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Abstract

SARS-CoV-2 T cell responses are associated with COVID-19 recovery, and Class I- and

Class II-restricted epitopes have been identified in the spike (S), nucleocapsid (N) and mem-

brane (M) proteins and others. This prospective COVID-19 Health Action Response for

Marines (CHARM) study enabled assessment of T cell responses against S, N and M pro-

teins in symptomatic and asymptomatic SARS-CoV-2 infected participants. At enrollment all

participants were negative by qPCR; follow-up occurred biweekly and bimonthly for the next

6 weeks. Study participants who tested positive by qPCR SARS-CoV-2 test were enrolled in

an immune response sub-study. FluoroSpot interferon-gamma (IFN-γ) and IL2 responses

following qPCR-confirmed infection at enrollment (day 0), day 7 and 14 and more than 28

days later were measured using pools of 17mer peptides covering S, N, and M proteins, or

CD4+CD8 peptide pools containing predicted epitopes from multiple SARS-CoV-2 antigens.

Among 124 asymptomatic and 105 symptomatic participants, SARS-CoV-2 infection gener-

ated IFN-γ responses to the S, N and M proteins that persisted longer in asymptomatic

cases. IFN-γ responses were significantly (p = 0.001) more frequent to the N pool (51.4%)

than the M pool (18.9%) among asymptomatic but not symptomatic subjects. Asymptomatic

IFN-γ responders to the CD4+CD8 pool responded more frequently to the S pool (55.6%)

and N pool (57.1%), than the M pool (7.1%), but not symptomatic participants. The frequen-

cies of IFN-γ responses to the S and N+M pools peaked 7 days after the positive qPCR test

among asymptomatic (S pool: 22.2%; N+M pool: 28.7%) and symptomatic (S pool: 15.3%;

N+M pool 21.9%) participants and dropped by >28 days. Magnitudes of post-infection IFN-γ
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and IL2 responses to the N+M pool were significantly correlated with IFN-γ and IL2

responses to the N and M pools. These data further support the central role of Th1-biased

cell mediated immunity IFN-γ and IL2 responses, particularly to the N protein, in controlling

COVID-19 symptoms, and justify T cell-based COVID-19 vaccines that include the N and S

proteins.

Introduction

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2) infection [1], is responsible for more than 220 million confirmed cases,

and more than 4.5 million deaths as of September 5, 2021 (COVID-19 report of the World

Health Organization). Clinically, SARS-CoV-2 infection ranges from asymptomatic infection

to severe illness including acute respiratory distress syndrome (ARDS), and death.

COVID-19 vaccines that induce neutralizing antibodies particularly to the spike (S) protein

have been approved for emergency use in the USA, and one, the Pfizer-BioNTech COVID-19

vaccine (Comirnaty) has received U.S. Food and Drug Administration (FDA) approval. How-

ever, the efficacy of these vaccines against evolving strains with mutations in the S-protein

remains to be fully elucidated [2]. While efforts are ongoing to develop vaccines that incorpo-

rate known variant sequences in the next generation S-based COVID-19 vaccines, future vac-

cines may also need to incorporate other antigenic targets of protective T cell immunity. Other

future vaccines involving attenuated whole virus may also be considered. The crucial role of T

cell immunity in COVID-19, and persistence of SARS-CoV-2-specific T cell immunity, has

critical consequences for vaccine development [3–6]. Antigen-specific T cell responses could

support the inclusion of additional antigenic vaccine targets in next generation COVID-19

vaccines. Such vaccines may enhance, broaden, and prolong protective cellular and humoral

immunity against COVID-19 by targeting immunodominant regions of multiple antigenic tar-

gets and provide T cell-mediated immunity against variants that may escape antibody medi-

ated immunity targeting just the Spike protein.

