2021). 
Despite this large number of samples, sufficient (in the 
number or in coverage of activities worked) personal ex-
posure measurements were not available for some EGs 
worked by the study participants due to the large area of 
the Gulf impacted, scope of the OSRC work performed, 
number of workers involved in the effort, and limits 

in the number of professionals with appropriate ex-
posure sampling expertise. In particular, measurements 
of workers on some of the large vessels supporting the 
on-water response efforts located primarily within a 5 
nautical mile (nmi; 9.26 km) radius of the wellhead, had 
in some cases, large gaps in the days monitored. In add-
ition, because different methods were tried to stop the 
leaking oil until the well was mechanically capped on 
15 July 2010, the work, and as a result, the exposures 
were likely to be unusually dynamic and variable beyond 
what would be expected with ‘similar EGs’ discussed 
by Mulhausen and Damiano (2015). That is, whereas 
geometric standard deviations (GSDs) of measurement 
datasets at typical work environments range from 2 to 3, 
the GSDs for our datasets were typically on the order of 
6 to 8. In such cases, a limited number of measurements 
may not be representative of the actual distribution of 
exposures from all tasks being performed over a period 
of time (in our case, months) and thus, may not be rep-
resentative of average exposures experienced by the 
workers over this period of time. In addition, because 
these vessels were in the wellhead area, workers on these 
vessels potentially had some of the highest exposure 
levels in the study. Inaccurate exposure estimates could 
bias the exposure–response relationship and therefore 
adversely affect the interpretation of disease etiology.

To supplement the personal measurements, we used 
a second dataset of measurements containing more than 
26 million direct-reading area measurements of approxi-
mately 1-min duration for volatile organic compounds 
(VOCs) (the VOC database). These measurements were 
collected on 38 vessels [drilling rigs, marine vessels 
(MVs) piloting underwater remotely operated vehicles 
(ROV vessels), and other large MVs] involved in the 
OSRC efforts at the wellhead. Many of these measure-
ments were below the analytical instruments’ limit of de-
tection (LOD; known as censored measurements). In the 
occupational health field, this VOC database represented 
a high volume data scenario, i.e. a scenario where the 
database is so massive that it cannot be analyzed using 
normally available computational resources.

Annals of Work Exposures and Health, 2022, Vol. 66, No. S1 i141



The overall goal of this component of the epidemio-
logic study was to develop daily estimates of full-shift 
personal exposures to THCs by vessel using these VOC 
data to supplement the limited number of THC full-shift 
personal measurements on these vessels (Fig. 1). The pro-
cess described was to make the VOC database comprising 
short-duration area measurements, comparable to the 
THC database, comprising full-shift personal measure-
ments. The purpose of this paper is to present the first two 
steps of the methods, which processed the 26 million VOC 
measurements into a manageable dataset (Steps 1 and 
2 of Fig. 1). Through the use of Bayesian modeling, we 
initially developed hourly averages of each instrument’s 
measurements on each vessel-day, and then we calculated 
for each hour on a vessel-day an average across all instru-
ments to create a vessel-level hourly VOC average. We 
provide summaries of the processed data across all vessel 
days and illustrate the method specifically by showing re-
sults from the Discoverer Enterprise (Enterprise). Using 
these hourly VOC averages, Ramachandran et al. (2021) 
describe the development of full-shift estimates of THC 
personal exposures using the VOC hourly concentrations 
to supplement the THC personal measurements, which 
likely developed more stable and representative exposure 
statistics for the workers on these vessels.

An overview of the exposure assessment is found 
in Stewart, Groth et al. (2021) and the development 
of EGs is in Stenzel, Groth, Huynh et  al. (2021). 
Estimation of exposures to THC and benzene, toluene, 
ethylbenzene, xylene, and n-hexane are in Huynh 
et  al. (2021a,b,c), Groth et  al. (2017, 2021), and 
Ramachandran et al. (2021); to PM2.5 in Pratt et al. 
(2021); to dispersant aerosols in Arnold et al. (2021); 
to dispersant vapors in Stenzel, Arnold et al. (2021); 
and to oil mist in Stewart, Groth et al. (2021). Dermal 

exposures were also estimated (Gorman Ng et al., 
2021; Stewart, Gorman Ng et al., 2021).

Sampling background

The VOC database consisted of measurements collected 
from 30 April 2010 through 29 August 2010. The respon-
sible party (RP) of the DWH disaster (BP Gulf Science 
Data, 2016) (as designated by the US government) collected 
these to (i) monitor the air around the operations activities 
to protect potential downwind receptors; (ii) monitor air 
in the vicinity of operations activities to protect worker 
health; and (iii) monitor specific activities to support safe 
operations. Levels in excess of 50 ppm for 15 min were 
used by the RP to support decisions that had to be made on 
short-term bases, such as providing respiratory protection 
or initiating efforts to suppress the oil vapors emanating 
from the leaking oil rising to the water surface. Area VOC 
measurements were collected with real-time direct-reading 
instruments on 4 drilling rig vessels, 13 ROV vessels, and 
21 MVs involved in the OSRC effort. These vessels were lo-
cated within a 5 nautical miles (nmi, 9.26 km) radius of the 
well and were generally stationary throughout their entire 
deployment during the OSRC effort.

