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A universal deep neural network for in-depth
cleaning of single-cell RNA-Seq data

Hui Li"2, Cory R. Brouwer® "2 & Weijun Luo@® 23

Single cell RNA sequencing (scRNA-Seq) is being widely used in biomedical research and
generated enormous volume and diversity of data. The raw data contain multiple types of
noise and technical artifacts, which need thorough cleaning. Existing denoising and imputa-
tion methods largely focus on a single type of noise (i.e., dropouts) and have strong
distribution assumptions which greatly limit their performance and application. Here we
design and develop the AutoClass model, integrating two deep neural network components,
an autoencoder, and a classifier, as to maximize both noise removal and signal retention.
AutoClass is distribution agnostic as it makes no assumption on specific data distributions,
hence can effectively clean a wide range of noise and artifacts. AutoClass outperforms
the state-of-art methods in multiple types of scRNA-Seq data analyses, including data
recovery, differential expression analysis, clustering analysis, and batch effect removal.
Importantly, AutoClass is robust on key hyperparameter settings including bottleneck layer
size, pre-clustering number and classifier weight. We have made AutoClass open source at:
https://github.com/datapplab/AutoClass.
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cRNA-Seq has been widely adopted in biological and med-

ical research!=> as an ultra-high resolution and ultra-high

throughput transcriptome profiling technology. Enormous
amount of data has been generated providing great opportunities
and challenges in data analytics.

First of all, scRNA-Seq data come with multiple types of noise
and quality issues. Some are issues associated with gene expression
profiling in general, including RNA amplification bias, uneven
library size, sequencing and mapping error, etc. Others are specific
to single cell assays. For example, extremely small sample quantity
and low RNA capture rate result in large number of false zero
expression or dropout®. Individual cells vary in differentiation or
cell cycle stages’, health conditions, or stochastic transcription
activities, which are biological differences but irrelevant in most
studies. In addition, substantial batch effects are frequently
observed® due to inconsistence in sample batches and experiments.
Most of these noises and variances are not dropout and may follow
Gaussian, Poisson, or more complex distributions depending on the
source of the variances. All of these variances need to be corrected
and cleaned so that biologically relevant differences can be recon-
structed and analyzed accurately.

Multiple statistical methods have been developed to impute
and denoise scRNA-Seq data. Most of these methods rely on
distribution assumptions on scRNA-Seq data matrix. For exam-
ple, deep count autoencoder (DCA)? assumes negative binomial
distribution with or without zero inflation, SAVER!? assumes
negative binomial distribution, and scImpute!! uses a mixture of
Gaussian and Gamma model. Currently, there is no consensus on
the distribution of scRNA-Seq data. Method with inaccurate
distribution assumptions!? may not denoise properly, but rather
introduce new complexities and artifacts. Importantly, these
methods largely focus on dropouts and ignore other types of
noise and variances, which hinders accurate analysis and inter-
pretation of the data.

To address these issues, we developed AutoClass, a neural
network-based method. AutoClass integrates two neural network
components: an autoencoder and a classifier (Fig. la and
“Methods”). The autoencoder itself consists of two parts: an
encoder and a decoder. The encoder reduces data dimension and
compresses the input data by decreasing hidden layer size
(number of neurons). The decoder, in the opposite, expands data
dimension and reconstructs the original input data from the
compressed data by increasing hidden layer size. Note the
encoder and decoder are symmetric in both architecture and
function. The data is most compressed at the so-called bottleneck
layer between the encoder and the decoder. The autoencoder
itself, as an unsupervised data reduction method, is not sufficient
in separating signal from noise (Fig. 1b). To ensure the encoding
process filter out noise and retain signal, we add a classifier
branch from the bottleneck layer (Fig. 1a and “Methods”). Instead
of known cell classes, virtual class labels are generated by pre-
clustering. Therefore, AutoClass is a composite deep neural net-
work with both unsupervised (autoencoder) and supervised
(classifier) learning components. Like regular autoencoder
methods, AutoClass is unsupervised or self-supervised because
true data or labels are not used in training. AutoClass does not
presume any specific type or form of data distribution, hence has
the potential to correct a wide range noises and non-signal var-
iances. In addition, it can model non-linear relationships between
genes with non-linear activation functions. In this study, we
extensively evaluated AutoClass against existing methods using
multiple simulated and real datasets. We demonstrated AutoClass
can better reconstruct scRNA-Seq data and enhance downstream
analysis in multiple aspects. In addition, AutoClass is robust over
hyperparameter settings and the default setting applies well in
various datasets and conditions.

