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Abstract

The GuLF Long-term Follow-up Study (GuLF STUDY) is investigating potential adverse health ef-
fects of workers involved in the Deepwater Horizon (DWH) oil spill response and cleanup (OSRC). 
Over 93% of the 160 000 personal air measurements taken on OSRC workers were below the limit 
of detection (LOD), as reported by the analytic labs. At this high level of censoring, our ability to 
develop exposure estimates was limited. The primary objective here was to reduce the number of 
measurements below the labs’ reported LODs to reflect the analytic methods’ true LODs, thereby 
facilitating the use of a relatively unbiased and precise Bayesian method to develop exposure 
estimates for study exposure groups (EGs). The estimates informed a job-exposure matrix to 
characterize exposure of study participants. A second objective was to develop descriptive stat-
istics for relevant EGs that did not meet the Bayesian criteria of sample size ≥5 and censoring 
≤80% to achieve the aforementioned level of bias and precision. One of the analytic labs recal-
culated the measurements using the analytic method’s LOD; the second lab provided raw analyt-
ical data, allowing us to recalculate the data values that fell between the originally reported LOD 
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and the analytical method’s LOD. We developed rules for developing Bayesian estimates for EGs 
with >80% censoring. The remaining EGs were 100% censored. An order-based statistical method 
(OBSM) was developed to estimate exposures that considered the number of measurements, 
geometric standard deviation, and average LOD of the censored samples for N ≥ 20. For N < 20, 
substitution of ½ of the LOD was assigned. Recalculation of the measurements lowered overall 
censoring from 93.2 to 60.5% and of the THC measurements, from 83.1 to 11.2%. A total of 71% 
of the EGs met the ≤15% relative bias and <65% imprecision goal. Another 15% had censoring 
>80% but enough non-censored measurements to apply Bayesian methods. We used the OBSM 
for 3% of the estimates and the simple substitution method for 11%. The methods presented here 
substantially reduced the degree of censoring in the dataset and increased the number of EGs 
meeting our Bayesian method’s desired performance goal. The OBSM allowed for a systematic 
and consistent approach impacting only the lowest of the exposure estimates. This approach 
should be considered when dealing with highly censored datasets.

Keywords:  Bayesian methods; censored data; Deepwater Horizon; exposure assessment

Introduction

After the explosion of the Deepwater Horizon (DWH) 
on 20 April 2010, ~4.9 million barrels (780 000 m3) of 
oil were released from the Macondo oil well (Lehr et al., 
2010) into the Gulf of Mexico. The release of oil con-
tinued until 15 July 2010, when the damaged blowout 
preventer (BOP) was replaced with a functioning BOP 
that mechanically capped the well. Approximately 55 
000 (National Institute for Occupational Safety and 
Health (NIOSH), 2011) workers and volunteers were 
identified as having worked in the oil spill response and 
cleanup (OSRC).

The National Institute of Environmental Health 
Sciences is investigating potential adverse health ef-
fects among workers involved in the OSRC for the Gulf 
Long-term Follow-up Study (GuLF STUDY) (Kwok et 
al., 2017). A crucial component of this study was the 
estimation of exposures experienced by the 32 608 
study participants. The goal of the study’s exposure 
assessment was to develop descriptive statistics of ex-
posures (e.g. arithmetic means [AMs]) from personal 
air measurements taken for various exposure groups 
(EGs), the members of which were expected to have 
had similar distributions of exposure  (Stenzel, Arnold 
et al., 2021). The exposure estimates were linked to the 
study participants’ DWH OSRC work histories to esti-
mate various measures of intensity and cumulative ex-
posure (Stewart, Groth et al., 2021).

In support of the OSRC, the Responsible Party (RP) 
of the spill (as designated by the US government) hired 
industrial hygiene and safety contractors, who collected 
~28 000 personal air samples between 22 April 2010 and 
30 June 2011, the GuLF STUDY exposure assessment 
period. Each sample was analyzed for several oil-related 

compounds and in some cases, 2-butoxyethanol (2-BE), 
a component of one of the dispersants used in the 
cleanup effort, and d-limonene, a degreasing solvent, for 
a total of ~160 000 measurements. Over 93% of these 
measurements were below the limit of detection (LOD) 
as reported by the analytic labs. This high level of cen-
soring would have limited our ability to explore ex-
posure–response relationships in the study.

This paper describes the procedure used to reduce the 
censoring in the RP data by recalculating the measure-
ment results to reflect the analytic methods’ LODs rather 
than the higher reported values. A Bayesian method was 
selected for statistical analyses of the measurement data 
after a simulation study showed that it had an accept-
able relative bias of ≤15% and root mean square error 
(rMSE) of <65% (together referred to here as the method 
performance goal) (Huynh et al., 2014, 2016). Meeting 
the performance goal required ≥5 measurements with 
≤80% censoring per EG. A substantial number of EGs, 
however, continued to have >80% censoring even after 
the recalculation to the analytic LOD. The paper then 
describes the methods used to develop descriptive statis-
tics of exposure for the remaining EGs.