Since T cells play a vital role in protective immunity against SARS-CoV-2 [7], robust induc-

tion of T cell responses by vaccines will be crucial. It is important to understand the range of T

cell responses to T cell epitopes of SARS-CoV-2, and in silico methods have been used to pre-

dict epitopes, often using machine learning [8]. These methods either exploit genetic similari-

ties between SARS-CoV-2 and SARS-CoV particularly for structural proteins S, N, M and E-

proteins [9, 10], or peptide-HLA binding prediction methods [8] using artificial neural net-

works including NetMHCpan derived methods [11–14]. However, many of the predicted epi-

topes have proven to be non-immunogenic and the accuracy of these predictions can be

validated by experimental data [15]. Internal viral proteins are usually more conserved than

surface proteins and are often the targets of CD8+ T cells, emphasizing the relative importance

of the N-protein among others [16, 17]. Defining a comprehensive set of epitopes enables the

breadth of responses and number of epitopes among infected individuals and may help explain

heterologous clinical outcomes [7, 18–20].

This study was designed to comprehensively measure IFN-γ cell responses in the COVID-

19 Health Action Response for Marines (CHARM) study, a prospective, longitudinal cohort

study of healthy, young adults [21]. This cohort enabled the evaluation of immune responses

in symptomatic and asymptomatic SARS-CoV-2 infections, as well as in uninfected

participants.
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Materials and methods

Ethics

The CHARM study was conducted at the Marine Corps Recruitment Depot, Parris Island,

South Carolina and has been previously described [21]. Participation was voluntary, and par-

ticipants were free to opt out of the study. Institutional Review Board approval was obtained

from the Naval Medical Research Center (protocol number NMRC.2020.0006) in compliance

with all applicable US federal regulations governing the protection of human participants. All

participants provided written informed consent.

Study participants

As previously reported [21], participants were enrolled in the CHARM study between May

and September, 2020. After completing a 14-day home quarantine, recruits who were 18 years

or older were eligible to participate. Only those who had a negative qPCR for SARS-CoV-2, at

enrollment were considered for this analysis. A 14-question clinical assessment was adminis-

tered [22], mid-turbinate nares swab specimens obtained for qPCR to detect SARS-CoV-2,

and peripheral blood mononuclear cells (PBMCs) were collected at enrollment [22]. Study

participants were followed-up on days 7, 14, 28, 42, and 56 after enrollment at which time they

reported symptoms since the last encounter and had qPCR testing for SARS-CoV-2 repeated.

Study design

The complete design of this study is shown in Fig 1. Peripheral PBMCs were obtained at

enrollment (T0). Additional qPCR testing was performed at days 3/4, 7, 10/11, 14, 28, 42 and

56. Participants with a positive qPCR test were asked to participate in an immune response

sub-study. If willing, consented participants underwent further qPCR tests performed

biweekly within the first 14 days after infection, and then bimonthly at 28, 42, and 56 days.

Blood was drawn at each of these time points. Samples were categorized into 3 groups: samples

obtained in the first week after the initial qPCR positivity (T7), samples obtained in the second

week after qPCR positivity (T14), and>15 days after qPCR positivity (long-term, TLT). All

participants completed a questionnaire reporting 14 specific COVID-19 related symptoms and

were characterized as asymptomatic (124 participants) for those with no symptoms, and symp-

tomatic (105 participants) for those with any reported COVID-19 symptoms.

Immune samples

PBMCs for measuring cell-mediated immunity (FluoroSpot assay) were collected at the time

of enrollment (T0) and then after the participant’s first positive qPCR test (T7, T14, TLT), iso-

lated from heparin tubes within 24 hours, and stored in liquid nitrogen until used. Cryopre-

served PBMCs were thawed, washed, counted, and used in the FluoroSpot assay to measure

cells secreting either interferon-gamma (IFN-γ), Interleukin-2 (IL2), as previously reported

[23–25].

