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Abstract

While the epidemiologic literature suggests certain maternal occupational exposures may

be associated with reduced measures of size at birth, the occupational literature employing

fetal biometry data to assess fetal growth is sparse. The present study examines associa-

tions between maternal occupational exposures and ultrasound-measured fetal growth. We

included 1,739 singleton pregnancies from the INfancia y Medio Ambiente (INMA) project

(2003-2008). At 32 weeks of pregnancy, interviewers ascertained mothers’ employment sta-

tus and assessed job-related physical loads, work schedules, and job strain during preg-

nancy. Job titles were linked to a job-exposure matrix to estimate exposure to 10 endocrine

disrupting chemical (EDC) groups. We calculated z-scores from longitudinal growth curves

representing trajectories from 0-12, 12-20 and 20-34 gestational weeks for abdominal cir-

cumference (AC), biparietal diameter (BPD), femur length (FL), and estimated fetal weight

(EFW). Linear mixed models clustered by IMNA region (i.e., Gipuzkoa, Sabadell, Valencia)

were used to examine associations between occupational exposures and fetal growth.

Effect estimates are presented as percentage change in fetal growth. There was limited evi-

dence of associations between work-related non-chemical stressors and fetal growth. We

observed associations of similar magnitude between multiple EDC groups and decreased

EFW trajectories during 20-34 gestational weeks (phthalates: -1.4% [-3.5, 0.6%];
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alkylphenolic compounds (APCs): -1.1% [-2.3, 0.1%]; miscellaneous chemicals: -1.5%

[-3.7, 0.8%]), while miscellaneous chemicals were associated with increased BPD from 12-

20 weeks (2.1% [0.8, 3.5%]). Notably, 67% of women exposed to phthalates were hairdress-

ers; 68% of women exposed to APCs worked as domestic cleaners. In conclusion, we found

limited evidence that maternal occupational exposures impact fetal growth. Further research

should consider the combined impact of multiple workplace exposures.

Introduction

In European Union countries, approximately three-fourths of adult women participate in the

workforce and most are in their reproductive years [1]. Thus, a significant portion of pregnant

women are at risk of exposure to reproductive and developmental hazards at work. During

pregnancy, the fetus is particularly vulnerable to environmental insults [2], and exposures that

alter fetal growth may predispose individuals to increased risk of morbidity and mortality

throughout the life-course [3,4].

An increasing number of epidemiologic studies link environmental endocrine disrupting

chemical (EDC) exposure among pregnant women to reduced measures of fetal growth [5,6],

yet limited data exist in relation to maternal exposure to EDCs in occupational settings.

Women working in certain professions may be exposed to higher concentrations or come into

more frequent contact with EDCs than the community at large [7,8], thereby potentially lead-

ing to fetal exposure at levels above background concentrations. Available literature suggests

that mothers who are occupationally exposed to EDCs—in particular, organic solvents, pesti-

cides, and phthalates—are more likely to have infants who are born low birth weight (LBW;

birthweight <2,500 g) or small for gestational age (SGA; birthweight in <10th percentile for

gestational age) [9–11]. However, measures at birth do not capture the dynamic nature of fetal

growth; it is possible that restricted growth occurs during pregnancy even if the fetus achieves

population size standards at birth [12]. Further, anthropometric measures at birth poorly

reflect growth trajectories during early pregnancy, which may be the most relevant period for

susceptibility to external stressors and subsequent health effects [13]. Only one study to date

has investigated whether ultrasound-measured fetal growth is sensitive to maternal occupa-

tional EDC exposures, finding that exposure to several chemicals, including polycyclic aro-

matic hydrocarbons (PAHs), phthalates, alkylphenolic compounds (APCs) and pesticides,

were associated with reduced trajectories of fetal length, head circumference, and estimated

fetal weight [14].

In addition to chemical exposures, women may be exposed to job-related non-chemical

stressors that pose a potential risk to fetal growth [15–17]. In the Sixth European Working

Conditions Survey [18], 23% of women report carrying heavy loads, 21% report engaging in

shift work, and 14% report working night shifts. Many women also experience conditions that

contribute to psychosocial work stress, including the inability to influence decisions that are

important for their work (29%), performing monotonous tasks (45%), and low levels of sup-

port from supervisors and co-workers (18% and 11%, respectively). Two recent meta-analyses

found that several occupational exposures, including prolonged standing, heavy lifting, rotat-

ing shift work, and night work, may be associated with LBW or SGA, but evidence is inconclu-

sive [16,17]. Thus, further research is needed to examine the potential impact of non-chemical

occupational stressors on fetal biometry, which may provide insight on how physically

demanding work contributes to adverse birth outcomes. To date, one study has been
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conducted to this end. While the authors found no consistent associations between prolonged

standing or heavy lifting (�25 kg) with SGA or LBW, they found statistically significant associ-

ations between these metrics and ultrasound-based measures of fetal growth, highlighting the

importance of examining size during fetal life [19]. In relation to occupational psychosocial

stress or shift work, to our knowledge, fetal growth trajectories have not been evaluated in the

previous literature.