Data from two of the MVs were removed from 
this database because all the VOC measurements col-
lected on those vessels represented instrument testing 
(calibration or bump testing using a gas standard of 
known concentration) or the instrument indicated (via 
a warning message) that it was not operating within 
the instrumentation performance criteria specification. 
The RP indicated the VOC samples were collected using 
real-time multi-gas detectors (AreaRAE and MultiRAE 
at that time manufactured by RAE Corporation) 
equipped with a photoionization detector (PID) lamp 

Figure 1. Steps to developing the THC:VOC relationship for prediction of THC from VOC direct-reading area measurements. This 
paper presents Steps 1 and 2. VOC TWA: time weighted average over hours of THC personal sample; Daily TWA: time weighted 
average over a day.
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(10.6 eV). The instrument manufacturer recommends 
that the instrument be calibrated using isobutylene at 
three concentrations: zero, ~10 and ~100 ppm. It is not 
clear from the available documentation what the RP 
used for their specific method of calibration. The re-
sponse and decay times of the instrument are expressed 
as a bell-shaped curve of 10 s. The response time repre-
sents the time to reach 90% of the actual concentration. 
For example, if the actual concentration was 1 ppm, 
within 10–15 s the detector would indicate at least 90% 
of that concentration, or 0.9 ppm. Similarly, the decay 
time represents the time it takes to indicate 10% of the 
peak concentration. These response times suggest that 
measurements collected at least 30 s apart were likely 
independent of each other. The sensitivities relative to 
isobutylene for benzene, toluene, ethylbenzene, xylene, 
and n-hexane are 0.53, 0.50, 0.52, ~0.43 (depending on 
the makeup of the xylene isomers), and 4.3, respectively. 
For example, if the air concentration actually measured 
was 100 ppm benzene, the instrument would display 
100 ppm/0.53 or 189 ppm. The BTEX chemicals are all 
more sensitive than isobutylene, while n-hexane is less 
sensitive (100 ppm n-hexane would result in an instru-
ment display of 100/4.3 or 23 ppm).

The instruments stored measurements to one decimal 
place, and in most cases the sample was collected at 
a frequency of about one measurement a minute. The 
VOC database contained many measurements below the 
direct-reading instrument’s LOD (0.1 ppm). However, the 
limit of reporting (LOR) was 0.05 ppm. The instrument 
rounded off all measurements to the nearest 0.1 ppm. 
That is, if the concentration measured was between 0.05 
and 0.14 ppm, it was recorded in the database as 0.1 ppm. 
If the value was between 0 and <0.05 ppm (actual concen-
trations can only be positive), it was recorded as 0.0 ppm.

The measurements were collected on one or more in-
struments at locations on each vessel determined by the 
industrial hygiene/safety staff on the vessel. The RP indi-
cated in their offshore air monitoring plan that the area 
monitors were to be located in the common work areas 
and inside crew quarters, resulting in the instruments 
being located anywhere on the vessel, from inside, in the 
living quarters or offices to the operations area of the 
vessel, such as inside the ship’s engine room or outside 
on the open deck. Additional monitors could have been 
placed near the edge of the vessel or in other areas of 
interest. Unfortunately, the locations for the instruments 
on each vessel were not recorded. The monitoring plan 
indicated that handheld monitors were also available, 
but it implied that these data were not part of the VOC 
area measurement database because these data were to 
be logged on approved field forms.

The basic assumption of our using these data was 
that an instrument at a particular location generally 
should provide a reasonable estimate of the air con-
centrations experienced by individuals at that location, 
based on the RP’s stated purpose for conducting the area 
monitoring (‘monitor the air in the vicinity of operations 
activities to protect worker health’). Thus, we assumed 
that the instruments were often strategically located to 
reflect where individuals worked. Moreover, because the 
response effort was a temporary, but time-critical event, 
using the direct-reading results for an investigation of 
engineering controls (which is one use of direct-reading 
instrumentation in industry) was unlikely. We also as-
sumed that a significant portion of most workers’ ex-
posures was generated from the general environment, 
the major source of which was likely the vapor from 
the oil spill, although engine combustion products and 
other chemicals may have made a minor contribution to 
the overall VOC general environment air concentration. 
We also assumed, if there were other emission sources, 
that workers probably did not receive exposures from 
a single specific emission source associated with a task, 
such as taking an oil sample from a tank, but rather 
from multiple sources, some of which may have been 
monitored by nearby instruments.

With sufficient numbers of instruments and personal 
measurements, therefore, we hypothesized that there may 
have been a relationship between the personal sampling 
and the area monitoring data. We believed this to be rea-
sonable for two reasons. First, we expected that the oil was 
the primary source of THC vapors in the general envir-
onment due to the leaking well, at least during the time 
the oil was being released, and that all workers would 
have received at least some, if not much, of their exposure 
from this source. Second, since attempting to stop the oil 
leakage was a dynamic situation, it is unlikely that most 
workers’ exposures would have had a single source all day, 
every day. This assumption would mean that exposures 
more likely reflected the more general, ambient air concen-
tration rather than reflecting a single more concentrated 
source of exposure. Because a number of factors (possibly 
unknown) could impact any potential relationship be-
tween full-shift VOC time weighted averages (TWAs) and 
THC personal full-shift measurements, we used empirical 
data to determine the relationship, i.e. the correlation be-
tween the two substances by vessel over time.

There are additional complicating factors that im-
pacted the correlation of VOC concentrations and THC 
personal measurements. First, whereas, the VOC in-
struments used a PID detector, the THC method used a 
hydrogen flame ionization detector (HFID). While both 
detectors have a comparable sensitivity to aromatics 
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such as the BTEX chemicals, the PID detector has a very 
low sensitivity to saturated alkanes such as n-hexane 
(as noted above, benzene’s sensitivity factor is 0.53 and 
n-hexane’s is 4.3). Thus, with the PID detector, n-hexane 
is eight times less sensitive than benzene. In contrast, 
with HFID, n-hexane is only about 20% less sensitive 
than benzene. A second complication is that the compos-
ition of the crude oil was changing due to weathering, 
as described in the online supplementary material of 
Stenzel, Groth, Huynh et al. (2021). Weathering here re-
sulted in the contribution of alkanes in the THC value 
changing more over time compared with that of the aro-
matics, which resulted in the relative correlation between 
VOC concentrations and THC measurements changing 
with weathering. For these reasons, in addition to the 
reasons mentioned above, we felt empirical observations 
rather than chemical properties and laws to derive the 
VOC:THC correlation was scientifically appropriate.