Peptide pools

All peptides were obtained from BEI Resources (Manassas, VA). The full-length spike glyco-

protein (S), full length nucleocapsid (N) protein, and the membrane (M) protein were each

covered by a series of 17-mer or 13-mer (aa) peptides overlapping by 10 amino acids that were

combined into antigen-specific peptide pools (S1–S3 Tables). The S protein pool contained

181 peptides, the N protein pool contained 59 peptides, and the M protein pool contained 31

peptides. In addition, all N and M peptides were combined into a single N+M pool. Samples
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were tested against the S pool and the N+M pool. Based on availability of cells in some partici-

pants, we tested individual antigenic pools of N peptide and M peptide pools. The CD4+ (S4

Table) and CD8+ (S5 Table) T epitopes peptide pool (kindly provided by Dr. Alessandro Sette,

La Jolla Institute for Immunology) [9]. The distribution of peptides among SARS-CoV-2 pro-

teins is shown in S6 Table. CD4+ epitopes were synthesized as 241 15-mers and CD8+ epitopes

were synthesized as 628 8-13-mers that were combined into one CD4+ and CD8+ peptide

pool [9]. Due to limited PBMCs, not all participants were tested with the CD4+CD8 peptide

pool.

Interferon-gamma/IL2 FluoroSpot assay

Antigen-specific circulating PBMCs were evaluated using pre-coated FluoroSpot plates and

kits purchased from Mabtech (Mabtech AB, Nacka Strand, Sweden) and used according to the

manufacturer’s instructions. The previously described ex vivo ELISpot was modified [26];

briefly, 2–3 x 105 PBMCs suspended in 100 μL complete medium were incubated in the

FluoroSpot plates with antigen-specific peptide pool at final concentration of 2 ug/mL sus-

pended in 100 μL complete medium. CTL-CEF-Class I Peptide Pool Plus (Cellular Technology

Ltd, Cleveland, OH) consisting of 32 peptides corresponding to defined HLA class I-restricted

T cell epitopes from cytomegalovirus, Epstein-Barr virus and influenza virus was used as an

internal control for each participant. PHA, a mitogen, was used as a positive control for cell

viability. Negative control unstimulated PBMCs received medium only. Cultures were

Fig 1. Participant flow: Times of FluoroSpot assays relative to the first positive PCR test. Participants were enrolled in the initial prospective study and

tested by qPCR biweekly initially and then bimonthly. When qPCR positive, the participant was transferred to the immune response subgroup within 48–96

hours (7d�) and tested by qPCR biweekly and bimonthly thereafter. PBMCs were isolated (red arrows) prior to the initial qPCR (at enrollment, T0), and once

positive at ¾ days 7 days (grouped into T7), 10/11 days (grouped into T14), and greater than 28 days (time long-term (grouped into TLT) post qPCR positivity

for SARS-CoV-2.

https://doi.org/10.1371/journal.pone.0266691.g001
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incubated for 40–42 h at 37˚C in 5% CO2. Each PBMC sample was assayed in duplicate and

the number of single-staining antigen-specific IFNγ- and IL2-secreting cells and double-stain-

ing IFNγ- and IL2-secreting cells were recognized as spot-forming cells (sfcs) and enumerated

using an automated FluoroSpot reader (AID iSpot, Autoimmun Diagnostika GmbH, Stras-

berg, Germany). After subtraction of the mean number of sfcs in negative control wells (no

antigen), the mean of the net sfcs of the test sample was expressed as sfcs/106 PBMCs. A posi-

tive response to each individual antigen-specific peptide pool was defined as positive when

there was a statistically significant difference (p =<0.05) between the average of the sfc in test

and negative control wells (Student’s two tailed t-test), plus at least a doubling of sfc in test

compared to control wells, plus a difference of at least 10 sfc between text and control wells

[27].

Statistical analysis

Comparisons of the proportion of participants demonstrating a response were made using a

Pearson chi-square while comparisons on the proportion of participants demonstrating

responses across pools were made using a McNemar’s Test. Comparisons across study groups

were made using a Wilcoxon Rank Sum Tests and comparisons before and after infection

were made use paired Wilcoxon Rank Sum Tests. Spearman Rank Correlations were used to

assess the correlation between maximum responses post-infection. For each participant, the

single highest magnitude of response among the 4 time points was selected for that participant

that were defined as greatest number of sfc/106 PBMC at T7, T14 or TLT after the initial

SARS-CoV-2 qPCR positive result. All statistical analyses were interpreted using a two-tailed

alpha = 0.05 and were made using SAS v9.4 or JMP v 12 (SAS Institute; Cary, NC). In some

cases, asymptomatic and symptomatic participants who all had responses to the N+M or CD4

+CD8 peptide pools were compared for responses to individual S, N or M peptide pools. In

the S1 and S2 Figs, comparisons of the magnitudes of positive responses after the first qPCR

assay were analyzed using the Mann-Whitney U-Test.