The objective of the present study is to examine whether maternal exposures to several clas-

ses of EDCs and various non-chemical workplace stressors influence fetal growth among

mother-child pairs in a prospective birth cohort. We hypothesize that maternal occupational

exposure to physical and psychosocial stressors and EDCs will be associated with reduced fetal

growth trajectories.

Materials and methods

Study population

The INMA Project (INfancia y Medio Ambiente; Childhood and Environment) is a network of

population-based prospective birth cohorts in Spain [20]. The present analysis is based on data

from three INMA regions: Gipuzkoa, Sabadell, and Valencia. In each region, recruitment took

place at the main public hospital between 2003 and 2008. Women were recruited at their first

routine prenatal care visit if they met the following eligibility criteria:�16 years of age, single-

ton pregnancy, enrollment at 10-13 weeks of gestation, non-assisted conception, intention to

deliver at reference hospital, and no communication impairment. The INMA Project was

approved by the Clinical Research Ethics Committees of the University Hospital of La Fe in

Valencia (Valencia, Spain), Donostia Hospital (San Sebastian, Spain) and the Medical Assis-

tance Municipal Institute (Barcelona, Spain). All women gave written informed consent prior

to enrollment. Of the 2,150 women who were enrolled during their first trimester of preg-

nancy, 2,121 completed the occupational questionnaire at 32 weeks of pregnancy, of which

1,739 reported being employed during pregnancy and were followed up to birth (see study

flowchart in Fig 1). Of these women, 538 were from Gipuzkoa, 550 from Sabadell, and 651

from Valencia.

Measurement of fetal growth

Obstetricians performed routine ultrasound examinations at approximately 12, 20, and 34

weeks of pregnancy. At each ultrasound visit, measurements (mm) were recorded for biparie-

tal diameter (BPD), abdominal circumference (AC), and femur length (FL). Based on these

parameters, estimated fetal weight (EFW) was calculated [21]. Gestational age was estimated

using self-reported last menstrual period or ultrasound data on crown-rump length. The latter

was used if gestational age based on the last menstrual period differed from that based on the

first ultrasound by at least 7 days.

We used variables representing fetal growth trajectories for INMA participants that were

previously modelled as described in Iñiguez et al. [22]. Briefly, using fetal biometry data, linear

mixed-effects models were applied to each cohort to obtain longitudinal growth curves for

each parameter, i.e., AC, BPD, FL, and EFW. The models were adjusted for constitutional fac-

tors known to affect fetal growth: maternal age, height, parity, country of birth (as a proxy of

ethnicity), maternal pre-pregnancy weight, father’s height, and fetal sex. From these models,

unconditional z-scores at 12, 20 and 34 weeks of gestation were calculated, which represent the

deviation in size of a given fetus, in relation to its potential, at the specified time points. Addi-

tionally, conditional z-scores, which account for the correlation between repeated measures of

a single fetus, were calculated for 12-20 and 20-34 weeks of gestation and represent growth
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trajectories during the respective time interval [12]. The predicted size of each fetus at each

time point was used to calculate the unconditional and conditional z-scores to prevent an

increase in random error due to small departures from the regular ultrasound visit schedule.

In the present analysis, we focused on the unconditional z-scores at 12 gestational weeks,

which represent trajectories in growth from conception up to week 12, or early pregnancy, and

the conditional z-scores at 12-20 and 20-34 weeks, which represent growth trajectories during

weeks 12-20 (mid-pregnancy) and weeks 20-34 (late pregnancy), respectively.

Fig 1. Study flowchart for INMA participants in the Gipuzkoa, Sabadell and Valencia cohorts, 2003-2008 (Spain).

