
A minimally interactive method for labeling respiratory phases in 
free-breathing thoracic dynamic MRI for constructing 4D images

Changjian Sun‡,
College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; 
Medical Image Processing Group, Department of Radiology, University of Pennsylvania, 
Philadelphia, PA 19104, United States

Jayaram K. Udupa* [Life Fellow, IEEE],
Medical Image Processing Group, Department of Radiology, University of Pennsylvania, 
Philadelphia, PA 19104, United States

Yubing Tong [Member, IEEE],
Medical Image Processing Group, Department of Radiology, University of Pennsylvania, 
Philadelphia, PA 19104, United States

Caiyun Wu,
Medical Image Processing Group, Department of Radiology, University of Pennsylvania, 
Philadelphia, PA 19104, United States

Shuxu Guo,
College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

Joseph M. McDonough,
Center for Thoracic Insufficiency Syndrome, Children’s Hospital of Philadelphia, Philadelphia, PA, 
19104, United States

Drew A. Torigian,
Medical Image Processing Group, Department of Radiology, University of Pennsylvania, 
Philadelphia, PA 19104, United States

Patrick J. Cahill
Center for Thoracic Insufficiency Syndrome, Children’s Hospital of Philadelphia, Philadelphia, PA, 
19104, United States

Abstract

Objective: Determination of end-expiration (EE) and end-inspiration (EI) time points in the 

respiratory cycle in free-breathing slice image acquisitions of the thorax is one key step needed for 

4D image construction via dynamic magnetic resonance imaging. The purpose of this paper is to 

realize the automation of the labeling process.
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Methods: The diaphragm is used as a surrogate for tracking respiratory motion and determining 

the state of breathing. Regions of interest (ROIs) containing the hemi-diaphragms are set by 

human interaction to compute the optical flow matrix between two adjacent 2D time slices. 

Subsequently, our approach examines the diaphragm speed and direction and by considering the 

change in the optical flow matrix, the EE or EI points are detected.

Results and conclusion: The labeling accuracy for the lateral aspect of the left lung and the 

lateral aspect of the right lung (0.63±0.71) is significantly lower (P < 0.05) than the accuracy 

for other positions (0.42±0.44), but the error in almost all scenarios is less than 1 time point. By 

comparing between automatic and manual labeling in 12 scenarios, we found out that 9 scenarios 

showed no significant difference (P > 0.05) between two methods. Overall, our method is found 

to be highly agreeable with manual labeling and greatly shortens the labeling time, requiring less 

than 8 minutes/study compared to 4 hours/study for manual labeling.

Significance: Our method achieves automatic labeling of EE and EI points without the need for 

use of patient internal or external markers.

Keywords

Auto-labeling respiratory phase; Diaphragm motion; Dynamic magnetic resonance imaging; 
Optical flow; 4D construction; Thoracic insufficiency syndrome (TIS)

INTRODUCTION

4D imaging of the thorax has been widely used in radiation therapy to quantify thoracic 

organ displacements, visualize abdominal and thoracic organ motion, and assess mechanical 

functions of organs[1], [2]. 4D medical imaging approaches using different modalities 

including computed tomography (CT) [3–7], magnetic resonance imaging (MRI) [2], [8]–

[18], and ultrasonography (US) [19] have also been developed. MRI is the modality of 

choice for imaging the pediatric thorax due to the absence of ionizing radiation, excellent 

soft tissue contrast, sufficient temporal resolution, and the ease of implementation of 

dynamic protocols.[2] The motivation and rationale for the presented work stem from the 

need to quantify dynamic thoracic function and its change due to surgical treatment in a 

pediatric ailment known as thoracic insufficiency syndrome (TIS).