Results

Frequency of IFN-γ and IL2 responses to S, N+M, and CD4+CD8 peptide

pools before and after infection in the asymptomatic and symptomatic

groups

All relevant data of the FluoroSpot assays can be found in S1–S6 Files.

The individual frequencies of IFN-γ and IL2 responses in asymptomatic and symptomatic

participants to the S, N+M, and CD4+CD8 pools at T0, T7, T14 and TLT are shown in S1 and

S2 Figs. The frequencies of IFN-γ and IL2 responses to S and N+M pools significantly (p =

<0.001) rose at 7 days after infection and persisted unchanged at TLT (>28 days). The excep-

tions were IFN-γ response to the S protein that significantly declined by TLT among symp-

tomatic but were unchanged among asymptomatic participants, and IL2 responses to the S

pool significantly rose at T7 and again at T14 in the asymptomatic group, but not in the symp-

tomatic group. There were no IL2 responses to the CD4+CD8 pool in both groups, except one

symptomatic participant who had a positive response.

We next determined the frequency of positive responses at T0, T7, T14 and TLT to the S, N

+M and CD4+CD8 peptide pools.

S and N+M peptide pools. Among all participants, the frequency of positive IFN-γ
responses to the S pool (30.1%) or the N+M pool (37.1%), was higher among asymptomatic

(34.7%, 39.5%, respectively) than symptomatic (24.8%, 34.3%, respectively) participants;
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however, only IL2 responses to S pool were significantly higher (p = 0.04) (Table 1A) in the

asymptomatic group. IFN-γ responses to the N+M pool were significantly more frequent than

to the S pool (p = 0.03), whereas there was no difference in IL2 responses (Table 1B).

We next determined whether the frequencies of IFN-γ and IL2 responders to the N+M

pool were associated with the individual N or M pools in asymptomatic and symptomatic par-

ticipants (Table 2). Among all participants, IFN-γ responses to the N pool (48.4%) were signifi-

cantly (p = 0.002) higher than to the M pool (21.9%). The frequency of IFN-γ responders to

the N pool (51.4%) was significantly (p = 0.001) higher than the M pool (18.9%) in asymptom-

atic participants (p = 0.001) but was not significantly different among symptomatic partici-

pants (p = 0.06). The frequencies of IL2 responses were low compared to IFN-γ responses in

each group.

CD4+CD8 peptide pool. Among CD4+CD8 pool responders, the frequency of positive

IFN-γ in matched asymptomatic and symptomatic post-infection to S, N, and M pools were

compared. The responses to the S pool (63.3%) were higher than the N (47.8%) or M (17.4%)

pools. However, in asymptomatic participants IFN-γ responses to S and N pools were similar

(55.6% and 57.1%, respectively) and higher than to the M pool (7.1%) (Table 3), whereas in

symptomatic participants, IFN-γ responses to the S pool were higher (75.0%) than to the N

and M pools (33.3% each) (Table 3). This suggests that among asymptomatic participants in

Table 1. Frequency of immune responses to the S and N+M peptide pools in asymptomatic and symptomatic participants.