1.

https://doi.org/10.1371/journal.pone.0264530.g001
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Assessment of non-chemical occupational exposures

At approximately 32 weeks of pregnancy, trained interviewers collected information on moth-

ers’ employment status and occupational history. Women who were employed reported the

title of their longest held job during the period beginning at least one month pre-conception

up to the time of questionnaire administration. Interviewers assessed information on women’s

occupational exposure to potential reproductive hazards at the corresponding job. Informa-

tion on work schedules was collected, including type of shift (fixed vs. rotating shift) and night

work (exclusive daytime work vs. any night work). Women also self-reported whether they

had no (0 h/day), occasional (<2 h/day), frequent (2-4 h/day), or very frequent (>4 h/day)

exposure to physical loads, including standing and lifting objects�20 kg. They also reported

whether they always, often, sometimes, or never experienced various psychosocial stressors at

work. Women who reported often or always experiencing at least three negative psychosocial

conditions (i.e., working very fast, requiring constant attention, repercussions of their work on

others, having to perform monotonous and repetitive tasks, limited time available to accom-

plish deadlines, and the possibility of making decisions) and a lack of social support from

supervisors and/or coworkers were classified as having exposure to job strain and social isola-

tion [23].

Assessment of occupational chemical exposures

The job titles of women’s longest held job during pregnancy were linked to International Stan-

dard Classification of Occupations (1988 version or ISCO-88, www.ilo.org/public/english/

bureau/stat/isco/index.htm) codes. To estimate occupational exposure to EDCs, ISCO88 codes

were linked to a job exposure matrix (JEM) created by van Tongeren et al. [24] and later

updated Brouwers et al. [25]. This JEM estimates occupational exposure to 10 chemical groups

with known or suspected endocrine disrupting properties for which occupational exposure is

expected to be significantly higher than exposure from environmental sources. The 10 EDC

groups are as follows: polycyclic aromatic hydrocarbons (PAHs), polychlorinated bisphenols

(PCBs), pesticides, phthalates, organic solvents, bisphenol A (BPA), APCs, brominated flame

retardants (BFRs), metals and miscellaneous (benzophenones, parabens and siloxanes). Briefly,

using literature reviews and prior knowledge, three experts in occupational hygiene estimated

exposure probability scores for each chemical group for 353 job titles. The exposure probability

scores refer to exposure levels that are expected to exceed background levels in the general

population and were categorized into three levels: “unlikely” (unlikely to exceed general back-

ground concentrations) “possible” (expected to occur among 10% of workers with a given job

title) or “probable” (expected to occur among >10% of workers in a given job title). The JEM

also includes a fourth exposure category, “unclassifiable,” which is assigned to job titles that

are very broad or non-specific. The JEM makes no distinction between routes of exposure

(inhalation, ingestion or dermal).

The JEM utilizes occupations coded according to the Standard Occupational Classification

2000 (SOC2000; https://www.ons.gov.uk/methodology/classificationsandstandards/

standardoccupationalclassificationsoc/socarchive). Because job titles of INMA participants

were linked to ISCO88 codes, the JEM was first translated from SOC2000 to ISCO88 codes

using the CAMSIS tool [26] and expert opinion. Details have been published previously by

Birks et al. [11]. Based on mothers’ ISCO88 codes, exposure probably scores were assigned to

each woman. A total of 220 (12.7%) women had job codes for which exposure was assigned as

“unclassifiable.” As a result, exposure probability scores were assigned to 1,519 women.

Because data in the “probable” category were sparse, we collapsed the “possible” and
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“probable” exposure categories to create a dichotomous exposure variable for each of the 10

EDC groups.

Covariates

The following variables were obtained from the first trimester questionnaire (approximately

12 weeks of gestation): maternal age at conception (years), highest achieved educational level

(up to primary, secondary and university), country of birth (Spain vs. foreign), pre-pregnancy

weight, height, and parity (0, 1 or� 2 previous pregnancies). Using maternal height and self-

reported weight information, pre-pregnancy body mass index (BMI; kg/m2) was calculated

and classified as underweight, normal weight, overweight or obese. Gestational weight gain

was classified as recommended, low or high following the Institute of Medicine (IOM) guide-

lines [27]. Women were categorized as having smoked if they reported any active smoking

during pregnancy at the first and/or third trimester questionnaire (any active smoking during

pregnancy, yes vs. no). Maternal alcohol consumption (at least one drink per week, yes vs. no)

was obtained from the third trimester questionnaire.

Statistical analysis

To account for potential heterogeneity in the association between exposure and response vari-

ables between INMA regions (i.e., Gipuzkoa, Sabadell, Valencia), we applied mixed effect

models to assess the association between occupational exposures and z-scores representing

fetal growth during different stages of pregnancy (0-12, 12-20 and 20-34 gestational weeks),

treating the exposure variables as fixed effects and including a random intercept to account for

clustering of subjects within region. We created a directed acyclic graph (DAG) as a conceptual

model for the association between occupational exposures and fetal growth and to guide the

selection of covariates in the model. Based on the DAG, we included all the variables listed in

the previous paragraph. In models examining EDC exposures, we additionally adjusted for

shift work (fixed vs. rotating work shifts). In all models, we treated the exposure of interest

independently, i.e., we did not mutually adjust for other exposure variables.