Methods

End goal of work
Our primary objective was to develop hourly aver-
ages across all instruments by vessel-day from the 
short-duration area VOC samples. The process of 
creating these hourly averages is described in Fig. 2. 
Ramachandran et al. (2021) then go on to describe 
how these hourly averages were further processed to 
develop full-shift averages for comparison with the 
THC full-shift personal measurements on the same 
vessels (Fig. 1, Steps 3–7). Those authors found a sig-
nificant relationship between VOC daily TWAs and 
non-censored THC daily TWAs on the ROV vessels in 
time periods (TPs) 1a–1b, (i.e. 22 April–15 July 2010, 
the period of oil release; R-squared 0.61, N = 131). For 
more information on time periods, see Stewart, Groth 
et al. (2021). Rationale for the use of this relationship 
can be found in Ramachandran et al. (2021). Using that 
relationship, Ramachandran et al. (2021) predicted 
‘THC’ TWA estimates from full-shift VOC TWA meas-
urements on vessel days without THC measurements. 
Descriptive exposure statistics using both the measured 
and the predicted THC values were then developed for 
each vessel. All estimation was done at the spatial level 
of the vessel.

Procedure 1: assess percent censoring
We first determined the percentage of censored values 
(i.e. below the LOD) from the results for each instru-
ment for each hour on each vessel (Fig. 2). We retained 
the same criteria to meet our performance goals as for 
our THC estimates, that is average relative bias [where 

relative bias is the absolute difference between the truth 
(value set in simulation to generate the data) and the es-
timate divided by the mean], designated as ≤15%, and 
an average root mean squared error [i.e. the square root 
of the sum of squared deviations between the real and 
estimated values (here the mean) divided by the square 
root of the number of observations; this whole quantity 
is then further divided by the mean to obtain the relative 
root mean squared error], designated by <65% (Huynh 
et  al., 2016). To achieve these goals, Huynh et  al. 
(2021a,b,c) use the threshold of N ≥ 5 measurements 
for ≤80% censoring. Here for the VOC data, we use a 
similar criterion. If the percent censoring was ≤80%, 
we proceeded with the Bayesian modeling described in 
Procedure 2A. If the percent censoring was >80%, we 
proceeded to Procedure 2B. If N < 5, the measurements 
were dropped, and no estimate was developed for that 
instrument-hour.

Procedures 2A and 3: Bayesian modeling 
(censoring ≤80%) of instrument-hour 
arithmetic means
When censoring was ≤80% and N ≥ 5, we used a 
Bayesian analysis of variance (ANOVA; intercept only 
regression) approach to account for the censored infor-
mation and to model each instrument’s hourly geometric 
mean (GM) and an overall hourly GSD (i.e. a GSD for 
each hour across all instruments on a vessel-day), from 
which the arithmetic mean (AM) was calculated (Fig. 2, 
Procedure 2A).

Specifically, we assumed the mean of the natural log 
of the VOC measurements for each instrument-hour 
could be modeled using only an intercept term (i.e. each 
instrument-hour had its own intercept, which repre-
sented the mean of the measurements for the instrument-
hour). Empirical analysis of air concentration variances 
within the same hour on different instruments on the 
same vessel suggested that variability was similar. 
Therefore, in our Bayesian ANOVA model, a common 
variance for each hour (i.e. the same variance across in-
struments) was assumed.

Let Yijk be the natural log of VOC for measure-
ment k on instrument i at hour j where i  = 1, …, 
Ninstr, j = 1, …, Nhours (or number of hours in the 
model), and k = 1, …, nij. The exact number of meas-
urements k within an hour varied from instrument 
to instrument. This measurement is the average con-
centration over the measurement time of seconds to 
minutes. To account for censored data, we expand a 
standard Bayesian ANOVA model by considering cen-
sored and non-censored sets separately. Let Cy = {k: Yk 
≤ LORk(Y)} be the set for which Ys were censored (at 
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or below the LOR), and let OY denote the observed 
measurements. Here, the LORk(Y) was ln(0.05) and 
was our censoring value. We assume common notation 
for probability density functions evaluated at qi for 
normal distributions (N(qi|μ,σ2)) with mean μ and vari-
ance σ2 and uniform distributions (Unif(qi|a,b)) with 
parameters a and b as written in common Bayesian 
textbooks such as Gelman et al. (2013). Then the joint 
posterior distribution had the following form:

Nhours∏
j

Unif(σj|a, b)
Ninstr∏

i

N(µij|c, d)

∏
i,j,k∈Oy

N(Yijk|µij,σ2
j )

∏
i,j,k∈Cy

Φ

Å
ln(0.05)− µij

σj

ã

 (1)

where Φ(Z) represents the standard normal cumu-
lative density function of Z, μij, is the intercept (i.e. 
the estimated mean on the log scale) for instrument 

i in hour j, and σ2
j  is the variance of the logged meas-

urements in hour j. We set a vague (i.e. providing 

limited information) proper (i.e. based on a formal 
statistical distribution) prior of N(μij|c,d) [where we 
set the mean to be 0 (c = 0), and the variance to be 
100 000 (d = 100 000)] on μij to allow the inference 
on the mean to be drawn primarily from the data. We 
assumed μijs were independent and identically distrib-
uted. We used an informative prior on the standard 
deviation, namely Unif(σj|a,b) where a = ln(1.01) and 
b = ln(12), to restrict GSDs to between 1.01 and 12, as 
was commonly observed in the GuLF STUDY full-shift 

Figure 2. Flowchart of procedures in estimating VOC exposure of hourly averages on a vessel. Gray squares are databases that 
were analyzed. We ran 12-h datasets through this algorithm using parallel computing.
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personal THC measurements over the same time 
period (Huynh et al., 2021a,b,c).

This model uses an overarching Gibbs sampling 
strategy where left-censored values were sampled first, 
followed by the sampling of means and standard devi-
ations at each Markov chain Monte Carlo iteration. We 
implemented this model in R using RJAGS (Plummer, 
2003, 2016; R Core Team, 2017). This model can be 
thought of as a simplified version of the bivariate left-
censored Bayesian model proposed by Groth et al. 
(2017), but instead of a regression expression with two 
chemicals described there, we consider a single μij term 
(i.e. 1 chemical).