An overview of the entire exposure assessment is avail-
able in Stewart, Groth et al., (2021). The development of 
EGs is described in Stenzel, Arnold et al., (2021). The meas-
urement descriptive statistics for the oil-based chemicals 
of interest (total hydrocarbons [THC], benzene, toluene, 
ethylbenzene, xylene, and n-hexane [BTEX-H]) are de-
scribed in Huynh et al., (2021a,b,c) and Ramachandran et 
al. (2021). Other exposure estimates are found in Arnold 
et al. (2021) and Stenzel, Groth et al. (2021) (dispers-
ants aerosols and vapors, respectively), Pratt et al. (2021) 
(PM2.5), and Stewart, Groth et al. (2021) (oil mist). Dermal 
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exposure estimation is described in Gorman Ng et al., 
(2021) and Stewart, Gorman Ng et al., (2021).

Methods

Background
In the GuLF STUDY, participants’ exposures were esti-
mated by linking their detailed DWH OSRC work his-
tory information obtained via telephone interview to 
EGs through a job-exposure matrix. To develop the EGs, 
we identified determinants of exposure we deemed to 
be important: job/activity/task/vessel (e.g. roustabout, 
skimming); location (near shore, Louisiana); and dates 
(as time periods, e.g. the 2-month period during which 
dispersant was injected into the plume of the leaking 
oil at the wellhead) (Stenzel, Arnold et al., 2021). These 
three determinants (job/activity/task/vessel, location, 
time period) were assigned to each measurement result 
and formed the basis of unique EGs.

Data collection and exclusions
We used the ~28 000 personal air samples provided 
by the RP as the basis of our exposure assessment for 
the epidemiologic study because that database com-
prised the largest set of measurements collected during 
the OSRC of the DWH disaster. The samples generally 
represented full-shift exposures (≥4- and ≤18 h) and 
covered the widest spectrum of jobs, activities, and tasks 
performed by the OSRC workers of all available data-
bases. The RP contractors collected the measurements to 
assess compliance with established workplace standards 
and guidelines. All the measurements were collected be-
fore the GuLF STUDY began.

The RP predominantly used two companies to pro-
vide industrial hygiene and safety services for the OSRC 
effort. One primarily supported offshore [≥3 nautical 
miles (nmi) = 5.56 km from shore] operations (referred 
to here as lab 1) and the other, near shore (<3 nmi from 
shore) and land operations (lab 2). Most samples were 
collected using passive dosimeters (3M 3500 or 3520, 
Assay Technology 521, SKC 575).

Table 1 describes the analytes and number of meas-
urements for the 28 000 samples (~160 000 total meas-
urements) collected between 22 April 2010 and 30 June 
2011. A number of these measurements were excluded 
from analysis for the reasons specified below. THC, 
measured as total petroleum hydrocarbons; benzene, 
toluene, ethylbenzene, ortho (o)-, meta (m)-, and para 
(p)-xylene, and n-hexane (BTEX-H) were the primary 
focus of the epidemiologic study. The isomers of xylene 
were combined and expressed as total xylene or xylene. 

2-BE, as a component of one of the dispersants sprayed, 
was also of interest. Other chemicals analyzed in the 
measurements were not considered in the study, but may 
be considered in future evaluations.

A total of 10 032 measurements were excluded for 
durations outside the general work-shift duration of 
4–18 h (n = 6824) or where sample documentation in-
dicated that the sample was not valid (e.g. handling/
storage reasons, such as the sample not being properly 
capped, a sample transmittal form was missing), or the 
sample documentation was missing or was so limited 
that it was not apparent what activity was measured (n 
= 3208).

Typical lab analyses
Typically, to determine LODs of analytic methods, labs 
prepare standards at various analyte concentrations in 
the method’s desorption solvent to reflect the expected 
range of exposures to be measured. Each standard is 
then analyzed and a calibration curve prepared to iden-
tify the relationship between the concentrations in the 
standards and the area counts (ACs) of the analytic in-
strument [here, a gas chromatograph (GC)] readout. 
The range of concentrations used when compliance is 
of interest is generally 0.1–2 times the target concentra-
tion (OSHA, 2005). The detection limit of the analytical 
procedure (DLAP), in micrograms (µg), is determined 
then from the calibration curves (OSHA, 2005). For 
any sample at or below the DLAP, the DLAP is divided 
by the sample air volume to obtain the sample LOD. 
Because sampling duration varies by sample, a LOD 
is calculated for each sample, considering its duration. 
Typically, the DLAP corresponds to an AC that is three 
times the average AC of the blank samples. Thus, this 
true LOD is based on the capability of the method, i.e. 
the lowest concentration in a sample that can be quanti-
fied with the desired precision and accuracy and can be 
distinguished from the background concentrations ob-
served in blank samples.

The calibration curve is expressed by equation (1).

ACa = MSa ×ma + ba (1)

where ‘a’ is the analyte of interest (e.g. THC), ACa is 
the measured GC AC of the sample corresponding to 
the analytea, MSa represents the mass of analytea in the 
standard (µg), ma is the slope of the calibration curve 
corresponding to analytea, and ba is the intercept of the 
calibration curve corresponding to analytea.

Equation (1) can be rearranged to calculate the mass 
of the analyte corresponding to the observed AC:

MSa = [(ACa−ba) /ma] (2)
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After the calibration curve is developed, a known 
volume of sample desorption solution is injected into the 
GC. This desorption solution may be diluted to optimize 
the instrument’s sensitivity. Equation (3) represents the 
dilution adjustment (DA).