Results

Validation of the classifier component. The unique part of
AutoClass is the classifier branch from the bottleneck layer. Since
encoding process losses information in the input data, the classifier
branch is added to make sure relevant information or signal is
sufficiently retained. To show that the classifier is needed, we
simulated a scRNA-Seq Dataset 1 (see “Methods” and Supple-
mentary Table 2) using Splatter! with 1000 genes and 500 cells in
six groups, with and without dropout. Applied both AutoClass and
a regular autoencoder without the classifier on the data with
dropout, the results are illustrated in two-dimensional t-SNE (see
“Methods”) plots in Fig. 1b. AutoClass but not the regular auto-
encoder was able to recover cell type pattern, indicating the clas-
sifier component is necessary for reconstructing scRNA-Seq data.

Gene expression data recovery. We evaluated expression value
recovery on simulated scRNA-Seq data with different noise types
or distributions. We generated and scRNA-Seq dataset using
Splatter with 500 cells, 1000 genes in five cell groups with (raw
data, Dataset 2) and without dropout (true data). From the same
true data, we also generated 5 additional raw datasets by adding
noise following different distributions which are representative
and commonly seen, including random uniform (Dataset 3),
Gaussian (Dataset 4), Gamma (Dataset 5), Poisson (Dataset 6)
and negative binomial (Dataset 7) (details in “Methods” and
Supplement Tables 2 and 3).

As expected, dropout noise greatly reduced the data quality and
obscured the signal or biological differences such as distinction
between cell types (Fig. 2a). All other noise types had similar effect
on the data (Fig. 2b, ¢ and Supplementary Fig. 1). With t-SNE
transformation on Dataset 2-7, the true data without noise showed
distinct cell types, but not the raw data with noises (Fig. 2a—c and
Supplementary Fig. 1). The average Silhouette width!4 (ASW) on
the t-SNE plot is a measurement of distance between groups, ranges
from —1 to 1, where higher values indicate more confident
clustering. ASW dropped greatly from 0.64 to around 0 in all raw
datasets. After imputation by AutoClass, the cell type pattern was
recovered and ASW increased back substantially to 0.2-0.5. In
contrast, all published control methods (DCA, MAGIC!?, scImpute,
and SAVER) were unable to recover the original cell type pattern
(Fig. 2a—c and Supplementary Fig. 1) and ASW scores remained
low (Fig. 2d) for all noise types.

We also measure the data recovery quality using other metrics.
The mean squared error (MSE) between the true data and imputed/
denoised data for Dataset 3-7 (5 noise types other than dropout)
were also computed (Fig. 2e). Among the five tested methods,
AutoClass consistently achieved the smallest MSE for all noise types
(Fig. 2e). Dropout noise (Dataset 2) is very different from all other
noise types (Dataset 3-7) in both distribution form and generation
mechanism, and MSE was not an informative measurement of data
recovery. We computed the average recovered values of dropout
zeros and those of true zeros (Fig. 2f) instead. An ideal imputation
method can distinguish between these two types of zeros, ie.,
impute dropout zeros while retain true zeros (Fig. 2f). While
SAVER was too conservative in imputing both types of 0 values,
DCA and MAGIC were too aggressive. AutoClass and scImpute
both achieved good balance between imputing dropout 0s and
retaining true 0's, yet only the former but both the later was able to
recover the biological difference or distinct cell type clustering
(Fig. 2a—c and Supplementary Fig. 1).

Differential expression analysis. Differential expression (DE)
analysis is by far the most common analysis of scRNA-Seq and
gene expression data. To study the performance of AutoClass in
DE analysis, we simulated a scRNA-Seq Dataset 8 using Splatter
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Fig. 1 AutoClass integrates a classifier to a regular autoencoder, as to fully reconstruct scRNA-Seq data. a AutoClass consists a regular autoencoder
and a classifier branch from the bottleneck layer. The input raw expression data is compressed in the encoder, and reconstructed in the decoder, the
classifier branch helps to retain signal in data compression. The output of the autoencoder is the desired imputed data (see “Methods” for details). b t-SNE
plots of Dataset 1 without dropout, with dropout, with dropout imputed by a regular autoencoder and AutoClass.