TIS is a complex condition involving malformation of the components of the thorax, 

mainly the rib cage, spine, sternum, and intercostal muscles [20], [21]. In many cases, 

children with TIS are born with congenital spinal deformities and/or have a neuromuscular 

condition leading to scoliosis. Patients with TIS are unable to support normal breathing 

and lung growth. As they grow, their rib cage, spine, and thoracic volume do not keep 

pace. As a result, their chest wall becomes deformed (sunken) and they may become 

dependent on nasal oxygen or ventilator support to breathe. Traditional 4D imaging 

methods are difficult to implement for studying TIS patients due to the physiological 

characteristics of these patients. For example, patients often suffer from extreme deformities 

of the chest wall, diaphragm, and/or spine that prevent the chest from supporting normal 

breathing to cooperate with the requirements of imaging such as breath-holding or breathing 

cooperatively with a gating or tracking device [20], [21]. Additionally, young age at onset 
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of TIS and conditions associated with TIS such as cerebral palsy are also associated 

with intellectual deficits preventing participation and cooperation with studies [22], [23]. 

Therefore, for the study of TIS, image acquisition under free-breathing conditions is the 

only practical option. With this tenet, we developed a method of dynamic MRI (dMRI), 

wherein for each sagittal slice location through the thorax, slices are acquired over several 

respiratory cycles at ~200 ms per slice while the patient breathes freely. Images are acquired 

in this manner for all sagittal locations across the chest. This typically results in ~3000 

slices which constitute a spatio-temporal sampling of the dynamic thorax without any 

information available to anchor the time instances to specific respiratory phases. From these 

data, by using a graph-based optimization technique [2], we construct an “optimal” 4D 

image representing the breathing thorax over one respiratory cycle, which typically consists 

of ~300 spatio-temporal slices. The method is purely-image based without the requirement 

of sorting based on a breathing signal or using any external surrogate. The utility of this 

approach in studying TIS is beginning to emerge [24]–[27].

One critical processing step in that approach [2] is to label the end-expiration (EE) and end-

inspiration (EI) phases in the time sequence of slices associated with each sagittal location. 

This step has been conventionally carried out manually, which requires an expert to examine 

the slices in each time sequence, observe the way the diaphragm moves, and mark the slice 

in the sequence where the diaphragm reaches the superior-most and inferior-most position as 

representing an EE-phase slice and EI-phase slice, respectively. Since all 3000 slices have to 

be visually assessed in this manner, this step is time-consuming (taking typically 3.5-4 hours 

per patient data set). In this paper, we propose a method to significantly improve the level of 

automation of this step so that the entire 4D construction process becomes highly automated 

and clinically viable.

Existing 4D image acquisition and construction methods can be categorized into four 

groups. (i) Real-time acquisition [28]. These methods acquire image volume data rapidly 

enough to cover the 3D region of interest and several respiratory phases in one cycle. 

Typically, the volume covered is quite small and the image quality is inferior to that 

obtainable by other methods. (ii) Prospective gating methods [4], [29], [30]. These 

utilize some device to provide respiratory signals so images can be acquired at defined 

respiratory phases. Surgically implanted internal markers and external markers such as 

pressure-sensitive belts have been used to generate signals. (iii) Retrospective methods using 

gating devices [7], [31], [32]. These methods need a device to generate a “respiratory 

signal” as in (ii) but select slices based on signal after image acquisition to create a 4D 

image. (iv) Image-based retrospective gating [2], [8]–[10], [15]–[19], [33], [34]. They do 

not need devices or signals and are least encumbering to the patient unlike methods in (ii) 

and (iii), and are best suited for TIS applications. Since methods under (i) have quality and 

body region coverage issues, they are also not appropriate to study TIS. The rationale and 

advantages of our graph-based method over other techniques under (iv) have already been 

elucidated in Ref. [2]. In short, these other techniques all make assumptions on the nature 

of the breathing cycle or the image features that seem to be valid in CT imagery. These 

requirements are hard to satisfy in dMRI of very sick TIS patients. 4D methods developed 

for CT images have not been tested for MRI acquisitions and are not guaranteed to be fully 

viable [5], [7], [10]. Some methods like SGD (sagittal–coronal–diaphragm) motion tracking 
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method cannot be implemented only by using sagittal MRI [8]. Other methods sensitive to 

the intensity of the respiratory signal cannot meet the requirements of 4D image construction 

[7], [8].