MSa = [(ACa−ba) /ma]×DA (3)

The DA is the inverse of the dilution amount. Thus, if 
the desorption solvent is diluted in half, the DA equals 
2 to reflect that the analyte concentration in the original 
desorption solution would have been twice as large if the 
sample had not been diluted.

The AC corresponding to each analyte peak in the 
sample is entered in equation (3). The mass is then ad-
justed for the volume of air sampled by:

Sample air volumea = [sampling duration

×(dosimeter sampling ratea/1000ml/L)] (4)

where sample air volumea is the air volume sampled 
by the dosimeter in liters (L) associated with the spe-
cific analyte in the specific sample, sample durationa is 
the time (min) that the dosimeter sampled the air, and 
dosimeter sampling ratea is the analyte’s specific sam-
pling rate provided by the dosimeter manufacturer (ml 
min−1).

The calculated mass of analyten in the sample (equa-
tion 3) obtained from the calibration curve is then 

divided by the air volume sampled (equation 4) to ob-
tain the personal sample concentration (Ca) expressed in 
units of mg m−3. Note that µg L−1 = mg m−3.

Ca = MSa/sample air volumea (5)

The sample concentration expressed in mg m−3 is con-
verted to a concentration in ppm using equation (6).

Ca(ppm) = Ca × 24.45/(analytea′s molecular weight) (6)

The RP labs’ analyses
The two labs used by the RP for the analysis of the 
measurements were certified by the American Industrial 
Hygiene Association (AIHA) Laboratory Accreditation 
Program, LLC administered by the AIHA and NIOSH. 
The sample documentation indicated that the labs ana-
lyzed the samples using NIOSH method 1501 (hydrocar-
bons, aromatic), 1500 (hydrocarbons), 1550 (naphthas), 
and in some cases, OSHA 7 method (GC-FID solvents 
on charcoal) (NIOSH, 1994a,b,c; OSHA, 2000). The 
labs initially analyzed the samples for THC (measured as 
total petroleum hydrocarbons), benzene, toluene, ethyl-
benzene, total xylene (o-, m-, and p-isomers) (BTEX), 
and in some cases, 2-BE. Analysis of n-hexane (H) was 
added by lab 1 beginning 26 May 2010. Lab 2 did not 
analyze any of their samples for n-hexane.

THC in this study is a composite of the volatile 
components of total petroleum hydrocarbons and is 

Table 1. Number of measurements collected by the RP contractors between 22 April 2010 and 30 June 2011 before exclu-
sions (see text).

Analyte measured Number of measurements collected in the study 
period

2-Butanone 5

2-Butoxyethanol 1029

Acetone 9

Benzene 27 861

Cyclohexane 3722

Ethylbenzene 27 861

Limonene 244

n-Heptane (C7) 3722

n-Hexane (C6) 3722

Petroleum distillates 38

Tetrahydrofuran 3722

THC, calculated as n-hexanea 27 861

Toluene 27 861

Trimethylbenzenes, total 3722

Xylenes, total (m-, o-, and p-isomers) 27 861

Total measurements 159 240

RP, Responsible Party of the spill; THC, total hydrocarbons, analyzed as total petroleum hydrocarbons.
aSee text for details on the n-hexane calculation.
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expressed, as is standard practice, as n-hexane. This 
means that all the components of THC were assumed 
to have the same sampling rate, sensitivity factor on the 
GC detector, and molecular weight as those of n-hexane. 
Once the concentrations were calculated to mg m−3, 
they were converted to ppm using n-hexane’s molecular 
weight (86.16 grams mole−1) and equation (6).

Focused on assessing compliance, the labs calibrated 
the GCs with prepared calibration standards relative to 
the target concentrations selected by the RP for compli-
ance. The labs reported the concentration that corres-
ponded to the lowest calibration standard as the LOD. 
We refer to that here as the reported LOD (RLOD) to 
distinguish it from the analytic method’s LOD. Our ori-
ginal review of the measurements found that the RLODs 
were much higher than would have been observed based 
on the published expected performance of the analytical 
methods (OSHA, 1998, 1999, 2001).

Thus, although the labs referred to their censored 
data as being at or below the LOD, in actual practice 
they reported a measurement as censored if the result 
was below their calibration range, resulting in over 93% 
of the measurements being below the RLOD (Table 2). 
This high amount of censoring makes the development 
of stable, accurate, and reliable exposure estimates chal-
lenging. It also would have reduced the ability of the 
epidemiologic study to investigate exposure–response 
relationships because of the large number of study par-
ticipants who would have been in the lowest exposure 
category.

Recalculation of the air samples
After realizing that the RLOD levels were unexpect-
edly high, we contacted the RP. We learned, as indicated 
above, that the labs had developed the RLODs based on 
compliance concerns rather than the analytic methods’ 
capabilities. At our request, the RP asked both labs to 
recalculate the measurement data to reflect the analyt-
ical method’s capabilities. The recalculation of the data 
did not involve re-analyzing the samples, but rather 
simply recalculating the measurement results using the 
already generated calibration curves. For those measure-
ments below the RLOD, it was assumed that the instru-
ment response was linear between the lowest calibration 
standard and the analytical method’s LOD. This is a rea-
sonable assumption (OSHA Methods 1005, 111, and 
1002).