with 1000 genes and 500 cells in two cell groups. Here the ground
truth of 161 truly differentially expressed genes is known. We
applied Two-sample T-test to the true, raw, and imputed data
using different methods. The median value of t-statistics for the
truly differentially expressed genes dropped from 5.79 in the true
data to 2.11 in the raw data, and increased back to 5.86 upon
imputation by AutoClass, which was almost the same as in the
true data and higher than in all control methods (Fig. 3a, b). As
shown by ROC curves and area under the curves (AUC), Auto-
Class also was the best at balancing true positives and false
negatives (Fig. 3¢, d). At specificity = 0.90 or 1-specificity = 0.10
(dashed vertical line in Fig. 3c), the ROC curves marked different
levels of sensitivity, i.e., 0.72 (True data), 0.61 (AutoClass), 0.52
(DCA), 0.51 (scImpute), 0.41 (MAGIC), 0.35 (SAVER) and 0.30
(Raw data). AutoClass was the best method in this analysis, and
achieved the closest performance to the True data.

Similarly, AutoClass can improve DE analysis in data with
Gaussian noise. We manually added Gaussian noise to the true
data of Dataset 8 to generate the raw data of Dataset 9. The DE
analysis results can be found in Supplementary Fig. 2.

AutoClass also improves marker gene expression analysis. Baron
dataset!® provides known marker gene lists for related cell types in
pancreatic islets. AutoClass is the only method consistently
improved DE analysis results for the marker genes in both fold
changes and t-statistics. The marker genes reached the highest
median fold change (23333 =10.1) after imputation by AutoClass
(vs 7.9 in the raw data and 7.5-9.2 by other methods, Fig. 3e). Note
that MAGIC has slightly higher median t-statistics (Fig. 3f) than
AutoClass, but the difference is not significant statistically (p = 0.3).

AutoClass imputation helps to identify more potential marker
genes. For example, three differentially expressed genes in
Supplementary Fig. 3 were selected in AutoClass imputed data,
but not in raw data or imputation by other methods, including
RGS2 in delta cells, SLC7A2 in alpha cells!’, and S100A10 in
ductal cells!8. After imputation by AutoClass, the expression
patterns became more distinct (column 3 vs 2 in Supplementary
Fig. 3) and expression curves in the target cell type vs other cell
types became better separated (green curves vs orange curves in
columns 4-5, Supplementary Fig. 3).

Clustering analysis. Clustering analysis is frequently done on
scRNA-seq data as to identify cell types or subpopulations. To
evaluate AutoClass for clustering analysis, we used four real
datasets, including two small datasets: the Buettner dataset® (182
cells) and the Usoskin dataset!® (622 cells) and two large datasets:
the Lake dataset?0 (8592 cells) and the Zeisel dataset?! (3005
cells). Detailed information for these datasets can be found in
Methods and Supplementary Table 1.

We compared K-means clustering results on the 200 highest
variable genes. The ground truth or the actual number of cell
types were used as a number of clusters. Clustering results were
evaluated by four different metrics: adjusted Rand index?2 (ARI),
Jaccard Index?3 (JI), normalized mutual information2¢ (NMI),
and purity score?> (PS). All of them range from 0 to 1, with 1
indicating a perfect match to the true groups. AutoClass is the
only method improving all four metrics from the raw data. In
addition, AutoClass achieved the best clustering results for 3 out
of 4 datasets (Table 1).
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Fig. 2 Gene expression data recovery after imputation. a-c t-SNE plots for Dataset 2 (dropout noise), Dataset 4 (Gaussian noise) and Dataset 7 (negative
binomial noise), respectively. d Average Silhouette width based on t-SNE plot for Dataset 2-7. e Mean squared error between true data and imputed data
for Dataset 3-7. f Average recovered values of dropout O's and true O's for different imputation methods.

For the Usoskin dataset, out of all tested methods, only
AutoClass and MAGIC reconstructed distinct clusters (Fig. 4a).
But MAGIC likely generated false positive signals, given that
the between-group cell-to-cell correlation are almost the same
as within-group correlation, and both are close to 1 (Fig. 4b).
AutoClass was the only method differentiating within-group vs
between-group correlation as informative metrics for signal vs
noise (Fig. 4b).

Batch effect removal. Batch effect rises from different individual
cell donors, sample groups, or experiment conditions and can
severely affect downstream analysis. We analyzed two real data-
sets with major batch effect. The Villani dataset? sequenced 768
human blood dendritic cells (DC) in 2 batched using Smart-Seq2.
The Baron dataset includes 7162 pancreatic islet cells from three
healthy individuals.