Bayesian models use Markov chain Monte Carlo 
methods to generate a posterior distribution of each 
parameter of interest. This model yielded posterior dis-
tributions of a GM per instrument-hour and a GSD per 
hour (across instruments). In Bayesian modeling we as-
sess convergence of the model to better understand if 
the model has agreed on a solution. Convergence, as as-
sessed by Gelman Rubin diagnostics and trace plots, in-
dicated convergence well within the first 5000 iterations. 
To allow for optimal convergence, for every hour on 
each vessel in which an instrument had at least 5 meas-
urements and had ≤80% censoring, we obtained 10 000 
iterations after 5000 iterations of burn-in. This resulted 
in a distribution of 10 000 GMs for each instrument-
hour and 10 000 GSDs for each hour. These posterior 
samples were saved.

In Procedure 3, we used those GMs and GSDs to cal-
culate the posterior distribution of the corresponding 
AMs for each instrument-hour using the following 
formula:

AMij = GMij × exp
Å
1
2
(ln(GSDj))

2
ã
. (2)

Procedure 2B: instrument-hour AM calculations
In Procedure 2B (Fig. 2) we assigned all instrument-hours 
with censoring >80% and N ≥ 5, an AM of 0.05 ppm. 
Rationale for this decision is reported in Supplementary 
Material (available at Annals of Work Exposures and 
Health online).

Procedures 4–5: instrument-hour AM database 
and hourly AM database
Some of the AMs developed in Procedure 2A (<1%) 
were <0.05 ppm. Because for sets with >80% cen-
soring, we assigned the value of 0.05 ppm, to have 
comparable data, we replaced any Bayesian AM es-
timate <0.05 ppm with 0.05 ppm (procedure is not 
shown in Fig. 2).

The results developed in Procedures 2B and 3 were 
then compiled into a single database of instrument-hour 
AMs. For each instrument-hour on each vessel, we re-
tained the median estimate of the 10 000 instrument-
hour AMs from Procedure 2A (to reflect the true center 
of the distribution of each instrument-hour AM) and the 
AM estimates of 0.05 ppm from Procedure 2B (Fig. 2, 
Procedure 4). We called these instrument-hour averages.

Finally, we averaged the instrument-hour averages 
across all instruments for each hour of each day on each 
vessel (Fig. 2, Procedure 5). This procedure across in-
struments provided the average concentration across 
all measured locations on a vessel for that hour (called 
hourly averages).

Procedures 1–4 were computationally intensive due 
to the size of the dataset. As a result, we used Minnesota’s 
Supercomputing Institute (MSI) at the University of 
Minnesota to perform these analyses. To make it feasible 
to calculate instrument-hour AMs, we performed the 
analysis on 12-h sets (0–12:59; 13:00–23:59) of VOC 
data on each vessel. We considered the measurements in 
an hour on each vessel to be independent for running 
the program. Therefore, we were able to set up multiple 
computers to run different 12-h periods of data simul-
taneously, saving valuable computing time (also known 
as parallel computing).

Results

ROV vessel and MV VOC data
As part of this work, we developed instrument-hour 
averages and hourly averages for 13 ROV vessels and 17 
MVs (2 vessels not shown here are due to their lacking 
THC data that was needed by Ramachandran et al., 
2021).

Table 1 describes the number of VOC measurements 
available, the number of instrument-hour averages, and 
the number of hourly averages developed for each of the 
ROV vessels and MVs. Although the number of instru-
ments operational in a day did not vary substantially 
(N = 3–7), the number of measurements per instrument-
hour did vary (N = 50–1678), likely due to differences 
in sampling frequency between instruments. On the 
Adriatic and Strongline, samples were taken every few 
seconds on average, while on many other vessels, meas-
urements occurred roughly every minute on average. 
Days with VOC measurements also varied greatly by 
vessel, ranging from 2 to 109 (exact deployment dates 
for the DWH differed by vessel but were unavailable). 
Although over 100 000 instrument-hour averages were 
developed in this process, the number of hourly averages 
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was much smaller (N < 22 000), which led to a more 
manageable dataset.

Table 2 displays characteristics of the instrument-
hour averages, hourly GSDs, and hourly averages. We 
present the median and maximum of all instrument-
hour averages (from Procedure 4, Fig. 2) for each vessel 
(Instrument-hour Averages, Overall). We then calcu-
lated for illustration purposes an average for each 

day of measurements on each vessel from all available 
instrument-hours on the day and then averaged all daily 
values on the vessel (Instrument-hour Averages, Daily 
Averages). Similarly, we present the median and max-
imum of the GSD daily averages calculated by aver-
aging all available GSDs in each day and then averaging 
across all measured days (Hourly GSD, Daily Averages). 
Finally, again for illustration, we present the median and 

Table 1. Description of VOC data available on vessels operating ROVs vessels and MVs. Rig data were not used to im-
pute additional days of THC information. This table presents these statistics across the entire period of measurements 
(30 April–29 August 2010).

Vessel 

type

Vessel name N Days 

with  

VOC

Total N 

instruments

N Average 

Instruments per  

Hour

N Average 

Measurements  

per Instrument-Hour

N Instrument- 

Hour Averages

N Hourly 

Averages

ROV 

Vessels

Boa Deep C 77 8 5 232 7667 1697

Boa Sub C 51 20 5 195 4560 1008

Casey Chouest 14 6 6 54 1706 286

Chouest Holiday 30 8 4 19 2781 665

Helix Express 52 6 5 58 5610 1119

HOS Achiever 46 9 4 826 4312 1011

Iron Horse 12 6 6 888 1511 259

Normand Fortress 15 4 4 58 1273 347

Ocean Intervention I 19 5 3 881 956 274

Ocean Intervention III 109 16 6 73 16098 2521

Olympic Challenger 49 9 5 52 5408 1075

REM Forza 67 9 7 123 10550 1486

Skandi Neptune 93 20 5 90 10761 2025

MVs Adriatic 40 4 2 1165 2145 869

Blue Dolphin 31 16 6 372 3810 609

Helix Producer 30 7 4 57 2279 645

Loch Rannoch 19 6 3 596 413 138

Massachusetts 31 8 4 56 2511 616

Monica Ann 44 7 5 50 5200 1001

Normand Commander 48 10 5 57 5353 1048

Odyssea Diamond 35 5 4 88 2866 721

Overseas Cascade 18 9 7 53 1514 215

Seacor Pride 6 3 3 59 297 99

Seacor Reliant 2 4 4 70 32 9

Seacor Vanguard 11 6 4 219 490 133

Seacor Venture 17 2 2 51 589 331

Stim Star III 15 13 6 142 1537 272

Strongline 10 3 3 1678 546 182

Tyler Stephen 53 9 4 57 4488 1185

War Admiral 5 3 2 54 123 54

ROV Vessels: vessels operating remotely operated vehicles; N Days with VOC: number of days with at least 1 h of VOC information available; N Instruments: 

number of instruments that were operational on that vessel; N Average Instruments per Hour: the average number of instruments operating in each hour across all 

hours with measurements; N Average Measurements per Instrument-Hour: the average number of measurements in an instrument-hour across all instrument-hours 

on that vessel; N Instrument-Hour Averages: total number of instrument-hour AMs developed; N Hourly Averages: total number of hourly averages developed 

across all instruments.