To facilitate comparison between fetal parameters, we converted model coefficients and

confidence intervals from z-scores to the scale of the fetal growth parameter consistent with

the methodology used Iñiguez et al. [22]. Using fetal biometry data, we converted model coeffi-

cients by multiplying by the standard deviation of the respective fetal parameter at each time

point (i.e., 12, 20, or 34 gestational weeks) and dividing by their respective means. After multi-

plying by 100, we can interpret the converted model coefficient as the percent change in the

fetal parameter relative to the INMA population mean, in the exposed group compared to the

unexposed group.

We performed statistical analyses using SAS 9.4 (Cary, NC) and considered associations

with p-values < 0.05 as statistically significant.

Results

Women were, on average, approximately 30 years of age at delivery (Table 1). Most of the

women were nulliparous (58.9%) and had secondary or university education (75.6%; see

Table 1). Women most frequently reported experiencing standing for a long duration (58.8%)

or job strain (23.3%) at their workplaces (see Table 2). Almost one-fourth (26.9%) of women

were classified as occupationally exposed to any EDC group, with organic solvents and APCs

as the most prevalent exposures (19.2% and 15.9%, respectively). Exposure to the following

EDCs were not considered in our analysis because fewer than 1% of women were classified as

occupationally exposed to them: polychlorinated organic compounds, bisphenol A and
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brominated flame retardants (see Table 2). The distribution of the 3-level exposure variables

(i.e., “possible,” “probable,” and “unlikely”) is summarized in S1 Table.

Most associations between non-chemical occupational stressors and fetal growth trajecto-

ries were null, with few exceptions. Regarding specific fetal parameters, frequent heavy lifting

(�20 kg) was significantly associated with decreased FL growth between 20-34 weeks (-0.9%

[95% confidence interval (CI): -1.6, -0.2%]) but not with BPD or AC (Table 3). We observed

an association of similar magnitude between heavy lifting (�20 kg) and EFW trajectories dur-

ing the same time period (20-34 weeks: -1.1% (-2.7, 0.4%), although this association was not

Table 1. Distribution of maternal characteristics, INMA, 2003-2008 (N = 1,739).

Maternal characteristics

Age at delivery (years), mean ± SD 30.4 ± 4.1

Educational attainment, n (%)

Primary 368 (24.2)

Secondary 600 (39.5)

University 549 (36.1)

Missing 2 (0.1)

Country of birth, n (%)

Spain 1385 (91.2)

Other 131 (8.6)

Missing 3 (0.2)

Gestational weight gain, n (%) a

Recommended 547 (36.0)

Low 345 (22.7)

High 569 (37.5)

Missing 58 (3.8)

Pre-pregnancy body mass index (BMI, kg/m3), n (%)

Underweight (BMI < 18.5) 69 (4.5)

Normal weight (18.5� BMI < 25) 1077 (70.9)

Overweight (25� BMI < 30) 272 (17.9)

Obese (� 30) 101 (6.6)

Parity, n (%)

0 894 (58.9)

1 549 (36.1)

�2 74 (4.9)

Missing 2 (0.1)

Smoking during pregnancy, n (%) b

No 1000 (65.8)

Yes 492 (32.4)

Missing 27 (1.8)

Alcohol use during pregnancy, n (%) c

No 1336 (88.0)

Yes 144 (9.5)

Missing 39 (2.6)

SD, standard deviation.
a Gestational weight gain classified according to Institute of Medicine (IOM) guidelines [IOM/NCR (2009)].
b Self-reported maternal active smoking (yes/no) at 12 and/or 32 weeks of pregnancy.
c At least one drink per week during pregnancy (self-reported at 32 weeks of pregnancy).

https://doi.org/10.1371/journal.pone.0264530.t001
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statistically significant. Night work and rotating shift work were each positively associated

with EFW trajectories in mid-pregnancy (i.e., 12-20 weeks; 1.6% [-0.4, 3.6%]) and 1.0% [-0.7,

2.7%], respectively), although these associations were also not statistically significant (Table 3).

When considering the percent change in unconditional z-scores at 20 and 34 weeks of preg-

nancy, the pattern of results was similar to the conditional z-scores (s3 Table).

Exposure to phthalates, APCs and miscellaneous chemicals (i.e., benzophenones, parabens

and siloxanes) were consistently associated with decreased growth trajectories in EFW and/or

AC during late pregnancy, although not all associations were statistically significant (Fig 2).