Similar to Tran et al.8, we evaluated the performance of batch
effect correction as the ability to merge different batches of the
same cell type while keeping different cell types separate. We did
t-SNE transformation on the data first (Fig. 5a and Supplemen-
tary Fig. 4), then applied the four metrics above mentioned, i.e.,
ASW, ARI, NMI, and PS on both cell types and batches. While
cell-type-level metrics measure cell type separation, 1 - batch level
metrics measure the merging between batches of same cell type
(Fig. 5b and Supplementary Fig. 5).

In the Villani dataset (Fig. 5), the raw data shows clear separation
in both cell types and sample batches. After imputation by
AutoClass, while cell types remained well separated, the two batches
were evenly mixed up within each cell type. In contrast, SAVER

failed to reduce the batch effect, while all other methods even
aggravated it (Fig. 5).

Note that AutoClass corrects the batch effect without knowing
the actual number of cell types. Here, we used the default
number of clusters in the pre-clustering step, i.e., [8, 9, 10] (see
“Methods”). This is close to the number of spurious groups
counting batches (i.e., 8), but far away from the actual number of
cell types, or 4. In other words, AutoClass was not misled by the
pre-clustering number and correctly recovered the actual cluster
number.

In Baron dataset (Supplementary Figs. 4, 5), AutoClass reduced
the batch effect and increased cell type separation simultaneously
with the default pre-clustering number too. MAGIC dramatically
reduced the differences in both batches and cell type. The batch
effect correction by other methods were limited.

Robustness over major hyperparameters. AutoClass, as a com-
posite deep neural network, has multiple hyperparameters. Among
them, the most important ones are bottleneck layer size, number of
pre-clusters and classifier weight. Bottleneck layer plays an impor-
tant role in autoencoders, it is the narrowest part of the network
and the size (number of neurons) controls how much the input data
is compressed. The number of clusters (K) in the pre-clustering step
is specific to the classifier of AutoClass. AutoClass uses three con-
secutive cluster numbers [K — 1, K, K + 1], and the final imputa-
tion output is the average over three predictions using these three
clustering numbers (see “Methods”). In addition, the classifier
weight w (see Eq. 4 and “Methods”) is another AutoClass specific
hyperparameter which balance the ratio between autoencoder loss
and the classifier loss.
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Fig. 3 Differential expression analysis and marker gene analysis. a, b T-statistics and their median values for truly differentially expressed genes in
Dataset 8. ¢, d ROC curves and areas under the ROC curves for Dataset 8. e, f log2 based fold changes and t-statistics of marker genes in the Baron
dataset. In a, e, and f, the box represents the interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the

interquartile range, with sample size n =53 marker genes.

AutoClass is robust over a wide range of bottleneck layer sizes,
pre-clustering K values (Fig. 6 and Supplementary Figs. 6, 7) and
classifier weight w (Supplementary Fig. 8). The t-SNE clustering
patterns, clustering metrics (ASW and ARI), MSE and imputed
dropoutOs/true 0's ratio remained the same when bottleneck layer
size increase from 16 to 256 (Fig. 6a, c and Supplementary Fig. 7a).
However, these results or metrics varied heavily in the same analysis
using DCA, another autoencoder based method (Fig. 6b, ¢ and
Supplementary Fig. 7a). Likewise, AutoClass also achieved stable
results over the range of K values - 4-8 (Fig. 6d and Supplementary
Figs. 6, 7b) and the range of classifier weight w values - 0.1-0.9
(Supplementary Fig. 8).

Interestingly, AutoClass is robust on the choice of loss function
for the autoencoder part or reconstruction error. In Eq. 5, instead
of using |X — Yk‘z or MSE(X,Y,), we can also use |X —Y,|’
(p=1, 2, 3, ..). Supplementary Figure 10 shows the t-SNE plots
for AutoClass denoising results of simulated Dataset 2 (dropout
noise), Dataset 3 (uniform noise) and Dataset 7 (negative
binomial noise) for different values of the p parameter Indeed,
AutoClass successfully recovered cell types or biological signals

from different types or distributions of noise using different
values of p or reconstruction errors.

Note the loss function becomes a mean absolute error (MAE)
when p=1. While MSE or p=2 coincides with normal
distribution assumption, all other p parameter values had no
implication of specific distribution assumption. Note our recon-
struction error in Eq. 5 measures the model misfit in general and is
not log likelihood. Both the reconstruction error in Eq. 5 and the
overall loss in Eq. 4 are data driven, and have no assumption of
prior knowledge on the forms of the underlying data distribution
(distribution agnostic). Therefore, AutoClass is distribution agnostic
and works independent of both the p parameter value here and the
noise types or distributions (Fig. 2a-c and Supplementary Fig. 1).
We set p=2 (MSE loss) as default since this is most commonly
used for reconstruction error.