Annals of Work Exposures and Health, 2022, Vol. 66, No. S1 i147



maximum of all hourly averages calculated in Procedure 
5, Fig. 2 across all measured instrument-hours for the 
vessel (Hourly Averages, Overall). The actual hourly 
averages that were the input for this final set of columns 
were used by Ramachandran et al. (2021) for further 
processing.

In all but two cases (Skandi Neptune and Seacor 
Vanguard, which had higher medians) the median 
instrument-hour average over all instrument-hour 

averages on a vessel was 0.05 ppm (the lowest possible 
value based on this method), reflecting generally low 
concentrations measured in any given hour by the in-
struments. However, the maximums of the individual 
instrument-hours were much higher: ranging from 
1.29 ppm on the Strongline to 5497.71 ppm on the 
Ocean Intervention III.

When these instrument-hours were averaged within 
each day, similar patterns in the instrument-hour 

Table 2. Statistics by vessel for instrument-hour averages (ppm), hourly GSDs, and hourly averages (ppm). The median, 
minimum (min), and maximum (max) are provided for each type of statistic. The minimum instrument-hour average 
was consistently 0.05 ppm and is therefore not shown.

Vessel type Vessel name Instrument-Hour Averages Hourly GSD Hourly Averages

Overall Daily Averages Daily Averages Overall

Median Max Median Min Max Median Min Max Median Min Max

ROV Vessels Boa Deep C 0.05 515.57 0.39 0.05 26.30 1.50 1.08 8.17 0.35 0.05 163.20

Boa Sub C 0.05 3261.41 0.24 0.05 83.37 2.31 1.09 8.84 0.09 0.05 1269.47

Casey Chouest 0.05 14.55 0.18 0.05 1.13 2.71 1.55 5.36 0.17 0.05 5.48

Chouest Holiday 0.05 10.58 0.13 0.05 0.81 7.14 2.58 9.61 0.05 0.05 4.33

Helix Express 0.05 76.75 0.11 0.05 4.10 2.54 1.09 7.01 0.05 0.05 35.12

HOS Achiever 0.05 178.11 0.25 0.05 3.99 2.82 1.20 10.03 0.12 0.05 64.61

Iron Horse 0.05 44.30 0.61 0.11 6.39 1.67 1.15 3.50 0.44 0.06 26.05

Normand Fortress 0.05 36.92 0.05 0.05 1.38 3.14 1.12 3.63 0.05 0.05 11.45

Ocean Intervention I 0.05 2.76 0.05 0.05 0.81 1.59 1.16 6.11 0.05 0.05 1.03

Ocean Intervention III 0.05 5497.71 0.48 0.05 110.48 3.18 1.45 8.08 0.26 0.05 1104.76

Olympic Challenger 0.05 90.00 0.14 0.05 1.42 3.41 1.27 10.60 0.06 0.05 18.10

REM Forza 0.05 1118.21 1.04 0.05 14.67 2.53 1.22 7.00 0.28 0.05 244.56

Skandi Neptune 0.10 1242.96 1.17 0.05 34.37 1.72 1.21 8.87 0.99 0.05 448.02

MVs Adriatic 0.05 1.96 0.05 0.05 0.27 1.73 1.46 4.83 0.05 0.05 1.83

Blue Dolphin 0.05 44.07 0.26 0.06 6.07 2.69 1.08 6.72 0.17 0.05 9.41

Helix Producer 0.05 18.33 0.38 0.05 3.57 1.59 1.14 3.78 0.25 0.05 11.38

Loch Rannoch 0.05 92.22 0.21 0.05 11.36 1.92 1.11 11.19 0.08 0.05 46.47

Massachusetts 0.05 91.11 0.29 0.05 19.38 3.17 1.37 10.87 0.10 0.05 48.76

Monica Ann 0.05 67.31 0.30 0.07 5.81 1.92 1.26 8.15 0.16 0.05 23.72

Normand Commander 0.05 150.29 0.18 0.05 4.47 1.98 1.16 10.47 0.13 0.05 32.22

Odyssea Diamond 0.05 70.32 0.36 0.06 3.38 2.42 1.37 9.10 0.21 0.05 30.68

Overseas Cascade 0.05 298.52 0.25 0.05 6.64 2.38 1.21 11.50 0.13 0.05 58.81

Seacor Pride 0.05 2.39 0.19 0.08 0.47 4.56 2.21 5.88 0.09 0.05 0.99

Seacor Reliant 0.05 14.11 0.53 0.05 1.02 1.45 1.45 1.45 0.33 0.05 3.57

Seacor Vanguard 0.29 7.78 0.61 0.15 1.58 1.58 1.34 2.17 0.64 0.05 3.83

Seacor Venture 0.05 7.01 0.28 0.05 2.04 8.90 1.25 10.83 0.05 0.05 7.01

Stim Star III 0.05 36.97 0.53 0.09 1.96 3.83 1.53 10.78 0.14 0.05 6.26

Strongline 0.05 1.29 0.05 0.05 0.46 3.63 2.38 4.88 0.05 0.05 0.46

Tyler Stephen 0.05 69.48 0.24 0.05 4.20 4.44 1.20 11.27 0.13 0.05 15.27

War Admiral 0.05 7.27 0.52 0.28 1.96 2.20 1.07 2.73 0.34 0.05 3.11

Instrument-Hour Averages Overall: statistics using all instrument-hour averages (weighted equally); Instrument-Hour Daily Averages: the daily instrument-hour 

average was calculated and statistics were performed on the daily average instrument-hour averages; Hourly GSD Daily Averages: the hourly GSDs were averaged 

within a day and statistics were performed on the daily average hourly GSDs; Hourly Average Overall: we took the statistics of all hourly averages (weighted 

equally).
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averages were observed, with the median daily average 
generally being low (<0.50 ppm), but with some indi-
vidual days on some vessels exceeding 10 ppm.