Specifically, we observed associations of similar magnitude between each of these chemical

groups and decreased trajectories in EFW during 20-34 weeks of pregnancy (phthalates: -1.4%

[-3.5, 0.6%]; APCs -1.1% [-2.3, 0.1%]; miscellaneous chemicals: -1.5% [-3.7, 0.8%]). Reduced

trajectories in AC during the same time period were significantly associated with potential

exposure to APCs (-0.5% [-1.0, 0.0%]), and while not statistically significant, we observed asso-

ciations of comparable magnitude with potential exposure to phthalates (-0.6% [-1.5, 0.2%])

and miscellaneous chemicals (-0.6% [-1.6, 0.4%]). We also observed associations between

exposure to specific EDC groups and growth trajectories that were in the opposite direction

than expected. Exposure to miscellaneous chemical and phthalates were each significantly

associated with increased BDP trajectories during mid-pregnancy (12-20 weeks: 2.1% [0.8,

3.5%] and 1.3% [0.1, 2.5%], respectively). Exposure to metals was associated with an increase

of similar magnitude in fetal growth trajectories in EFW (1.9% [-0.8, 4.5%]), BPD (2.1% [-0.3,

Table 2. Prevalence [n (%)] of self-reported non-chemical occupational exposures and estimated exposure to

endocrine disrupting chemicals during pregnancy, INMA, 2003-2008.

Self-reported non-chemical exposures (N = 1,739) n (%)

Standing a 1022 (58.8)

Heavy lifting (� 20 kg) a 124 (7.1)

Rotating shift work 136 (7.8)

Any night work 198 (11.4)

Job strain and social isolation b 404 (23.2)

Estimated EDC exposure (N = 1,519) c,d n (%)

PAHs 68 (4.5)

Polychlorinated organic compounds 6 (0.4)

Pesticides 18 (1.2)

Phthalates 63 (4.1)

Organic solvents 291 (19.2)

Bisphenol A 10 (0.7)

APCs 242 (15.9)

Brominated flame retardants 13 (0.9)

Metals 70 (4.6)

Miscellaneous e 52 (3.4)

EDC: Endocrine disrupting chemical; PAHs: Polycyclic aromatic hydrocarbons; APCs: Alkylphenolic compounds;

Missing exposure data: Standing, 2.2%; Heavy lifting (� 20 kg), 24.7%; Rotating shift work, 2.4%; Any night work,

3.6%; Job strain, 2.5%.
a Frequent (2-4 h day) or very frequent (>4 h day) exposure.
b Self-reported exposure to at least 3 psychosocial conditions and at least one lack of support condition.
c EDC exposure estimated using job-exposure matrix developed by Brouwers et al. (2009).
d n = 220 women with “unclassifiable” EDC exposure score.
e Miscellaneous chemicals include benzophenones, parabens, and siloxanes.

https://doi.org/10.1371/journal.pone.0264530.t002
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4.5%]) and AC (2.6% [0.3, 4.9%]) between conception and 12 weeks of gestation. Lastly, we

did not find evidence of associations between exposure to EDC groups and FL. Overall, the

pattern of results for unconditional z-scores at 20 and 34 weeks was similar to the conditional

z-scores (S3 Table).

In an ad hoc analysis, we examined the distribution of job titles among women with possi-

ble or probable exposure to EDC groups. The majority of women classified as exposed to

phthalates and miscellaneous chemicals worked as hairdressers (67% and 81%, respectively; S4

Table). Of women with exposure to APCs, most were employed as domestic cleaners or hair-

dressers (68% and 18%, respectively; S4 Table).

Discussion

We found only limited evidence that occupational exposures to EDCs and non-chemical haz-

ards affect ultrasound-measured fetal growth trajectories. We observed consistent but

Table 3. Associations between self-reported exposure to non-chemical occupational factors and growth trajectories in estimated fetal weight, INMA, 2003-2008.

Fetal growth trajectories

0-12 weeks 12-20 weeks 20-34 weeks

N n exposed % change (95% CI) % change (95% CI) % change (95% CI)

Estimated fetal weight (EFW)

Standing a 1,593 972 0.3% (-0.8, 1.5%) 0.2% (-1.3, 1.0%) -0.1% (-1.0, 0.7%)

Heavy lifting (� 20 kg) a 1,213 111 -1.0% (-3.0, 1.1%) -0.5% (-2.6, 1.6%) -1.1% (-2.7, 0.4%)

Rotating shifts b 1,574 186 0.6% (-1.0, 2.2%) 1.0% (-0.7, 2.7%) 0.6% (-0.8, 1.8%)

Any night work 1,576 125 0.3% (-1.6, 2.2%) 1.6% (-0.4, 3.6%) 0.6% (-0.8, 2.0%)