A

IFN-γ Asymptomatic (n = 124) Symptomatic (n = 105) All participants (n = 229) P-value

S Pool 43 (34.7%) 26 (24.8%) 69 (30.1%) 0.10

N+M pool 49 (39.5%) 36 (34.3%) 85 (37.1%) 0.41

IL2

S Pool 19 (15.3%) 7 (6.7%) 26 (11.4) 0.04

N+M pool 13 (10.5%) 10 (9.5%) 23 (10.0) 0.81

B

IFN-γ N+M pool Total P-value

Responder Non-Responder

S pool Responder 51 18 69

Non-Responder 34 126 160

Total 85 144 229 0.03

IL2 N+M pool

Responder Non-Responder

S pool Responder 12 14 26

Non-Responder 11 192 203

Total 23 206 229 0.5

Panel A: Comparison of the numbers and percent of asymptomatic and symptomatic participants with positive IFN-γ or IL2 responses post-infection to the S pool or

the N+M pool. The frequency of IFN-γ responses to the S and N+M pool were higher in asymptomatic than symptomatic participants, although the differences were not

statistically different between asymptomatic and symptomatic participants. However, the frequency of IL2 responses to the S pool was significantly higher among

asymptomatic than symptomatic participants (p = 0.04). The frequency of IL2 responses to the N+M pool were higher in asymptomatic than in symptomatic

participants, although the difference was not statistically different.

Panel B: The numbers of IFN-γ or IL2 responses of all participants (asymptomatic and symptomatic) to the S and N+M peptide pools were compared using McNemar’s

Chi-Square. IFN-γ responses to the N+M pool among all infected participants were more frequent (37.1%) than IFN-γ responses to the S pool (30.1%) (p = 0.03), but

not IL2 responses (p = 0.5).

Comparison of the frequencies and magnitudes of responses are shown in S1 and S2 Figs.

https://doi.org/10.1371/journal.pone.0266691.t001
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this study with IFN-γ responses to the CD4+CD8 pool, responses are generally directed to epi-

topes within the S pool and N pool and not within the M pool, whereas in symptomatic partic-

ipants, IFN-γ to the CD4+CD8+ responses are more frequent to epitopes within the S protein

than the N protein.

Magnitude of IFN-γ and IL2 responses to S, N+M and CD4+CD8 peptide

pools before and after infection in the asymptomatic and symptomatic

groups

We next compared the magnitudes of the maximum post-infection responses to each peptide

pool in asymptomatic and symptomatic participants. As with determining frequencies of

responses, we used the largest magnitude of responses at T0, T7, T14 or TLT.

S and N+M peptide pools. The magnitude of IFN-γ and IL2 responses to the S pool were

significantly higher in asymptomatic than symptomatic participants (p = 0.03 and p = 0.002,

respectively); however, only IL2 responses to the N+M pool were significantly higher in

asymptomatic participants (p = 0.04) (Fig 2). Yet, the magnitude of IFN-γ responses to the N

+M pool among all infected participants was higher than the magnitude of responses with S

pool (Table 4, p = 0.01).

Significant correlation (using Spearman Rank Correlations) was observed between maxi-

mum post-infection IFN-γ and IL2 responses to the N+M pool and the N pool and the M pool

(Fig 3). Maximum IFN-γ responses were more strongly correlated to the N pool (Spearman

R = 0.67, p<0.0001) than to the M pool Spearman R = 0.49, (p<0.0001) suggesting the relative

importance of responses to the N pool in the responses to the N+M pool.

Table 2. Frequency of immune responses to the N+M, N, and M peptide pools in post-infection asymptomatic and symptomatic participants.

Cytokine Pool Asymptomatic N+M pool responders Symptomatic N+M pool responders All participants N+M pool responders

IFN-γ N pool 19/37 (51.4%) 12/27 (44.4%) 31/64 (48.4%)

M pool 7/37 (18.9%) 7/27 (25.9%) 14/64 (21.9%)

p-value 0.001 0.06 0.002

IL-2 N pool 2/9 (22.2%) 0/8 (0%) 2/17 (11.8%)

M pool 2/9 (22.2%) 1/8 (12.5%) 3/17 (17.7%)

p-value 1.0 – 0.6

The numbers and percent positive of asymptomatic and symptomatic participants with positive IFN-γ or IL2 responses post-infection to the N+M pool were compared

with responses to the individual N or M pools.

https://doi.org/10.1371/journal.pone.0266691.t002

Table 3. Frequency IFN-γ and IL2 responses to CD4+CD8 pools and S, N, and M pools in matched asymptomatic and symptomatic post-infection participants.