The median hourly GSDs by vessel ranged from 1.45 
on the Seacor Reliant to 8.90 on the Seacor Venture 
(Table 2), with minimums generally close to 1 (ran-
ging from 1.07 on the War Admiral to 2.58 on the 
Chouest Holiday). Maximum daily average hourly GSDs 
ranged from 1.45 on the Seacor Reliant to 11.50 on the 
Overseas Cascade.

The median of all hourly averages by vessel remained 
below 1 ppm for all vessels (Table 2). The lowest hourly 
average for all vessels was 0.05 ppm and the maximum 
reported hourly average ranged from 0.46 ppm on the 
Strongline to 1269.47 ppm on the Boa Sub C.

Data example: Discoverer Enterprise
To illustrate our method, we describe the results for the 
Enterprise, the drilling rig ship positioned directly over 
the well. Approximately 2.5 million VOC direct-reading 
measurements were taken between 14 May and 3 July 
2010 on this vessel. In total, 31 instruments operated for 
at least 1 h over this period, with an average of 20 in-
struments operational each day.

In this illustration, we analyzed VOC measurement 
results from 28 June 2010, which was a typical day in 
the GuLF STUDY’s time period 1b (15 May–15 July), 
when the crude oil was still being released and dis-
persant was being injected into the crude oil plume at 
the source of the leak, prior to the mechanical capping 
of the well. Although the instruments’ start and end 
times varied, several operated continuously on this par-
ticular day. Thus, this example allows us to view air con-
centrations during a continuous functioning period over 
an entire 24-h period.

Within-instrument and hour variability (prior to 
Procedure 1)
Prior to Procedure 1, we explored the raw air concentra-
tion data to display how the instrument measurements 
varied. Specifically, we plotted VOC measurement results 
from each instrument that operated between 12:00 and 
13:00 on 6/28/2010 (Fig. 3), a time of higher concentra-
tions on this day (e.g. instruments 8 and 10). Censored 
values were assigned 0.05 ppm for these plots.

We notice that several instruments measured rela-
tively constant levels of VOC at the LOR (instruments 2, 
13, 16, 18, 22, 23, 29, and 30). Other instruments gener-
ally measured constant levels above the LOR (7, 11, 12, 
15, 10, and 28), while others showed greater variation in 
concentrations reported (instruments 8, 10, 24, and 31).

Procedures 1, 2A–B, and 3: calculation of AMs
For all instrument-hours with ≥5 measurements, 
we assessed censoring (Fig. 2, Procedure 1) for each 
instrument-hour and applied Procedure 2A or 2B based 
on the censoring level present (≤80 or >80%). First, in 
Procedure 2A through the Bayesian modeling approach, 
we developed 10 000 GMs (for each instrument) and 
10 000 GSDs (across all instruments) for each hour 
when censoring was ≤80%. Supplementary Table S1 
(available at Annals of Work Exposures and Health 
online) displays the number of measurements and the 
median and 95% credible interval of the hourly GSD es-
timates for each hour on 28 June 2010. If all GSDs were 
averaged on this day (in Supplementary Table S1, avail-
able at Annals of Work Exposures and Health online), 
the average would represent one of the daily average 
values summarized in the GSD (daily average) columns 
in Table 2. The number of measurements per hour re-
ported ranged from 441 to 660. The median posterior 
GSD estimates ranged from 1.5 to 2.2, the highest being 
in hour 21. Using the 10 000 posterior estimates of the 
GMs of the instrument-hour concentrations and the 
10 000 posterior GSD estimates across all instruments 
from Procedure 2A, we calculated the posterior distri-
bution of the 10 000 AMs (Fig. 2, Procedure 3). Next, 
we assigned 0.05 ppm to all instrument-hours with cen-
soring >80% (Procedure 2B).

Procedures 4–5: instrument-hour AM and hourly 
AM analyses
For the estimated Bayesian AMs that were <0.05 ppm, 
we assigned 0.05 ppm. Then, from the 10 000 Bayesian 
AMs for each instrument-hour on each vessel, we re-
tained for the dataset only the median of the 10 000 
posterior estimates of each instrument-hour AM from 
Procedure 2A and combined them with the imputed 
value for the instrument-hour AM with >80% censoring 
(0.05 ppm) into a single database (Fig. 2, Procedure 4). 
Supplementary Table S2 (available at Annals of Work 
Exposures and Health online) presents the variation in 
the instrument-hour AMs. The minimum instrument-
hour AM was estimated to be 0.05 ppm, and the max-
imum instrument-hour AM reported on this day was in 
hour 7 (about 16 ppm). These 1-day values are equiva-
lent to the input values used to calculate our ‘Overall’ 
instrument-hour averages across all measured hours in 
Table 2. From this instrument-hour AM database, we 
show the instrument-hour AMs by hour on 6/28/2010 
(Fig. 4). Some instruments (e.g. instrument 26) measured 
lower concentrations (around 0.05 ppm), whereas other 
instruments measured concentrations that rose and fell 
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Figure 3. VOC concentrations within the 12:00–13:00 h on 6/28/2010 for selected instruments. The horizontal gray band repre-
sents the limit of reporting (LOR = 0.05 ppm). Each instrument that operated on this vessel on any day was given a number, 1–31. 
Only operational instruments (out of 35 total instruments) are presented. No modeling was performed, and censored values were 
imputed for these plots as the LOR. The VOC ppm scales for instruments 2, 7, and 8 are 0–12 ppm. Instruments 10–12 have a scale 
of 0–16 ppm. The remaining instruments have a scale of 0–4 ppm.
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throughout the day. Instrument 10 measured peak VOC 
concentrations (around 15 ppm) at 7:00. Instrument 8 
measured relatively low concentrations early in the day 
that peaked to about 10 ppm around 12:00.