Job strain and social isolation c 1,589 381 0.3% (-0.9, 1.6%) -0.9% (-2.2, 0.3%) 0.7% (-0.2, 1.6%)

Biparietal diameter (BPD)

Standing a 1,598 976 0.1% (-0.9%, 1.1%) 0.4% (-0.1%, 0.9%) -0.2% (-0.5%, 0.1%)

Heavy lifting (� 20 kg) a 1,217 112 -0.8% (-2.7%, 1.1%) -0.4% (-1.3%, 0.5%) -0.1% (-0.7%, 0.5%)

Rotating shifts b 1,579 187 0.5% (-0.9%, 2.0%) 0.1% (-0.6%, 0.8%) 0.0% (-0.4%, 0.5%)

Any night work 1,581 126 0.6% (-1.1%, 2.3%) 0.2% (-0.7%, 1.0%) 0.0% (-0.6%, 0.5%)

Job strain and social isolation c 1,594 383 -0.2% (-1.3%, 0.9%) 0.0% (-0.5%, 0.6%) 0.0% (-0.4%, 0.3%)

Abdominal circumference (AC)

Standing a 1,600 977 0.3% (-0.7%, 1.2%) -0.2% (-0.7%, 0.3%) 0.1% (-0.2%, 0.5%)

Heavy lifting (� 20 kg) a 1,217 112 -0.4% (-2.2%, 1.4%) 0.1% (-0.8%, 1.1%) -0.3% (-1.0%, 0.4%)

Rotating shifts b 1,581 187 0.8% (-0.6%, 2.2%) 0.4% (-0.4%, 1.1%) 0.5% (0.0%, 1.0%)

Any night work 1,583 126 0.5% (-1.2%, 2.1%) 0.5% (-0.4%, 1.4%) 0.3% (-0.3%, 0.9%)

Job strain and social isolation c 1,596 384 0.2% (-0.8%, 1.3%) -0.3% (-0.8%, 0.3%) 0.3% (-0.1%, 0.7%)

Femur length (FL)

Standing a 1,599 976 0.4% (-2.0%, 2.7%) 0.1% (-0.5%, 0.6%) -0.2% (-0.5%, 0.2%)

Heavy lifting (� 20 kg) a 1,218 112 -1.3% (-5.5%, 3.0%) -0.8% (-1.9%, 0.3%) -0.9% (-1.6%, -0.2%)

Rotating shifts b 1,580 187 0.7% (-2.7%, 4.1%) 0.4% (-0.4%, 1.2%) -0.2% (-0.7%, 0.3%)

Any night work 1,582 126 -0.8% (-4.8%, 3.3%) 0.7% (-0.3%, 1.7%) 0.1% (-0.5%, 0.7%)

Job strain and social isolation c 1,595 383 0.8% (-1.7%, 3.4%) -0.4% (-1.0%, 0.3%) 0.2% (-0.2%, 0.5%)

CI: Confidence interval; Models are adjusted for maternal age, country of birth, education, pre-pregnancy BMI, gestational weight gain, smoking during pregnancy,

alcohol use during pregnancy and parity.
a Frequent (2-4 h day) or very frequent (>4 h day) exposure compared to infrequent (<2 h day) or no exposure.
b Rotating versus fixed shift.
c Self-reported exposure to at least 3 psychosocial conditions and at least one lack of support condition compared to self-reported exposure to <3 psychosocial

conditions or no lack of support conditions.

https://doi.org/10.1371/journal.pone.0264530.t003
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statistically non-significant associations between phthalates, APCs and miscellaneous chemi-

cals and reduced fetal growth trajectories in late pregnancy. Notably, hairdressers and domes-

tic cleaners accounted for the majority of women classified as exposed to phthalates, APCs

and/or miscellaneous chemicals (i.e., benzophenones, parabens and siloxanes). For most job-

Fig 2. Associations between exposure to endocrine disrupting chemical (EDC) groups and growth trajectories for

each fetal parameter, INMA, 2003-2008. 2. Estimates and their respective 95% confidence intervals are presented as

the percentage change in fetal growth compared to participants with unlikely exposure to the respective EDC group at

different stages of pregnancy. Models are adjusted for maternal age at birth in years, maternal education, country of

birth, gestational weight gain, pre-pregnancy body mass index, active smoking during pregnancy, alcohol

consumption during pregnancy, parity and shift work. PAHs: Polycyclic aromatic hydrocarbons, APCs: Alkylphenolic

compounds, EFW: Estimated fetal weight (n = 1,403), BPD: Biparietal diameter (n = 1,408), AC: Abdominal

circumference (n = 1,410), FL: Femur length (n = 1,409). Numeric estimates are presented in Supplemental Material,

S3 Table.

https://doi.org/10.1371/journal.pone.0264530.g002
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related non-chemical stressors, we found no evidence of an association with fetal growth

trajectories.