Lab 1 provided a new dataset with measurement re-
sults that reflected the analytical method’s capabilities 
and set the LOD at three times the instrument signal 
associated with the blank samples. Lab 2 stated that 
they could not provide recalculated measurement data 

because doing so would violate their written policy and 
procedures. Instead, they provided the raw lab data that 
allowed us to recalculate the measurement results. The 
raw data provided were: sample identification number, 
collection date, peak name (i.e. the analyte), sample di-
lution amount, ACs associated with each analyte of 
interest, and slope and intercept of each analyte’s cali-
bration curve. Lab 2 indicated they diluted all samples 
by a factor of two. This was possibly done to reduce the 
likelihood of saturating the GC detector, which other-
wise could have resulted in a non-linear response.

We used equations (1–6) to recalculate the concentra-
tions of all of lab 2’s measurements. In some cases, the re-
calculated measurement result was less than the method’s 
LOD due to AC uncertainty and calibration curve vari-
ability. In these cases, we set the measurement result at the 
method’s average LOD derived from measurements with 
the same sample duration. For samples where the original 
measurement result was non-censored, the recalculated 
value was compared to the value originally provided by 
the lab to assure they were the same.

Xylene’s LOD is twice as high as that of the other 
BTEX chemicals because ‘xylene’ corresponds to ‘total 
xylene’, which includes the ortho (o-), meta (m-), and 
para (p-) isomers. The m- and p-xylenes elute as one 
peak on the GC and the o-xylene as a second peak. The 
analytic LODs of the xylene peaks were 0.0023 and 
0.0024 ppm, respectively. If both peaks were censored, 
we reported a LOD for total xylene as the sum of the 
LODs from the two peaks. If one peak was censored and 
the other non-censored, we added the non-censored re-
sult to the censored result and considered the total xy-
lene measurement to be non-censored.

For both labs, we compared the RLOD to the 
method LOD to determine the impact this recalculation 
had on the analytical results, i.e. the reduction factor, by 
dividing the RLOD by the LOD.

Censoring issues within exposure groups
With the new measurements reflecting the recalculated 
sample concentrations, we developed our descriptive 
statistics for all job/work groups (Huynh et al., 2021 
a,b,c; Ramachandran et al., 2021) with N ≥ 5 and cen-
soring <80% using the Bayesian method to achieve 
the average relative bias of ≤15% and rMSE of <65% 
(Huynh et al., 2016, Groth et al., 2017, 2018, Table 3, 
Case 1). (Note: those authors used the term ‘job group’ 
or ‘work group’ as the basis for the measurement de-
scriptive statistics for conditions N ≥ 5 and censoring 
≤80%. These job/work groups are a subset of the GuLF 
STUDY EGs. Many of the other EGs had larger N with 
greater censoring (discussed below) or incorporated 
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measurements from other EGs (Stewart, Groth et al., 
2021). Thus, the references below are to EGs because 
the measurements had >80% censoring.)

A substantial number of EGs did not meet the ≤80% 
censoring and ≥5 measurements criteria. We extended 
the simulation work of Huynh et al. (2016) to identify 
other combinations of N and censoring with the same 
approximate level of performance. These are identified 
as Cases 3, 5, 7, 9, and 11 (Table 3). We allowed cen-
soring up to 98% with sample N’s of 250–1000. These 
extended criteria allowed the Bayesian method to esti-
mate the descriptive statistics while maintaining the 
same study level of accuracy and precision.

The remaining EGs did not meet our Bayesian cri-
teria, but we used the Bayesian method if there was at 
least one non-censored measurement, which is identi-
fied as the ‘High censoring Bayesian method’ (Cases 2, 
4, 6, 8, and 10, Table 3). In addition, when there were 
at least 1000 samples in an EG and at least one non-
censored sample, we used the Bayesian method (Case 
12, Table 3). In these cases, the confidence level of the 
estimate was reduced by one as described in Stewart, 
Groth et al. (2021).

In cases where all the measurements in the EGs were 
censored, we used an order-based statistical method 
(OBSM) to estimate the arithmetic average (AM), geo-
metric mean (GM), and 95th percentile. The OBSM is 
based on the premise that the probability of observing a 
specific number of samples all below the LOD provides 
a way to estimate the AM, GM, and 95th percentile. For 

example, if five measurements are collected, and all are 
observed to be below the LOD, it is expected that the 
GM and the AM are less than or equal to the LOD. We 
used this method when N ≥ 20 and censoring was 100% 
(Case 13, Table 3). See the Supplementary Material 
(available at Annals of Work Exposures and Health on-
line) for the underlying theory of this method. Finally, 
when sample size was 5–20 (groups with <5 measure-
ments were not considered, see Stewart, Groth et al., 
2021, for treatment of these groups) and censoring was 
100%, we used the substitution method to assign ½ of 
the LOD (Case 14, Table 3).