These challenges led us to develop the new graph-based approach for TIS patients. The 

idea underlying graph-based retrospective 4D imaging methods is to reorder the acquired 

slices using intra-image gating signals. These methods can be divided into three categories 

based on the sorted reference: The first group of methods derive the respiratory signal 

using feature vector dimensionality reduction by mapping the respiratory phase information 

contained in the slice to a low-dimensional space. Most of these methods are based on 

manifold learning [16], [18], [35], [36] and others have used principal component analysis 

[37]. The signal dimensionality reduction method is common to multiple modalities of 

medical imagery. The idea seems to be that although the slices may come from different 

locations, the same respiratory state causes similar physical deformation, which makes them 

lie on similar manifolds. By the judgment of the manifold, the correspondence between 

the slicing order and the breathing phase is optimized. The second group of methods uses 

2D image-based internal surrogates [8–10], [15], [33], [34]. These methods manually select 

and extract one or more internal anatomical features from the multi-slice scan data, then 

combine the features to estimate the respiratory phases and perform reconstruction based on 

the determined respiratory signal correlation between the slices. The third group of methods 

devise and find optimal paths in an appropriately constructed graph to find the best way to 

put slices together spatially and temporally to form a 4D image [2], [17].

The graph-based approach of Ref. [2] for 4D construction of the thorax over one respiratory 

cycle belongs to the third group, in which the EE and EI phases of breathing constitute 

key time point information, forming essential underpinnings of the graph formation stage 

of the method. Although EE and EI time points are determined on sagittal slice planes, the 

graph method weaves the 4D space together in terms of time and space slices to assure 

optimal space and time continuity. However, as described above, one main hurdle in that 

approach has been the manual identification of EE and EI time points. Automatic labeling 

of EE and EI phases can greatly improve the efficiency of this method. At present, motion 

tracking of tissues or organs in the body to identify the cycle of breathing or heartbeat 

mainly relies on analysis of body region deformation or internal surrogate tracking. For 

respiratory motion, the most common method is to use an observation window to detect 

the cranio-caudal motion of the diaphragm [38–40]. The extraction of respiratory signals 

by calculating reference changes in observation windows in adjacent slices also follows this 

principle [17]. In addition, the state of breathing can also be estimated using the deformation 

of the body contour [34], but this method cannot be utilized if the patient’s breathing is 

weak as in many TIS conditions. Some investigators have formulated and solved a system of 

partial differential equations to describe cardiac dynamics [41].

In view of the physiological characteristics of patients with TIS, we need a method that 

can automatically detect and label weak breathing. The main idea underlying automation 

of this step is to track the movement of the diaphragm by analyzing the optical flow 

velocity information in its vicinity from adjacent time points and thereby detect and label 

EE and EI phases according to the movement of the diaphragm during free breathing. As 
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explained in Section 2, the user first specifies a rectangular region of interest (ROI) on 

one sagittal slice enclosing the hemi-diaphragm. The velocity information is then computed 

within the ROI in all slices. The magnitude and direction of the velocity are utilized in 

determining the slices corresponding to EE and EI time points. Utilizing a set of 87 dMRI 

data sets acquired from patients and normal pediatric subjects, we assess the accuracy 

and precision of the proposed auto-labeling method as compared to manual labeling in 

Section 3. Our conclusions, limitations of the method, and challenges we encountered during 

implementation are explained in Section 4.

Some preliminary results along the lines of the study in this paper have appeared in the 

proceedings of the SPIE Medical Imaging 2019 conference. This paper is a significant 

extension over the conference paper in the following aspects: Extensive background and 

literature review which was missing in the SPIE paper; a detailed description of the method 

and algorithms which was missing in the conference paper; more data used to test the 

accuracy and precision of the algorithm; considerably expanded experimental results and 

their analysis; and expanded concluding remarks.

MATERIALS AND METHODS

A. Image data sets

Image data sets were obtained from the Children’s Hospital of Philadelphia (CHOP). This 

retrospective study was conducted following approval from the Institutional Review Board 

at CHOP and the University of Pennsylvania along with a Health Insurance Portability 

and Accountability Act waiver. Image data sets utilized in this study all pertain to sagittal 

thoracic dMRI. Each patient was scanned from right lateral end to left lateral end at 

30-40 sagittal plane positions under breathing conditions that are natural for the patient. 