The potential mechanism of action by which strenuous physical activities may disrupt fetal

growth is unclear but could involve the reduction of uterine blood flow and increased intra-

uterine pressure, which if continued over a prolonged duration, could affect nutrient availabil-

ity for the fetus [28,29]. A recent meta-analysis demonstrated that work-related prolonged

standing and heavy lifting may be associated with a low to moderate risk of reduced measures

of size at birth [16]. Our study finds limited evidence of an association with ultrasound-based

measures of fetal growth, which agrees with another study by Snijder et al. [19] that examined

similar exposures and ultrasound-based measures of fetal growth among pregnant women in

the Netherlands. However, there are a few inconsistent findings. For instance, we observed no

impact of standing for a long duration on fetal growth, while Snijder et al. [19] observed

decreased head circumference at 30 weeks of pregnancy associated with prolonged standing at

work (-0.72 mm [95% CI: -1.43, -0.01]). The authors of this study also examined frequent

heavy lifting (�25 kg) at work but found no association with fetal outcomes, while we observed

reduced FL trajectories associated with frequent lifting of objects�20 kg. The conflicting

results may be attributable to different characteristics of the study populations or differences

in fetal growth measures.

The current literature suggests a negative impact of shift work and work-related psychoso-

cial stress on measures of size at birth, but evidence in inconclusive [17]. To our knowledge,

this study is the first to examine shift work and job strain in relation to ultrasound-measured

fetal growth. Researchers hypothesize that circadian rhythm disruptions and increased stress

that may occur as a result of shift work trigger neuroendocrine responses that could affect fetal

growth. For example, prolonged disruptions of circadian rhythms and sleep deprivation may

lead to dysregulation of fetal growth hormones (e.g., prolactin) [30,31]. Shift work may also

result in increased stress and elevated levels of systemic cortisol, which is associated with alter-

ation in placental growth and function [32]. For women who are employed during pregnancy,

occupational stress is common and may be an important contributor to overall psychosocial

stress. Further, unlike most stressful events in individuals’ personal lives, psychosocial stress

arising from work conditions is potentially preventable.

The process of fetal growth is carefully orchestrated by endocrine factors. Prenatal exposure

to EDCs may affect the fetus directly or dysregulate placental function via several hormonal

pathways, including disruptions in thyroid or insulin hormone homeostasis as well as epige-

netic and inflammatory pathways, with negative consequences for fetal growth [33,34]. Previ-

ous epidemiologic studies that have utilized the same JEM employed in our analysis report

associations between maternal occupational exposure to EDCs and anthropometric measures

of size at birth [9–11]. For example, Birks et al. [11] observed increased odds of LBW in rela-

tion to maternal exposures to PAHs (OR = 1.62, 95% CI: 1.12-2.34), pesticides (1.85, 1.15-

2.98), phthalates (2.35, 1.16-4.75), APCs (1.33, 1.02-1.74), brominated flame retardants (3.88,

1.37-11.02) and metals (1.53, 1.13-2.07). In our analysis examining measures of growth across

the prenatal period, we found limited evidence for a role of JEM-based EDC exposures on fetal

growth. Nevertheless, noticeable patterns arose among growth trajectories for specific body

segments associated with specific EDC groups. For example, we observed associations of expo-

sure to APCs with reduced growth in EFW and AC during late pregnancy. One other study

has utilized Brouwer’s JEM to evaluate the potential role of maternal EDC exposures in ultra-

sound measures of fetal growth. Among a birth cohort in the Netherlands, Snijder et al. [14]

also found that JEM-based APC exposure was associated with reduced growth in EFW,

although this was not a statistically significant finding. The authors did, however, report a sig-

nificant association between APCs and decreased trajectories in head circumference (β =

PLOS ONE Occupational exposures and fetal growth

PLOS ONE | https://doi.org/10.1371/journal.pone.0264530 April 7, 2022 11 / 16

https://doi.org/10.1371/journal.pone.0264530


-0.018, with beta coefficients representing the average weekly decline in EFW standard devia-

tion [SD]-scores). Additionally, the authors found significant negative associations of exposure

to PAHs and phthalates with EFW SD-scores, while our results regarding PAHs and EFW tra-

jectories in late pregnancy were similar in direction but not statistically significant. While Snij-

der et al. [14] estimated the average change in SD-scores per gestational week, our analysis

estimated the average change in z-scores within specified periods of gestation. Given that we

might not expect fetal growth trajectories to be linear over time, it may be more appropriate to

examine average trajectories during windows of pregnancy defined a priori. In addition, Snij-

der et al. [14] only evaluated fetal growth trajectories from the second trimester (i.e., 18-25

weeks of gestation) onward. In our analysis, we examined growth trajectories during early and

mid-pregnancy (i.e., 0-12 and 12-20 weeks). Considering growth trajectories in early preg-

nancy, we found positive associations with exposure to metals and negative associations with

exposure to PAHs (though not statistically significant). We also observed increased BPD tra-

jectories in mid-pregnancy associated with occupational exposure to miscellaneous chemicals.