We did not find a recognized statistical method to 
evaluate the OBSM estimates (Huynh et al. 2014, 2016) 
that considered variability due to study major deter-
minants of location, time period, and activity/task. In 
the case of the BTEX-H chemicals, the priors did in-
clude information related to location and time period. 
A comparison study of a subset of our data (described 
in the Supplementary Material, available at Annals of 
Work Exposures and Health online) was conducted to 
determine how well the OBSM estimates predicted the 
Bayesian method estimates. We required, across two sub-
stances, a minimum of 100 pairs of EG estimates that did 
not meet our bias and precision performance goal but had 
at least one non-censored value (Cases 2, 4, 6, 8, 10, 12, 
Table 3). We selected benzene and toluene as the chemicals 
(Supplementary Table S1a, available at Annals of Work 
Exposures and Health online—benzene; Supplementary 
Table S1b, available at Annals of Work Exposures and 

Table 3. Criteria used to identify the estimation method and the calculation of confidence in EG datasets.

Case No. Number of  meas-
urements (N)

Censoring Estimation method Confidence 
level

1 ≥5 but <10 ≤80% Bayesian estimate No reduction

2 ≥5 but <14 >80% but <100% High censoring Bayesian method Reduce by 1

3 ≥14 but <50 >80% but ≤85%, Bayesian estimate No reduction

4 ≥10 but <50 >85% but <100% High censoring Bayesian method Reduce 1

5 ≥50 but <100 >80% but ≤90% Bayesian estimate No reduction

6 ≥50 but <100 >90% but <100% High censoring Bayesian method Reduce 1

7 ≥100 but <250 >80% but ≤95% Bayesian estimate No reduction

8 ≥100 but <250 >95% but <100% High censoring Bayesian method Reduce 1

9 ≥250 but <1000 >80% but ≤98% Bayesian estimate No reduction

10 ≥250 but <1000 >98% but <100% High censoring Bayesian method Reduce 1

11 ≥1000 >80% but ≥5 non-censored measurements Bayesian estimate No reduction

12 ≥1000 >1 and <5 non-censored measurements 

(i.e. <100% censored)

High censoring Bayesian method Reduce 1

13 ≥20 100% Order-based statistical method Reduce 1

14 ≥5 and <20 100% ½ of the LOD for the specific 

analyte

Reduce 1
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Health online—toluene). The Bayesian estimates (GM, 
AM, and 95th percentile) were plotted as the independent 
variables with the OBSM corresponding parameters as 
the dependent variables on the natural (normal) scale. 
Coefficients of determination (R2) were calculated using 
linear regression for both chemical datasets of all EGs 
with N = 1 and with N > 1 non-censored measurements. 
The 93 benzene comparisons evaluated AMs [overall and 
by various subsets of location, time period, and geometric 
standard deviations (GSDs)], GMs, and 95th percentile. 
Due to the smaller numbers (N = 20), the toluene evalu-
ation was limited to all data of non-censored measure-
ments =1 and >1.

Results

Recalculation of personal samples
Table 2 shows the number of samples analyzed and the 
percentage of censoring by lab before and after the re-
calculation effort. THC had the largest decrease in per-
centage censoring of 83 to 11%. The other analytes had 
final censoring percentages between 45 and 70%, ex-
cept benzene and ethylbenzene, which continued to be 
heavily censored (85–90%).

Table 4 presents the LODs for each analyte prior to 
and after recalculation and the reduction factors based 
on a 720-min sample. Lab 1’s reduction factors were 
3–23; lab 2’s factors were 4–49. Benzene, THC, and 
2-BE had the lowest factors for lab 1, whereas n-hexane 
had the highest factor. In contrast, for lab 2, benzene had 
the lowest reduction factor and THC had the highest re-
duction factor.

Censoring issues within exposure groups
Overall, 71% of the estimates for the EGs (43–95% by 
analyte) met the Bayesian performance goal of ≤15% 
and <65% average relative bias and rMSE, respectively 
(Table 5). THC had the highest percentage of estimates 
that met our performance goal (95%), whereas benzene, 
ethylbenzene, and n-hexane had the lowest percentage 
(43, 56, and 55%, respectively). The percentage of esti-
mates for which we used our Bayesian method despite 
not meeting our performance goals was 15% (5–27% 
by analyte). The percentage of EG estimates for which 
we used the OBSM ranged from 0 to 8% by analyte 
(overall, 3%). Finally, we assigned ½ of the LOD to 
0–22% of the estimates by analyte (overall, 11%).

OBSM/Bayesian comparison study
Table 6 presents the results of the OBSM/Bayesian com-
parison study. The R2s between the benzene Bayesian 

AM estimates and those calculated by the OBSM ranged 
between 0.64 and 0.91. When there was only one non-
censored measurement for the EG, the R2 for the AMs 
was 0.64–0.77. When there was more than one non-
censored measurement, the R2s were higher (0.90–0.91). 
The same pattern was essentially seen for measurements 
taken on land and on water and by time period or using 
the GSD generated by the Bayesian method, rather than 
a single GSD for water (GSD = 6) or land (GSD = 8). The 
correlation decreased when the GM and the 95th per-
centile were calculated (0.71–0.92). For toluene EGs the 
R2s ranged from 0.47 to 0.50.