All subjects in this study are scanned by using the same scanning protocol with details 

as follows. 3T imager (Siemens Healthcare, Erlangen, Germany, Manufacturer’s Model 

Name Prisma, the sequence used to acquire free-breathing thoracic dMRI is trufisp tfi2d1), 

true-fast imaging with steady-state precession sequence; TR/TE = 3.82/1.91 ms; voxel size, 

approximately 1 mm x 1 mm x 6 mm; 320 x 320 x 38 matrix; bandwidth = 558 Hz; flip 

angle = 76°; and one signal average. For each sagittal location in the thorax, slice data were 

obtained during 8-14 tidal breathing cycles at approximately 470-480 ms per slice; total 

acquisition time per subject = 40 minutes. This process yields over 2000-3000 slices in total 

for one patient and constitutes a spatio-temporal sampling of the patient’s dynamic thorax 

over several respiratory cycles.

The 4D construction method we used [2] identifies a small set of about 200-300 slices 

among these 2000-3000 slices by using a graph-based optimization technique to build one 

representative and optimal 4D image to describe the breathing motion of the 3D thorax over 

one respiratory cycle.

A total of 87 dMRI data sets gathered from 54 subjects and one dynamic (4D) phantom 

were utilized in our study as summarized in Table I. Scan 1 and Scan 2 in the table refer 

to different scan sessions of the same subjects; in the case of patients, they constitute pre- 

and post-operative data sets. For 3 of the 5 adult subjects, we acquired data in a repeated 
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scan session. A dynamic phantom [2] was created by 3D printing a (left and right) lung 

segmented at one time point of the dMRI data set of an adult normal subject and immersing 

the lung in a water bath. Realistic tidal breathing effect by air volume and respiratory rate 

was simulated by pumping air into and out of the lung shell at known values. In the labeling 

experiment for phantom, air pumping into the lung shell will be accompanied by changes in 

the water level, which is regarded as a substitute for diaphragm movement. During manual 

labeling, the operator recognizes the water level and accordingly determines respiratory 

phases. The rise of the water level simulates the exhalation process, the water level reaching 

the highest point of the lungs is regarded as EE; the drop of water level simulates the 

inhalation process, and the water level reaching the lowest point of the lungs is regarded as 

EI. See Ref. [2] for details.

B. Methods

An overview of the auto-labeling approach is schematically illustrated in Fig. 1. We assume 

that there is a time varying (almost periodic) body region B(t) (in our case, thorax) whose 

domain is contained in Ω = X×Y×Z mm3. Our dMRI scanning method produces a sequence 

of slices

A = fz1, t1, fz1, t2, …, fz1, tM, fz2, tM + 1, …, fz2, t2M, …, fzN, tN × M

representing a spatio-temporal sampling of Ω over a total scanning time interval of [0, τ]. 

Each slice fzi,tj, is acquired within a short time (~480 ms), when B(t) can be assumed to 

be frozen in time/motion, such that zi ∈ Z and tj ∈ [0, τ]. Note that in our protocol the 

z-axis is orthogonal to the sagittal plane, typically N (the number of sagittal or z locations) 

is 35 to 40, meaning that slices are acquired for N sagittal slice locations, and the number 

of time points M for each sagittal location is usually 80. For convenience, we will denote 

the sequence of slices associated with a specific z-location by Az, z = z1, z2 …, zN. Since 

there is no time coordination (due to free-breathing acquisitions) among slices in A , it 

constitutes an uncoordinated spatiotemporal sampling of Ω over the time interval [0, τ]. 