Scalability. To evaluate the scalability of AutoClass vs control
methods, we simulated a series of scRNA-Seq data (Scalability
datasets) with six sample sizes, i.e., 1000, 2000, 4000, 8000, 16,000
and 32,000 cells, and with 1000 genes each in Splatter. Then the
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Table 1 Evaluation of clustering results of four real scRNA-Seq datasets.
Metric Dataset Raw AutoClass DCA MAGIC scimpute SAVER
ARI Buettner 0.023 0.372 0.288 0.213 0.039 0.016
Usoskin 0.221 0.869 0.234 0.813 0.067 0.317
Lake 0.403 0.557 0.572 0.440 0.313 0.465
Zeisel 0.737 0.793 0.753 0.433 0.623 0.763
J Buettner 0.242 0.409 0.363 0.368 0.262 0.247
Usoskin 0.324 0.830 0.284 0.764 0.266 0.351
Lake 0.323 0.439 0.453 0.346 0.254 0.364
Zeisel 0.646 0.713 0.664 0.370 0.679 0.677
NMI Buettner 0.035 0.395 0.333 0.335 0.075 0.038
Usoskin 0.225 0.829 0.253 0.771 0.048 0.431
Lake 0.6eM 0.667 0.676 0.601 0.500 0.642
Zeisel 0.747 0.784 0.746 0.598 0.798 0.762
PS Buettner 0.434 0.720 0.648 0.599 0.445 0.423
Usoskin 0.545 0.937 0.579 0.913 0.416 0.682
Lake 0.723 0.772 0.766 0.693 0.610 0.742
Zeisel 0.894 0.917 0.880 0.763 0.548 0.897
The four metrics are adjusted Rand index (ARI), Jaccard Index (JI), normalized mutual information (NMI), and purity score (PS). Highest value in each row was highlighted in boldface.
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Fig. 4 Imputation results for the Usoskin dataset. a t-SNE plots for raw and imputed data. b Within-group and between-group cell-to-cell correlation for
raw and imputed data. In b, the box represents the interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the
interquartile range, with sample size n=50,000 randomly sampled cell pairs.

data were denoised using AutoClass and control methods with
their runtime recorded (Fig. 7).

AutoClass was highly efficient and scalable. It runs fast on a
regular laptop (8-core Intel Core i5-8265U CPU at 1.60 GHz, 8 G
RAM), and processed 1000 cells in 20s, 8000 cells in 119, and
32,000 cells in 706 s (Fig. 7). The runtime scaled almost linearly
with the number of cells. AutoClass is consistently faster than
DCA, another deep neuron network based method, and 2-3
orders of magnitude faster than SAVER and scImpute. Only
MAGIC runs faster than AutoClass, but the difference shrinks
quickly when cell number increases. Our observations on runtime
were largely consistent with the evaluation in DCA paper?, and
the minor differences likely reflect the different hardware settings
or software versions.

Large feature size and sample size. Previous analyses were
performed on 1000 highly variable. It is proper to focus on a
selected subset of all genes in scRNA-Seq, because: (1) many
genes that are mostly zeros or hardly changes across cells are non-
informative and contribute little information to downstream
analyses or denoising, and it would be a waste of time/resource to

impute these genes; (2) we are able to complete benchmark
experiments on all methods (including the slow ones shown in
Fig. 7) in limited computing time and resource. Therefore, Many
existing methods focus on subset of genes explicitly®10.

However, AutoClass applies equally well to datasets with larger
number of genes when necessary. As an example suggested by a
reviewer, we worked on a benchmarking dataset from Tian
et al.27, which sequenced a mixture of five cell lines (with 305 cells
and 13,426 genes). We chose to work with either the 1000 or 5000
most variable genes (Fig. 8). Note the original raw data has high
quality and very distinct cell clusters without any imputation. To
facilitate the performance evaluation of different methods,
negative binomial noise or dropouts were added to the dataset
(Supplementary Tables 2-3). AutoClass is the only method that
consistently recovers the original cell clusters or the biological
differences from the noisy data, and it also achieved the highest
ASW scores across different noise types and gene numbers
(Fig. 8). Note that the performance of AutoClass was similar or
better when more genes were included or feature size became
larger (5000 vs 1000 genes).