Cytokine Pool Asymptomatic CD4+CD8 pool responders Symptomatic CD4+CD8 pool responders All participants CD4+CD8 pool responders

IFN-γ S pool 10/18 (55.6%) 9/12 (75.0%) 19/30 (63.3%)

N pool 8/14 (57.1%) 3/9 (33.3%) 11/23 (47.8%)

M pool 1/14 (7.1%) 3/9 (33.3%) 4/23 (17.4%)

IL-2 S pool Low Low Low

N pool Low Low Low

M pool Low Low Low

The numbers and percent positive of asymptomatic and symptomatic participants with positive IFN-γ or IL2 responses post-infection to the CD4+CD8 pool were

compared in matched participants with responses to the individual S, N, or M pools. Low responders had activities that did not meet the positivity criteria (Methods).

https://doi.org/10.1371/journal.pone.0266691.t003
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CD4+CD8 peptide pool. There as a significant correlation (using Spearman Rank Corre-

lations) between the maximum post-infection IFN-γ responses to the CD4+CD8 pool and

post-infection IFN-γ responses to the S, N and N+M pools (comparisons excluded the M pool

alone group) (Fig 4). These correlations suggest that that responses to the S and N proteins

contribute to the CD4+CD8 epitope pool responses, while the contribution of responses to the

Fig 2. Magnitudes of IFN-γ and IL2 responses of asymptomatic, symptomatic participants before and after infection, and healthy uninfected

participants, to S, N+M, and CD4+CD8 pools. Pre-infection (Pre) and maximum IFN-γ and IL2 responses post-infection (Post) to S, N+M, and CD4+CD8

peptide pools of asymptomatic and symptomatic participants, and healthy uninfected participants (Pre = baseline and Post = post-baseline). Significance of

differences between Pre and Post ��� p =<0.001.

https://doi.org/10.1371/journal.pone.0266691.g002

Table 4. Magnitude of IFN-γ and IL2 responses to the S and N+M peptide pools among all infected participants

(N = 229).

IFN-γ Mean (Std. Dev.) Median (Q1, Q3) P value�

S pool 40.4 (43.4) 30.0 (13.3, 52.5) 0.01

N+M pool 46.7 (50.7) 32.5 (15.0, 67.5)

IL2

S pool 19.3 (26.5) 12.5 (3.8, 27.5) 0.2

N+M pool 17.7 (23.4) 10.0 (3.8, 22.5)

Responses were expressed as box plots: Std. Dev.: standard deviation; Q1: Quartile 1; Q3: quartile 3; �Signed Rank

Test.

https://doi.org/10.1371/journal.pone.0266691.t004
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M pool alone remain undetermined, and we cannot exclude responses to other non-S, N and

M proteins in the CD4+CD8 pool. In asymptomatic participants, CD4+CD8 pool responses

are generally directed to epitopes within the S protein and N protein and not within the M pro-

tein, whereas in symptomatic participants, CD4+CD8+ responses are more frequent to epi-

topes within the S protein than the N protein (Table 3).

Discussion

This study enabled comparisons of asymptomatic and symptomatic immune responses imme-

diately after a positive SARS-CoV-2 qPCR assay. We used recovered cells from cryopreserved

samples that may not reflect total peripheral T cell counts. Both groups developed frequent

Fig 3. Correlations of the magnitude of IFN-γ and IL2 responses post-infection to the N and M pools with IFN-γ and IL2 responses to the N+M pool. The

maximum IFN-γ and IL2 responses post-infection to the N and M pools were compared to those to the mixture of N+M pool in matched participants by

Spearman Rank Correlations.

https://doi.org/10.1371/journal.pone.0266691.g003
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and robust IFN-γ responses, although IL2 responses were lower. Others have previously sug-

gested that a significant virus-specific T cell response was not associated with disease severity

[7, 28–30], and that total peripheral T cell counts were reduced in asymptomatic patients with

reductions in CD4+ and CD8+ T cell counts [31, 32] or greater reductions in CD8 cell counts

[31, 33]. Our results suggest that the specificity of responses, notably to the N protein, may be

an important indicator of disease status, as symptomatic participants had lower responses to

the N protein. We found that asymptomatic participants developed IFN-γ and IL2 responses

primarily directed toward the N pool and CD4+CD8 pools, and IFN-γ responses to the N pool

were more frequent than to the S pool, whereas symptomatic participants developed responses

primarily to the S pool, with lower frequencies of responses to the N, M and CD4+CD8 pools.