Discussion

We describe our efforts to reduce the percentage of 
censored data by recalculating the measurement data 
to reflect the analytic methods’ actual LODs. The 
work was done on 145 462 measurements covering 
11 analytes. As a result, the overall percentage of cen-
soring dropped from 93 to 60%. This was important 
for the epidemiologic results in that it allowed greater 
differentiation among the study participants. It also 
provided a purer ‘low exposed’ subgroup of the study 
population to which higher exposed participants could 
be compared than had this recalculation not been 
done. The drop in the percentage censoring also in-
creased the number of EGs with descriptive statistics 
with acceptable levels of relative bias and rMSE. This 
reduction was particularly important for THC. To es-
timate THC we used a moderately informed uniform 
Bayesian prior based on the THC measurement dis-
tribution within overarching groups of measurements 
(e.g. all land measurements) (Groth et al., 2021). For 
the BTEX-H chemicals, however, we used the correl-
ations between THC and each of the BTEX-H analytes 
as priors (Groth et al., 2017, 2018).

The proportion of detectable measurements fol-
lowed expected patterns (Table 2). Lab 1 samples were 
primarily collected offshore where exposure levels were 
expected to be higher due to the proximity to the well 
site where the fresh crude oil was being released. Thus, 
the percentage of detectable samples went from 16% 
(83.9% non-detectable) to 49% (51.2% non-detectable) 
across analytes. In contrast, the measurements analyzed 
by lab 2 were generally near shore (<3 nmi from shore) 
and land samples and likely reflected greater amounts of 
weathering and lower concentrations of volatiles. Because 
the analytes of interest were some of the more volatile 
components of THC, a larger percentage of the BTEX-H 
had already disappeared, resulting in the near shore and 
land samples having lower levels of analytes and higher 
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levels of censoring. The percentage of detectable samples 
went from 4% (96.4% non-detectible) to 36% (63.8% 
non-detectable) across analytes. The percentage of EGs 
by analyte with high censoring followed the same pattern 
as the percentage of measurements below the LOD.

Some differences were observed between the labs’ 
data. The LOD reduction factor for the various analytes 
ranged from 3.0 to 23.1 for lab 1 and from 4.2 to 49 for 
lab 2. These differences may have occurred for several 
reasons. First, because the recalculation method for both 
labs was basically the same, lab 2’s higher reduction fac-
tors may be due to the latter’s using higher original cali-
bration standards. Second, lab 2’s recalculated LOD for 
THC (0.01 ppm) was somewhat lower than lab 1’s (0.11 
ppm). As a result, lab 2’s THC reduction factor was con-
siderably higher than the BTEX-H chemicals reduction 
factors (see the following paragraph). Third, lab 1 may 
have run the THC analysis on a less sensitive GC de-
tector channel to avoid overloading the detector, which 
would have resulted in a higher observed THC LOD.

Censoring was reduced the most for THC (83.1 to 
11.2%) and the least for benzene (97.1 to 88.7%) and 
ethylbenzene (97.7 to 86.1%). THC is a composite of 
the volatile chemicals in crude oil, primarily aromatics, 
and alkanes, all having approximately the same sensi-
tivity on the GC hydrogen flame ionization detector used 
in the analytical method. Thus, the THC method’s LOD 
was expected to be comparable to that of the BTEX-H 
chemicals (~0.01 ppm). Both labs, prior to recalculation, 
reported their THC LOD ~0.5 ppm and therefore, there 
was a reduction factor of nearly 50 for lab 2’s recalcu-
lation (LOD = 0.01 ppm), but ~5 for lab 1 (LOD = 0.11 
ppm), resulting in many of lab 2’s THC measurements 
becoming detectable despite the lower levels (Huynh et 
al., 2021a,b,c).

In contrast, the reduction factors for benzene and 
ethylbenzene were small. There are several likely reasons 
for this benzene finding. First, because of benzene’s 
low occupational exposure limit (OEL) (0.5 ppm), the 
calibration standards were prepared at much lower 
levels than the other analytes’ standards (with OELs 
>20 ppm), this meant there was a smaller difference 
between the RLOD and the analytic method’s LOD 
for benzene as compared to the other analytes. Also, 
benzene’s percentage concentration in the crude oil was 
low, i.e. 0.23% versus 0.65% for toluene, 0.70% for the 
xylenes, and 1.40% for n-hexane (Reddy et al., 2011). 
Additionally, benzene is more soluble in water than are 
the other TEX-H chemicals; its solubility is ~1800 ppm, 
compared to toluene (~500 ppm) and ethylbenzene, 
xylene, and n-hexane (latter 3 being below 200 ppm). 
This is important because the oil, released near the Gulf 
floor, traveled through 5000 ft (1524 m) of water before 
reaching the water surface, allowing a larger percentage 
of the benzene to be absorbed as it rose to the surface 
than the other chemicals of interest. Ethylbenzene’s low 
reduction in censoring is likely due to its low concentra-
tion in the crude oil (<0.1%). Also the calibration stand-
ards for ethylbenzene were also very low to begin with 
[the LOD was 0.034 (lab 1) and 0.06 ppm (lab 2)], the 
same as those observed for toluene, and the OEL con-
sidered for ethylbenzene was 100 ppm versus 20 ppm 
for toluene. As mentioned earlier, the labs developed 
calibration standards that reflected exposure limits. In 
the case of ethylbenzene, the calibration standards were 
likely artificially low as compared to its exposure limit.

Although the recalculation effort substantially 
lowered the amount of censoring, several EGs still had 
>80% censoring, the minimum threshold recommended 
by Huynh et al. (2016). In their simulation study, they 
varied the sample size from 1 to 100, the censoring 

Table 5. Number (N) and percentage of EGs by estimation method and by analyte.