AutoClass applies well to datasets with both larger features size
(genes) and sample size (cells). Because SAVER and scImpute
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were much slower (Fig. 7), and could not complete these tasks in
a reasonable amount of time on our working machine, we only
include AutoClass, DCA and MAGIC in these analyses. These
two simulated datasets have 10,000 genes and 10,000 cells in 7
groups each, generated using either Splatter!? or an alternative
method used by scImpute!l. Again, AutoClass was the only
method that consistently improves the data quality and recovers
the original cell clusters from the noisy raw data (Supplementary
Fig. 11). In contrast, the performance of both DCA and MAGIC
failed to improve the data quality in Dataset 10 or even made
it worse.

All these experiments consistently show that AutoClass works
with different sample sizes, feature sizes, in addition to different
noise types and data distributions.

Discussion

In this work, we proposed and developed a deep learning-based
method AutoClass for thorough cleaning of scRNA-Seq data.
AutoClass integrates two neural network components, an
autoencoder, and a classifier. This composite network archi-
tecture is essential for filtering out noise and retaining signal
effectively. Unlike many other scRNA-Seq imputation methods,
AutoClass does not rely on any distribution assumption,
and fully counts the non-linear interactions between genes.
With these properties, AutoClass effectively models and cleans
a wide range of noises and artifacts in scRNA-Seq data
including dropouts, random uniform, Gaussian, Gamma,
Poisson, and negative binomial noises, as well as batch effects.
These are the most common and representative types of noises
and artifacts. Any other types not directly tested would likely be
cleaned with the same efficiency because they are similar in
distribution and source and AutoClass has no assumption on
the noise forms. Such in-depth cleaning led to consistent and
substantial improvement of the data quality and downstream
analyses including differential expression and clustering, as
shown by a range of experiments with both simulated and real
datasets.

Note that even though we use MSE as the default loss func-
tion, AutoClass takes no assumption on the noise type or dis-
tribution. Indeed, it works equally well with other loss functions
in the general form of |X — Yk‘p (p=1, 2, 3, etc, Supplementary
Fig. 10), and a wide range of noise distributions other than
Guassian.

Hyperparameter tuning is an important yet tedious step for
training neural network models. Inadequate tuning of hyper-
parameters may lead to suboptimal results. Remarkably, Auto-
Class is robust with key hyperparameters including bottleneck
layer size (n), pre-clustering number (K), and classifier weight
(w). The default setting with n = 128, K = 9, w = 0.9 works well
for most scRNA-Seq datasets and conditions. This robustness
makes AutoClass an appealing method for both performance and
practical uses.

AutoClass is highly efficient and scalable. It easily fits a per-
sonal laptop and processes thousands of scRNA-Seq samples in a
few minutes or even less time. As shown in the series of experi-
ments using various real and simulated datasets in this study
(Supplementary Tables 1-3), AutoClass works well with data of a
wide range of sample sizes, feature sizes, or both consistently.

Methods

Architecture of AutoClass. AutoClass integrates two neural network components,
an autoencoder, and a classifier, to impute scRNA-seq data (Fig. 1a). The classifier
branch is necessary to preserve signals or biological differences (cell type patterns
etc.) from loss in data compression by the encoder.

When cell classes are unknown, virtual class labels are generated by pre-
clustering using K-means method. The total loss of the entire network is the
weighted sum of classifier loss (cross-entropy or CE) and the autoencoder loss or
reconstruction error (RE). The activation functions in the hidden layers are all
rectified linear unit (ReLU), the activation functions for the output layer of
autoencoder and classifier are SoftPlus and SoftMax, respectively.

The formulation of AutoClass architecture is:

B, = Encoder(X) 1)
Y, = Decoder(B;) (2)
C, = Classifier(By) 3)
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L = wx CE(C,, C) + (1 — w)x RE(X, Y,) )

RE = X - Y,/ ®)
Where B,,Y,, C, and L, are the bottleneck representation, the output of the
decoder hence the autoencoder, the output of the classifier, and total loss,

respectively. Ek is the pre-clustering cell type labels for k clusters. X is the input of
AutoClass, and has been normalized over library size and followed by a log,

transformation with pseudo count 1:
X = log, (diag(s;) ‘X + 1) (6)

X is the raw count matrix and the size factor s; for cell i is equal to the library size
divided by the median library size across cells. Library size is defined as the total
number of counts per cell.

The final imputed data is the average prediction of the autoencoder over
different cluster numbers in pre-clustering:

Y = E(Y,[k) (7)

For all datasets in this manuscript, we used 3 consecutive cluster numbers, or

k =[K —1,K,K + 1], the default value is K = 9. Although AutoClass has the
option to use existing cell type labels instead of pre-clustering when proper, pre-
clustering is the default and was used in all AutoClass analyses in this work. All
known cell type labels were used for method evaluation only. The final imputation
result was the average results over different Ks.