The GSD of the instrument-hour AM statis-
tics ranged by hour from 5.76 to 7.67. The GSDs 
were higher during hours 11 (11:00–12:00) and 12 
(12:00–13:00).

Finally, we averaged the instrument-hour averages 
over instruments to obtain hourly averages across the 
vessel (Fig. 2, Procedure 5). These hourly averages were 
relatively constant around 1 ppm (Supplementary Table 
S2, available at Annals of Work Exposures and Health 
online). A slight peak in concentrations (1.7 ppm) oc-
curred in hour 12 (12:00–13:00 h). These averages are 
equivalent to the input data we used to generate the stat-
istics for ‘Hourly Averages: Overall’ in Table 2.

Discussion

We describe here a method to convert a big dataset of 
direct-reading area VOC measurements collected across 
multiple instruments on various vessels into a smaller, 
more manageable set of hourly vessel VOC concentra-
tion summaries of AMs (hourly averages). In an accom-
panying paper, Ramachandran et al. (2021) describe 
calculating full-shift VOC TWA exposure estimates 
from these hourly averages to be comparable to the 
hours of corresponding full-shift THC measurements 
on the same day. This procedure allowed us to identify 
the relationship between the two contaminants to even-
tually supplement the THC measurements for those 
days lacking THC measurements on vessels on which 

workers experienced some of the highest concentrations 
in the study, as shown by the maximums in the column 
‘Instrument-hour Daily Averages’.

In our Bayesian modeling strategy, we elected to use 
an hourly GSD across all instruments rather than an 
instrument GSD (across all hours), or a GSD for each 
instrument-hour based on empirical data and practical 
reasons. As demonstrated in our data example on the 
Enterprise, the hourlyAM estimates on a particular in-
strument could vary greatly from one hour to another. 
For example, as displayed in Fig. 4, instruments 8 and 
10 had variable AMs throughout the day on 6/28/2010. 
This implies that the concentrations could vary greatly 
for one instrument from one hour to the next, which 
would have resulted in high instrument-level GSDs (had 
we chosen this approach). The high variance in some 
of these instruments (over the instrument’s operation 
across the 4-month period), suggests that a common 
variance across all measured hours within the same 
instrument would not have been supported by the ob-
served data. Thus, although in general, exposure es-
timates remained constant or similar across time and 
across most instruments, there were some exceptions. 
Computationally, introducing an instrument-hour vari-
ability estimate led to instability in the estimates particu-
larly at high censoring levels. With higher censoring, the 
GSDs would have inflated to the upper bound allowed 
by our prior (GSD of 12), which seemed unreasonable. 
The practical reason for using an hourly GSD was that 
the work being performed on the vessels with VOC data 
was generally dynamic because varying approaches to 
stop the oil leakage were tried, and the workers on these 
vessels likely performed tasks associated with different 

Figure 4. VOCs AM estimates by instrument and hour on the Enterprise on 6/28/2010. Some instruments had higher levels of 
VOC while others had low levels of VOC likely due to the instruments’ locations on the vessel (i.e. inside in the living quarters 
versus the open deck).
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areas of the vessel. These different tasks and locations 
would have resulted in somewhat varying exposures be-
cause air concentrations changed over time and by loca-
tion. Specifically, evidence for this is provided in Table 2 
in the range of the daily average instrument-hour VOC 
averages.

Ideally, if instrument location information had been 
available, spatial–temporal analysis strategies could have 
been employed, along with averaging approaches similar 
to the averaging approach described here, but to exploit 
as much information as possible, we also would have 
needed estimates for the time each study participant 
spent at each location. No data have been identified, 
nor are they likely to exist, as to how long individuals 
worked at various locations on the vessel. Thus, we as-
sumed that the instruments were placed around the ship 
in such a way that an hourly average across all instru-
ments was a reasonable approximation of vessel-level 
air concentrations for that hour. Although measuring 
workers’ personal exposures was not the RP’s first stated 
reason for using the direct-reading instrumentation, 
Ramachandran et al. (2021) found through empirical 
analyses that the area measurements actually tracked 
workers’ personal exposures well (R2 = 0.61).

These analyses described above for estimating VOC 
hourly averages do not account for autocorrelation that 
may be present between some of these observations. 
However, the primary purpose of this paper was not to 
characterize VOC exposure, but rather to use the VOC 
measurements to estimate THC exposure as described 
further in Ramachandran et al. (2021). The exact values 
of the VOC estimates should be treated with some cau-
tion because ignoring autocorrelation may have in-
fluenced some of the estimates, particularly for the 
instruments with measurement duration of <15 to 20 s. 
However, there was likely greater uncertainty in using 
all instruments to represent exposures for all workers 
(in addition to linear regression uncertainty), so that the 
impact of autocorrelation on our estimates may be neg-
ligible. Future work should be done to formally estimate 
VOC exposures while accounting for autocorrelation.

There appeared to be a large number of medians 
of 0.05 ppm, the LOR for the instrumentation, for the 
instrument-hour averages. This suggests that most ves-
sels had very low levels reported for most of the time, 
leading to medians to be 0.05 ppm. It has been shown, 
however, that it is not unusual for exposures to be gener-
ally low throughout the day but to have high peaks that 
substantially contribute to a full-shift exposure level (the 
AM estimate), particularly when high GSDs occur. The 
GSDs were generally higher in the GuLF STUDY than is 
typically seen under stable industrial processes (but less 

so under outdoor conditions), with GSDs of 6–8, which 
indicates the occurrence of both these lower exposures 
and peak exposures.

The process of supplementing the THC measure-
ments with the VOC measurements was important for 
three reasons. First, the number of THC measurements 
on some of the vessels was limited. In the highly vari-
able environment on these vessels, an AM based on a 
small number of measurements in a dynamic situation, 
such as in our study, may not accurately reflect the true 
distribution of exposures. Second, the sampling strategy 
for personal measurements did not appear to cover all 
activities, in that on many of these vessels, no measure-
ments were available for several weeks (Ramachandran 
et al., 2021). Third, workers on some of these vessels 
experienced some of the highest exposure levels in the 
study. Inaccurate exposure estimates among the highest 
exposed group could affect the exposure–response rela-
tionships in the epidemiologic analyses and attenuate the 
observed disease risks in the highest exposure category.