Estimation method

Analyte Bayesiana (N, %) High censoring Bayesianb (N, %) OBSM (N, %) Substitutionc Total

Total hydrocarbons 2541 (95) 125 (5) 0 7 (0) 2673

Benzene 1147 (43) 727 (27) 211 (8) 588 (22) 2673

Toluene 2338 (87) 216 (8) 9 (0) 110 (4) 2673

Ethylbenzene 1507 (56) 480 (18) 139 (5) 547 (20) 2673

Xylene 2418 (90) 144 (5) 4 (0) 107 (4) 2673

n-Hexane 1462 (55) 715 (27) 142 (5) 354 (13) 2673

Total 11 413 (71) 2407 (15) 505 (3) 1713 (11) 16 038

aBayesian (≤80% censored, N ≥ 5; or higher censoring at greater values of N as indicated in Table 3, Cases 1, 3, 5, 7, 9, 11).
bHigh censoring Bayesian (indicated in Table 3, Cases 2, 4, 6, 8, 10, 12).
cSubstitution method = LOD/2.
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5–90%, and GSDs from 2 to 5 using weakly informed 
uniform priors. We observed that we could achieve our 
same goal for relative bias and imprecision for groups 
with even greater censoring if we had a larger sample 
size.

We established rules to develop Bayesian exposure 
estimates for censoring >80%. Based on Huynh et al.’s 
(2016) study, we identified N and percentage censoring 
conditions that met the study bias and rMSE goals (Table 
3). While for N = 5 and censoring ≤80%, there can only 
be 1 non-censored value, at <85% censoring for N be-
tween 14 and 50 there are at least two non-censored 
measurements, whereas at <90% with N = 50–100 
there are at least five non-censored measurements. From 
this, we inferred that at greater censoring levels, if there 
were at least five non-censored measurements, Bayesian 
methods would produce estimates that meet the study 
bias and precision performance goals. With N ≥ 1000, 
we considered Bayesian methods to be acceptable for 
any degree of censoring as long as there were at least five 
non-censored measurements. With these added rules, we 
were able to achieve 71% of our EG estimates meeting 
our performance goals.

We also used Bayesian methods for those EGs with 
fewer than five non-censored values but at least one non-
censored measurement. While bias and imprecision likely 
increased because the EG was more highly censored, the 
Bayesian model was still informative because observed 
values were actually present, although with higher un-
certainty (i.e. wider 95% credible intervals). This uncer-
tainty affected THC more than the BTEX-H chemicals, 
because the BTEX-H model had information from both 
the 1–4 non-censored measurement(s) and from the cor-
responding THC measurements, and additionally, the 
THC:BTEX-H correlations were used as priors. This ap-
proach allowed us to develop Bayesian estimates for an-
other 5–27% (by analyte) of the EGs.

Some EGs had 100% censoring. In these cases, a 
Bayesian strategy would rely primarily on prior informa-
tion because there is only information in the data that 
these measurements are censored. In addition, the prior 
would incorporate measurement information related 
only to the location and time period and not the activity, 
which is similar to the overarching priors we used for 
other estimates (Groth et al., 2021), this procedure would 
result in a wider intervals than we are comfortable with.

We chose not to drop these entirely censored EGs 
because epidemiologic analyses often use low-exposed 
people as a comparison group. Alternatively, we could 
have accepted these very wide intervals and decreased 
our confidence in the exposure estimates further. Instead, 
we developed estimates without credible intervals, since 
these estimates were below the LOD. We considered 

using simple substitution, i.e. of ½ of the LOD or the 
LOD divided by the square root of 2 (Hornung and 
Reed, 1990) but only used this approach for small 
datasets for reasons described in the Supplementary 
Material (available at Annals of Work Exposures and 
Health online).

Thus, for larger N, we used an OBSM to estimate 
descriptive statistics for EGs with 100% censoring. The 
OBSM is affected by two observed factors that impact 
the exposure statistics, i.e. the number of measurements 
collected and the samples’ durations. The OBSM is de-
pendent on the Z-score, which varies with sample size. 
To illustrate, consider a sampling strategy for benzene 
where an industrial hygienist collected for three groups, 
20, 50, and 80 measurements, all 100% censored and 
the same sampling duration. If in each case, the LOD 
was 2.4 ppb and the GSD = 6, the AM estimate would 
be 0.60 ppb, 0.30 ppb, and 0.21 ppb, respectively, 
even though the measurements were 100% censored. 
Supplementary Table S3 (available at Annals of Work 
Exposures and Health online) includes eight different 
cases including the cases used to generate the three 
concentrations in the prior sentence. Supplementary 
Table S3 (available at Annals of Work Exposures and 
Health online) was included to illustrate the impact on 
the OBSM related to dataset size, number of censored 
measurements, LOD and GSD. It should also be noted 
that the table in an EXCEL format can be used to cal-
culate GM, AM, and 95th percentile of varying sizes for 
datasets of interest to the reader. The equation numbers 
are included in the appropriate columns to allow the 
reader to configure the table in an EXCEL format.

