Skip to main content
. 2022 Mar 31;2022:7402085. doi: 10.1155/2022/7402085

Table 1.

Performance measures.

Model Accuracy Auc Recall Prec. F1 Kappa MCC TT (sec)
Voting naive bayes positive 0.9314 0.9982 0.9292 0.9320 0.9312 0.8722 0.8871 2.339
Light gradient boosting machine 0.8949 0.9777 0.8770 0.8970 0.8941 0.8197 0.8218 0.244
Extreme gradient boosting 0.8942 0.9759 0.8745 0.8976 0.8935 0.8187 0.8211 15.896
CatBoost classifier 0.8926 0.9763 0.8710 0.8950 0.8921 0.8154 0.8172 4.328
Random forest classifier 0.8918 0.9739 0.8685 0.8961 0.8918 0.8145 0.8169 0.562
Gradient boosting classifier 0.8864 0.9747 0.8635 0.8914 0.8861 0.8053 0.8082 0.665
SVM - radial kernel 0.8726 0.9498 0.8388 0.8765 0.8716 0.7806 0.7832 0.387
k-Neighbors classifier 0.8687 0.9494 0.8336 0.8700 0.8666 0.7727 0.7753 0.128
MLP classifier 0.7988 0.8728 0.8076 0.7877 0.7541 0.7719 0.7056 6.322