AutoClass Implementation and hyperparameter settings. AutoClass is imple-
mented in Python 3 with Keras. Adam is used for optimizer with default learning
rate 0.001. Learning rate is multiplied by 0.1 if validation loss does not improve for
15 epochs. The training stops if there is no improvement for 30 epochs.

Although AutoClass works well for small bottleneck layer sizes (n = 16,32 or
similar), we set the default value to be n = 128, as be conservative and to avoid
potential information loss in data compression. This default value was used in all
datasets in this study.
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AutoClass is stable over different choices of K in pre-clustering as long as K is not
extremely far away from the true number of cell clusters. The default value K = 9 was
used in all datasets in this study except simulated Dataset 8 and 9, since the true
number of cell clusters in these two datasets is 2 which is far smaller than default value
9. Hyperparameter K can be chosen based on prior knowledge of the data or
statistical methods like elbow method?® and Silhouette method!%. K used in Dataset 8
and 9 was the average of estimations by elbow method and Silhouette method.

AutoClass is stable on classifier weight w in the range of 0.1-0.9 (Supplementary
Fig. 8). We found that in general classification loss is far smaller than reconstruction
loss (Supplementary Fig. 9), to have a better balance between those two losses, we
set the default value to be w = 0.9. This default value was used in all the datasets in
this study.

In addition, overfitting is a common problem in neural network models?’.
Dropout of neurons®’ and sparse connections?® are common regularization
methods. Dropout of neurons in the bottleneck layer is used in AutoClass to
prevent overfitting. Interestingly, a relatively high dropout rate in AutoClass also
helps to correct batch effect. In the batch effect removal analyses, we set dropout
rate to be 0.5 in AutoClass, and to be fair, also in DCA. But DCA was unable to
remove batch effect (Fig. 5 and Supplementary Figs. 4, 5). The default dropout rate
0.1 in AutoClass was used in all the other datasets and analyses in this study. Note
methods like scVI?! and Linnorm?32 use parametric distributions to decouple
biological signal from batch effect (or other technical variations). AutoClass does so
using its special neural nework architecture, i.e., an autoencoder and a classifier
(Fig. 1a and “Methods”). Higher dropout rate at bottle neck layer can further
reduce overfitting, which changes the relative weight of signal vs noise modeling.

AutoClass hyperparameter settings for all the datasets can be found in
Supplementary Tables 1-3.

Analysis details

Noise types other than dropout. Dataset 3-7 and Dataset 9 were generated by manually
adding noise to the true data of Dataset 2 and Dataset 8, respectively. The noise was
first generated by Python numpy.random package with different noise distributions
(details in Supplementary Table 3), and then centered (so that noise mean is 0). The
noise was then added to true data, all values were rounded to be integers and negative
values set to 0, since scRNA-Seq data raw counts are positive integers.

Highly variable genes. The highly variable genes in each dataset are ranked by the
ratio between gene-wise variance vs mean computed from non-zero values.

t-Distributed stochastic neighbor embedding (+-SNE). We applied t-SNE33 to
visualize datasets. We first reduce the number of data dimensions by using the top
50 principle components, and then use TSNE function in the sklearn.manifold

package with default settings to further reduce the dimension to 2 for visualization.

Batch effect removal score. Four clustering metrics ASW, ARI, NMI, and PS were
used to measure the performance of batch effect correction. We applied ASW to
the t-SNE transformed data, and batch effect removal was scored by both cell-type-
wise ASW vs 1 — batch-wise ASW (Fig. 5b and Supplementary Fig. 5). Higher
values in both dimensions together denote better batch effect removal. ARI, NMI,
and PS metrics are used and plotted in the same fashion as ASW. To compute ARI,
NM]I, and PS, K-means clustering was performed first to obtain cluster labels,
which were then compared to batch labels and cell type labels. The batch indices
were computed for each individual cell type first, and take weighted sum across cell
types. The weight for each cell type is proportional to the number of cells.

Control methods. DCA® (version 0.2) was downloaded from https://github.com/
theislab/dca

MAGIC!> (version 0.1.0) was downloaded from https://github.com/
KrishnaswamyLab/MAGIC

scImpute!! (version 0.0.5) was downloaded from https://github.com/
Vivianstats/scImpute.

SAVER! (version 0.3.0) was downloaded from https://github.com/mohuangx/
SAVER.