However, we only assessed asymptomatic and symptomatic participants with mild disease

Fig 4. Correlations of the magnitude of IFN-γ responses post-infection to the S, N, and N+M pools with IFN-γ responses to the CD4+CD8 pool. The

magnitudes of IFN-γ responses to the CD4+CD8 pool were compared to the magnitudes of IFN-γ responses to the S, N, and N+M pools. Using Spearman’s

ranked correlations, IFN-γ responses to the S, N and N+M pools were significantly correlated.

https://doi.org/10.1371/journal.pone.0266691.g004

PLOS ONE T cell responses and asymptomatic and symptomatic COVID-19 infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0266691 April 7, 2022 10 / 19

https://doi.org/10.1371/journal.pone.0266691.g004
https://doi.org/10.1371/journal.pone.0266691


who were all treated as outpatients. Therefore, we cannot extrapolate our findings to other

studies using patients with severe disease that suggested lung-homing T cells may contribute

to immunopathology, while non-suppressive SARS-CoV-2-specific T cell responses may limit

pathogenesis and promote recovery from severe COVID-19 [29].

Early induction of IFN-γ SARS-CoV-2-specific T cell responses to the S protein has been

previously associated with mild disease and accelerated viral clearance [28, 30] and the magni-

tude of responses were more robust in patients with mild disease, whereas those responses

were less pronounced in one patient with fatal disease [30]. Using peptide pools in the ELISpot

IFN-γ assay, 95% of donors with mild disease had T cell responses to at least one antigen [34];

median aggregate responses were higher in donors with symptomatic disease than asymptom-

atic disease, confirming another report using ELISpot IFN-γ [4], and was correlated with peak

antibody responses. When CD4+ and CD8+ responses were measured, IL2 responses were

dominant in the CD4+ subset. However, there was a greater proportion of CD8+ T cells than

CD4+ T cells in mild cases [4]. In convalescent patients, using predicted HLA class I-restricted

epitopes, there were distinct patterns of immunodominance for CD4+ and CD8+ T cells,

accounting for over 80% of the response, confirming an earlier more limited study [9], and

CD4+ and CD8+ responses were highly correlated. Our study extends these findings to

include the role of the N protein and CD4+CD8+ T cell responses.

While there are no clearly-defined immune correlates of protection against COVID-19

[35], there is considerable evidence that neutralizing antibodies, an elevated CD8+ T cell

response and TH1-biased CD4+ effector responses provide optimal protective immunity [36].

Recent results from convalescent COVID-19 participants indicate that CD4+ and CD8+ T cell

responses were similar across different SARS-CoV-2 variants [37]. In our study we used the

FluoroSpot assay to measure cellular IFN-γ and IL2 responses but not the phenotype of

responding cells, and we were unable to perform cell depletion studies that have established

the predominant role of CD4+ T cells [38–40]. It has been suggested that enduring T cell

immunity is related to helper and memory T cell activities against multiple viral targets, and

further investigation of cohorts such as CHARM using phenotypic cell assays would better

define responses associated with protection or asymptomatic disease [33]. In the CHARM

study among seropositive recruits, infection was associated with lower baseline S protein IgG

titers than non-infected participants, but had higher viral loads, trended to shorter duration of

PCR positivity and more asymptomatic infections [22]. Further investigation is needed to

determine whether antibody and T cell responses together influence disease outcome. For

example, in a study of convalescent subjects with PCR proven SARS-CoV-2 infection using

ELISpot, there were weak correlations between S antigen-specific T cell responses and neutral-

izing antibody titers to SARS-CoV-2 [41], Thus, it is important to better understand the roles

of antibody and T cell responses, including IFN-γ and IL2, after vaccination [42], including in

the hybrid immunity of subjects that were infected and then subsequently immunized with a