Based on the results of our comparison study, for 
comparable size datasets with N ≥ 20, the OBSM pro-
vided similar estimates of the AM, GM, and GSD 
[although slightly higher, as indicated by the slope 
(Supplementary Table S2, available at Annals of Work 
Exposures and Health online)] to those generated by 
the Bayesian method with ≥1 non-censored measure-
ment. The R2s were 0.50–0.90 over the subsets evaluated 
(land, water, time period, Bayesian GSDs). We deemed 
from this study that the method was reasonable.

The statistics described here were assigned to each 
EG. When we developed our EG exposure estimates, 
we assigned a relative level of confidence to reflect how 
well the participants’ reported exposure determinant 
values matched the measurement determinant values 
(i.e. job/activity/task, etc. on a scale of 1–5, 5 being the 
highest) (Stenzel, Arnold et al., 2021; Stewart, Groth et 
al., 2021) to allow stratification of the participants in the 
epidemiologic analyses by confidence in the estimates. 
On the basis of the work described here, we modified 
these confidences to reflect the expected average relative 
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bias and rMSE (Table 3). The original confidence was 
lowered by 1 if the sample size and censoring likely re-
sulted in a higher level of bias and rMSE than our per-
formance goal or if we used the OBSM or substitution 
method.

The limitations of this work include the use of 
Bayesian methods when the sample size/censoring cri-
teria were not met, i.e. were worse than what was 
needed to achieve our goal of ≤15% bias and <65% 
rMSE. To minimize the impact of this procedure we as-
signed a lower confidence to these estimates, such that 
study participants could be excluded from the epidemio-
logic analysis if this deviation was of concern. A second 
limitation is the dependency of the OBSM on the sample 
size and the duration of the samples. However, by using 
the simple substitution method for N ≥ 5 and <20, the 
impact of this dependency was diminished. In addition, 
for convenience, we used a single GSD for water EGs 
and a single GSD for land EGs. If the true GSDs were 
different this could influence the results. However, these 
values were chosen based on GSDs observed in our data, 
and since we cannot observe the true underlying GSD, 
this was the best option.

Our comparison of the OBSM estimates with 
Bayesian estimates, however, found R2s of 0.64–0.90, 
suggesting this procedure had little impact on the esti-
mates. In addition, the simple substitution method re-
sults in no variability, but because the levels are below 
the LOD, there should be little impact on the epidemio-
logic analyses.

Strengths include the fact that most of the estimates 
(71%) had a low average relative bias (≤15%) and rMSE 
(<65%). BTEX-H estimates were likely to have even less 
bias and rMSE because those estimates were developed 
from priors based on the THC: analyte correlations. 
Second, the estimates using less desirable methods (i.e. 
the OBSM and simple substitution) occurred only at 
very low exposure levels (100% censored) and affected 
only 14% of the estimates. In addition, the OBSM es-
timates compared well with Bayesian estimates in our 
comparison study. Also, by separating out the lower ex-
posed groups (due to using the two methods), there is 
likely to be sharper contrast across study participants, so 
that if an exposure–response exists, there will be an in-
creased likelihood of finding an association. Finally, we 
have provided transparency to our approach for treating 
censored data.

The high censoring in this database should have little 
impact on the epidemiologic analyses. If the epidemio-
logic study develops ordinal exposure categories, all 

study participants assigned a OBSM or simple substi-
tution estimate would likely be assigned a value that is 
equal to the non-exposed workers (i.e. those trained but 
never worked) or a value that is above the non-exposed 
group but below the LOD (0.01 ppm), minimizing any 
effect of overestimation of exposures or lack of vari-
ability. Thus, there should be no impact. If the epidemio-
logic analyses use the estimates as continuous variables, 
the participants assigned an OBSM or substitution es-
timate could have higher estimates than truth, but they 
would still be ranked higher than non-workers (assessed 
as 0.01 ppm) and lower than higher exposed groups 
with levels >LOD. This approach, then, is likely to have 
little impact on exposure disease risk estimates.

In today’s workplaces, as exposures are becoming 
more controlled, highly censored datasets are likely to be 
encountered more frequently, particularly if the analytic 
lab is focused on compliance. The approaches described 
here to account for censored data should be considered 
by others who want to quantify low measurements that 
were analyzed to reflect compliance level LODs and 
not analytic methods’ LODs or who want to develop 
exposure descriptive statistics for measurements of 
low-exposed subgroups that are characterized by meas-
urements that were very highly or completely censored.

Conclusion

Recalculating measurements below the originally 
RLOD to reflect the analytic methods’ LODs substan-
tially strengthened the study exposure assessment ef-
fort by greatly decreasing the percentage censoring of 
the original measurements, especially for THC. This 
added information on THC increased the breadth of 
the EGs estimated by the Bayesian statistical methods, 
which were shown to have acceptable bias and impre-
cision in the EG exposure estimates. In addition, be-
cause the BTEX-H chemicals were informed by their 
relationship with THC, the recalculation increased the 
number of EGs with acceptable bias and precision for 
the BTEX-H chemicals. The various approaches pre-
sented in this paper which were based on dataset size 
and censoring, allowed the estimation of descriptive 
exposure statistics for all EGs developed for the GuLF 
STUDY. The better differentiation among EGs due to 
the methods described here allows for sharper contrast 
among individuals in exposure–response analyses and 
increases the likelihood of finding associations if they 
exist. Scientists with highly censored datasets may want 
to consider our approach.
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