Real scRNA-seq datasets. We collected and analyzed multiple real scRNA-Seq
datasets from published studies. These datasets have been well established, widely
used, and tested as shown in literature. While major technical attributes are
summarized in Supplementary Table 1, below are more details.

Baron study!®. Human pancreatic islets cells data were obtained from three healthy
individuals, which provided gene expression profiles for 17,434 genes in 7729 cells.
We filtered out genes expressed in less than 5 cells, removed cell types less than 1%
of the cell population. Analysis was restricted to top 1000 highly variable genes.
Final dataset contained 7162 cells with eight different cell types.

The raw counts data are available at https://shenorrlab.github.io/bseqsc/
vignettes/pages/data.html.

Villani study®®. The human blood dendritic data contained 26,593 genes in 1140
cells. We kept batch 1 (plate id: P10, P7, P8 and P9) batch 2 (plate id P3, P4, P13,
and P14) cells, and filtered out genes expressed in less than 5 cells. Analysis was
restricted to top 1000 highly variable genes. Final dataset contained 768 cells with 4
different cell types in 2 batches. The raw data are available at GEO accession
GSE80171 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80171.

Lake study?’. Human brain frontal cortex data contained 34,305 genes in 10,319
cells. We filtered out genes expressed in less than 5 cells, removed cell types h less
than 3% of the cell population. Analysis was restricted to top 1000 highly variable
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genes. Final dataset contained 8592 cells with 11 different cell types. The raw data
are available at GEO accession GSE97930 https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE97930.

Zeisel study?!. Mouse cortex and hippocampus data contained 19,972 genes in 3005
cells. We filtered out genes expressed in less than 5 cells. Analysis was restricted to
top 1000 highly variable genes. Final dataset contained 3005 cells with nine dif-
ferent cell types. Annotated data are available at http://linnarssonlab.org/cortex.

Buettner study®. Mouse embryonic stem cells contained 8989 genes in 182 cells. We
filtered out genes expressed in less than 5 cells. Final dataset contained 8985 genes
and 182 cells in 3 cells lines. The full dataset was deposited at ArrayExpress: E-
MTAB-2805. The normalized data can be obtained from https://www.nature.com/
articles/nbt.3102.

Usoskin study!®. Neuronal data contained 17,772 genes in 622 cells. We filtered out
genes expressed in less than 5 cells. Analysis was restricted to top 1000 highly
variable genes. Final dataset contains 622 cells with 4 different cell types. The
normalized data can be obtained from https://www.nature.com/articles/nbt.3102.

Tian study?’. We worked on the scRNA-Seq data on the mixture of five cell lines,
containing 13,426 genes in 305 cells. We kept top 1000 and 5000 variable genes for
analysis. To evaluate the denoising performance, two types of noise were added to
the raw data: (1) negative binomial noise (parameter settings in Supplementary
Table 3); (2) dropout noise following a logistic function defined by shape and mid
parameter as used in Splatter (parameter settings in Supplementary Table 2). The
original dataset was downloaded from
https://github.com/LuyiTian/sc_mixology/tree/master/data.

Simulated scRNA-seq datasets. Splatter R (version v1.2.2) package was used to
simulate scRNA-seq datasets with dropout values. Gaussian noise was manually
added when needed. Genes expressed in less than 3 cells were filtered out before
analysis. The parameter settings for simulation are summarized in Supplementary
Tables 2 and 3.

Dataset 10 was generated using the alternative method used by scImpute
study!l. In Dataset 10, there were 7 cell types and 10,000 cells (or ~1428 cells each),
and 10,000 genes in total. For individual genes, the mean expression was randomly
drawn from a normal distribution (mean = 1.8, sd = 0.5), the standard deviations
drawn from another normal distribution (mean = 0.6, sd = 0.1). Then 50 random
genes were set as markers for each cell type, where their mean expression was
scaled by a factor from uniform distribution in 1.5-2. Finally, the dropouts or zeros
were introduced by the rate following a double exponential function exp(—0.1 x
expression value).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All simulated datasets can be generated using the parameters specified in the “Simulated
scRNA-Seq datasets” subsection, all the real datasets are publicly available with URLs and
references listed in the “Real scRNA-Seq datasets” subsection above. In addition,
simulated and real datasets were provided in the GitHub repository https://github.com/
datapplab/AutoClass as demo datasets, ready for analysis.

Code availability

AutoClass python module, documentation, tutorial with example, and code to reproduce
the main results in the manuscript are available online: https://github.com/datapplab/
AutoClass®%,
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