COVID-19 vaccine [43–46], as well as their roles in multisystem inflammatory syndrome in

children (MIS-C) and post-acute sequelae SARS-CoV-2 infection (PASC) [47, 48]. Direct cyto-

lytic clearance involving receptor-mediated interactions between immune cells and virus-

infected cells suggested that natural killer (NK) cells expressing DNAM1 were increased in

patients who more rapidly cleared from infection [49]. This suggests that NK cytolytic

responses are related to the clearance of SARS-CoV-2 [49]. In addition, convalescence in

patients with moderate disease was associated with expansion of cytotoxic T cell subsets [50].

Although they were beyond the scope of our study, single-cell level interactions will be invalu-

able to better define cytotoxicity and associated expression of gene signatures associated with

T cell cytotoxicity [49, 51].
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In the CHARM study, more than 95% complete viral genomes were recovered from 18

quarantined participants and six independent monophyletic transmission clusters were identi-

fied that were transmitted to roommate pairs but not to other platoons. Since enrollment

occurred in May to September 2020, likely SARS-CoV-2 strains were prior to the emergence

of the Delta and Omicron variants, and were likely the S or GH clades [52].

A major concern of current antibody-based vaccines are mutations in the S protein that

affect sequences recognized by vaccine-induced neutralizing antibodies [53–59]. However, it

has been suggested that it is highly unlikely that SARS-CoV-2 mutations would affect T cell

immunity as so many SARS-CoV-2 epitopes are distributed throughout virus [40, 60]. How-

ever, mutations in new variants, including the Delta variant, significantly reduced T cell

responses to epitope peptides in convalescent and vaccinated subjects [59], and in in vitro
binding assays [61]. The genetic HLA-restriction of T cell responses associated with disease

outcomes would greatly advance our understanding of the relative importance of predicted

epitopes including those used in this study, and whether newly emerging variants of concern

carry mutations within these protective epitopes. For example, the L452R mutation contrib-

utes to evasion of HLA-A24-mediated cellular immunity [62].

Finally, we observed T cell IFN-γ, but not IL2, responses to the S and N+M pool in some

uninfected participants, suggesting cross-reactive T cells derived from prior exposure to the

common cold human coronaviruses that is in agreement with previous studies that have

reported SARS-CoV-2 cross-reactive CD4+ T cells in unexposed people [39, 63], and others

have speculated whether these may contribute to disease outcomes in COVID-19 [64].

Taken together, our results support previous findings on the potential importance of the N-

protein for vaccine development [65]. Immunization with the N protein protects against

SARS-CoV-2 in non-human primates [66] and mice [67]. Another advantage to considering

the vaccine potential of the N protein is its sequence conservation between SARS-CoV-2 and

SARS-CoV and MERS-CoV [68]. The N protein contains a region of T cell cross-reactivity

that is common to human alpha and betacoronaviruses, as well as a dominant B cell epitope

[69]. The emergence of new SARS-CoV-2 variants [70] such as the Omicron variant [71] lend

further urgency to the use of the N protein in next generation COVID-19 vaccines.

Limitations

There are several limitations to this study. Firstly, the study population is young, healthy adults

with few comorbidities and may not be reflective of the general population limiting the gener-

alizability of the findings. Secondly, all illnesses were mild, limiting the ability to assess a range of

clinical outcomes. Thirdly, the timing of FluoroSpot responses may not have been optimal and

further post-infection analyses are warranted. Fourthly, we used cryopreserved cells, and it is

possible the recovery of viable cells after thawing may have varied and affected assay readouts.

Finally, although we tested immune responses to the S, N and M proteins, it is likely that

responses to other proteins may also have a significant role in disease modulation, and responses

may partially reflect the relevant sizes of each protein and the numbers of peptides in each pool

that were higher for the S pool. We only measured IFN-γ and IL2 producing cells and it is also

possible that different cytokines would help to better understand disease severity [30], and phe-

notypic analysis would also better identify the roles of CD4+ and CD8+ T cell responses.
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