Among women in our study, 26.9% were classified exposed to any EDC group, which is

higher than what has been reported in other European birth cohort studies that classify expo-

sure using the same JEM employed in our study. For example, Snijder et al. [14] reported the

prevalence of exposure to any EDC group in their study population as 6.7%, and a meta-analy-

sis of 13 European birth cohorts reported the overall prevalence as 11.4% [11]. In our study,

the high exposure prevalence is driven by exposures to organic solvents and APCs (19.2% and

15.9%, respectively). As mentioned previously, domestic cleaners and hairdressers make up

the majority of women classified as exposed to these compounds, and notably, there are fewer

women employed in these two occupations among women in birth cohorts located in North-

ern European countries [35]. However, our study is comparable in this regard to other South-

ern European birth cohorts, including Generation XXI (Portugal), INMA-Granada (Spain),

and Rhea (Greece), which is reflected in the higher prevalence of exposure to organic solvents

and APCs among women in their study populations [35]. Thus, our study findings may not be

generalizable beyond Southern European populations.

As mentioned previously, the majority of women classified as exposed to phthalates, APCs,

and miscellaneous chemicals were employed as hairdressers or domestic cleaners. Therefore, it

is difficult to determine whether the findings of this study are in fact attributable to the expo-

sure of interest or confounded by co-occurring exposures or by other unmeasured job-related

exposures. For example, hairdressers may be exposed to other chemicals not evaluated in this

study through the use of hair products such as hair spray, dyes and shampoos. Similarly,

domestic cleaners may be exposed to other chemical agents in cleaning products that were not

evaluated by the JEM. Furthermore, the potential effect of chemical exposures in these occupa-

tions may be modified by exposure to non-chemical work stressors such as prolonged stand-

ing, irregular work hours, and stress [36]. Further research is needed to understand the

potential combined impact of multiple workplace exposures on fetal development.

Our study has important limitations regarding exposure assessment methods. First, the

JEM we applied yields crude categories of exposure and assumes homogenous exposure for all

members in each category [37]. Therefore, we were unable to account for differences in job

tasks and work environments among individuals with the same job title. We also combined

the “possible” and “probable” exposure categories for each EDC group, potentially introducing

additional exposure misclassification. Although the JEM has not been validated, it has been

widely used in the literature [9–11,14], including in the INMA project and other European

birth cohorts, enabling comparison with other studies. While most women are likely to have

some level of exposure to EDCs through diet and consumer products, we do not have reason

to suspect that background exposure is associated with exposures in individual occupations
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and thus should not confound the observed associations. For non-chemical occupational

stressors, exposure was self-reported and thus subject to error in recall. However, we expect

any resulting exposure misclassification to be non-differential. Given the large number of asso-

ciations assessed in our study, it is possible that we observed some associations due to chance.

Lastly, due to the low estimated exposure prevalence of many EDC groups, our study was not

adequately powered to examine the cumulative or interactive effect of co-occurring chemical

and non-chemical stressors.

The greatest advantage of our study is the use of ultrasound-based measures of fetal growth.

Compared with birth anthropometry, the use of statistical methods to compare observed and

expected growth potential for each fetus reduces potential for misclassification, because such

methods allow us to discriminate between constitutionally small versus pathologically small

fetuses. Further, utilizing z-scores to quantify trimester-specific fetal growth trajectories grants

the potential to gain insight into windows of developmental susceptibility. Another strength of

this analysis is the availability of detailed information on several individual-level maternal fac-

tors, allowing us to minimize potential confounding.

Conclusions

Knowledge of the developmental impacts of most occupational hazards is incomplete [38].

Given that in Western countries, most women will work during their childbearing years, it is

important to understand whether occupational hazards increase the risk of adverse conse-

quences on fetal development in order to protect the health of future generations. This study

finds limited evidence of an effect of maternal occupational exposures on ultrasound-based

measures of fetal growth but reported specific occupational groups that have a relatively large

burden of work-related EDC exposure. Our study supports the need for further research that

considers the cumulative or combined impact of work-related chemical and non-chemical

stressors among pregnant women.
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