Combining measurements from all instruments 
across an entire vessel to develop a single descrip-
tive statistic is akin to what we have done with the 
workers on these vessels in the epidemiologic study. 
Conceptually, the hourly value assigned to the vessel 
for all instruments could be thought of as the average 
of all workers’ exposures for that hour on that vessel. 
This concept can be extended to the workers in the 
study. Because we have no job titles for the study par-
ticipants on the ROV vessels and MVs, we had as-
signed all study participants who worked on a single 
vessel to a single EG for estimation purposes. Thus, 
the average of all the measurements on the vessel was 
assigned to all workers on the vessel. Further, the 
main source of the VOCs, at least before the well was 
capped (TPs 1a–1b), was expected to have been the 
volatized crude oil, which also was expected to be the 
main source of workers’ exposure. For some study 
participants on these vessels, we may have underesti-
mated exposures [if one or more instruments were lo-
cated indoors (in the living and office areas) and the 
participants only worked outdoors] and overestimated 
exposures for other participants (if they worked in-
doors, leading to lower estimated exposures than 
those that would have been observed if most of the 
instruments were located outdoors). We think few 
workers’ exposures were likely substantially overesti-
mated because, based on external data available to us, 
few study participants likely worked indoors for their 
entire shift. In addition, outdoor workers spent time 
indoors (lunch, breaks), so that underestimation of ex-
posure may not be severe if only a few instruments 
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operated indoors. The assumption of little bias, there-
fore, seems reasonable.

The VOC data were used to supplement THC per-
sonal measurements on the MVs operating the ROVs, as 
well as the other MVs in the study that had VOC data, 
as described in Tables 1 and 2 (Ramachandran et al., 
2021). In contrast, the VOC measurements from the 
Enterprise and the three other drilling rig vessels were 
not used to supplement the THC personal measurements 
taken on those vessels. We had extensive monitoring on 
the rig vessels (Huynh et al., 2021a), so that the VOC ex-
posure estimates would have provided limited additional 
information over the THC personal measurements col-
lected, as most days with VOC measurements also had 
THC measurements. Moreover, it is unclear how we 
would have assigned area measurements from unknown 
locations to the various and specific job EGs that we 
developed for the study participants (in contrast to the 
vessel-level EGs of the ROV vessel and MV participants) 
who either worked in a single primary area or who 
moved from location to location over time. Therefore, 
we display the results of the Enterprise in this paper only 
as an example of the methodology.

In the analysis on the Enterprise, we showed that 
the Bayesian method described here may be useful 
to estimate workers’ personal exposure levels from 
direct-reading instruments in situations where there 
are limitations to the sampling strategy, e.g. when per-
sonal measurements are lacking or insufficient, at least 
under certain circumstances. Industrial hygienists in 
chemical plants often use direct-reading instruments, 
such as fixed point monitoring systems, to facilitate 
the control of exposures. When used for controlling 
exposures (e.g. at an emission source), direct-reading 
instrumentation may not be appropriate for character-
izing worker exposures. If, however, instruments are lo-
cated throughout a workplace at locations frequented 
by workers, the measurement results may be useful. It 
has been recognized that while extensive area meas-
urements may be easier to collect than personal expos-
ures, these data are much more difficult to summarize 
and relate to (particularly full-shift) personal exposure 
levels. As a result, very few statistical strategies have 
been proposed to transform these often large datasets 
of short-duration concentrations into meaningful ex-
posure statistics. We described a systematic and statis-
tically valid method to develop summary statistics to 
more easily evaluate workplace exposures. This ap-
proach can be used by others in workplaces with high 
volume datasets to increase the usefulness of such in-
formation. It is important, however, to empirically ana-
lyze the relationship between the personal and area 

measurements to ensure that the latter can, in fact, be 
used to estimate worker exposures.

Future work could include expanding this strategy 
and investigating other analytical strategies for high 
volume datasets in occupational health. For example, 
this work assumed that the VOC measurements were 
normally distributed on a naturally logged scale. We 
also assumed that, on the same vessel, the measurements 
were independent of one another and the hours were in-
dependent of each other. Other distributions were not 
investigated. To better meet the equal variance assump-
tions of ANOVA, we assumed equal variances among 
the VOC observations on the same vessel in the same 
hour (i.e. one GSD assigned to all instruments). The 
Enterprise data support this assumption. Future work 
could investigate other variance assumptions.

We also assumed that the median posterior estimate 
of the instrument-hour AM was a representative esti-
mate of the average VOC concentration in that hour. 
Due to the large sample size (26 million) of VOC meas-
urements and the number of instrument-hour averages 
calculated, it was not feasible to save all posterior sam-
ples of the AMs or analyze these data together. Future 
work could consider investigating how results would 
differ based on differently chosen metrics (such as the 
2.5 quantile, 97.5 quantile, or mean posterior estimate). 
Other work could include investigation of strategies for 
maintaining uncertainty throughout the VOC hourly 
average calculations, such as by saving the entire distri-
bution of AM estimates, accounting for autocorrelation, 
and accounting for the variability of the instruments’ 
measurements within an hour.

Conclusion

A large, high volume dataset of over 26 million short 
duration, direct-reading VOC measurements on ves-
sels responding to the Deepwater Horizon disaster was 
available from multiple instrument records across each 
vessel, but the instrument locations were not identified. 
After accounting for censoring, Bayesian methods were 
used to calculate instrument-hour means and from these, 
hourly means across all instruments on each vessel. 
These data were developed to supplement THC personal 
air measurements on those same vessels, as described 
elsewhere. This approach can be used by other health 
professionals in the workplace with big datasets that are 
generated from direct-reading instruments to measure 
air concentrations. This paper presents methodology to 
use the direct-reading data to predict actual exposures 
either prospectively or retrospectively, when personal 
measurement data may not be available or are limited.
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