In other words, the respiratory phases of the slices in the two time sequences Azi and Azj 
associated with any two distinct z-locations zi and zj are not synchronized. The 4D image 

construction method we previously reported [2] requires identification of the time slices that 

denote the EE and EI time points for each time sequence Az, z = z1, z2, …, zN . In the 

published approach, this step was accomplished manually, wherein an operator examined the 

slices in Az and marked a slice as representing either EE or EI if the hemi-diaphragm dome 

in that slice reached the highest (cranial direction) or lowest (caudal direction) position, 

respectively (see Fig. 2). Subsequently, the 4D construction method used a graph-based 

optimization technique to find the best 4D volume (constituting the 3D body region over one 

respiratory cycle) from among the set of all slices in A . The methods of graph construction 

and graph optimization in Ref 2 by properly linking the space (z) and time (t) slices 

guarantee space and time continuity among the subset of slices selected by the optimization 

process (see Ref 2 for details). The manual labeling step requires a great deal of time and 

effort (typically 3.5-4 hours per dMRI data set). Although dMRI, 4D construction, and 

subsequent image analysis facilitated uncovering previously unknown information about the 
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TIS process and its treatment outcome [24–27], the manual labor required has hindered the 

translation of the entire dMRI approach for routine clinical use.

The main idea underlying the proposed auto-labeling process is to use the part of the hemi-

diaphragm indicated within a region of interest (ROI) as a surrogate to automatically track 

the diaphragm’s upward and downward motion during the expiratory and inspiratory phases 

of the respiratory cycle, respectively. We use time-dependent optical flow computation [42] 

to determine the direction and magnitude of the motion of the diaphragm. This vectorial 

motion (velocity) information is used to accurately determine the EE and EI time points 

within each time sequence Az, z = z1, z2, …, zN. In the labeling process, the optical flow 

matrix within the ROI is computed and the EE and EI points are filtered by noting the points 

at which the direction of motion of the diaphragm changes from upward to downward (EE 

point) and downward to upward (EI point).

1) Specifying an ROI as a respiratory surrogate—Some tissue regions are more 

significantly and regularly deformed during breathing and can be selected as a respiratory 

surrogate [8] than others. In order to make the auto-labeling approach as consistent as 

possible with the ground truth labeling operation, we chose the hemi-diaphragm observable 

on sagittal slices as a surrogate of respiration, since the hemi-diaphragm satisfies the above 

criterion and since manual labeling also uses this structure. Selecting the diaphragm for 

tracking respiration has obvious advantages in the TIS application: 1) The edge of the 

hemi-diaphragm can be clearly discerned from the dMRI image as the border between the 

thorax and abdomen [8]. 2) While an unaffected patient can be expected to have motion in 

a compliant chest wall, due to the often extreme distortions of the spine, rib cage, and other 

skeletal structures in TIS, restriction, elimination, or even paradoxical inverse movements 

can occur in the chest wall [21],[22]. Conversely, the diaphragm reliably maintains a 

discernible superior-inferior motion.

To accurately track the movement of solely the hemi-diaphragm and reduce the effect of 

deformation from other organs/tissues within the whole slice, we set an ROI interactively 

[43] roughly covering the superior dome of the hemi-diaphragm as shown in Fig. 3. The 

ROI needs to be specified manually only for one sagittal z-location per dMRI data set. The 

specified ROI is then propagated to all z-locations automatically with the same size and 

location. We treat sagittal z-locations passing through the region of the heart differently 

due to the fact that the movement of the heart is not in synchrony with the motion of the 

diaphragm or chest wall and will mislead flow estimations and our decisions derived from 

flow. For these locations, the ROI specified for all other locations is split into two equal parts 

and only the right half part is chosen so as to exclude heart as shown in the middle image 

in Fig. 3. Thus, two kinds of ROIs are set as follows. All sagittal locations from rightmost 

to left-most positions with respect to the patient thorax are separated into 3 regions with 

the ratio 30%:40%:30%. The size of the ROI varies from patient to patient, and the size of 

the first and third regions is approximately 70 x 80. The second region covers the sagittal 

locations passing through the heart, as illustrated in Fig. 3, where the left and right images 

from the first and third regions, respectively, use an ROI of the same size. The ROI is 

decreased in size for the second region to avoid effects from cardiac movement as shown 

in the middle image of Fig. 3. The correctness of placement of the automatically set and 

Sun et al. Page 7

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



propagated ROIs is verified quickly by visually examining a few time slices in the three 

regions for each z-location. The total manual time taken for ROI selection in this manner is 

10-15 minutes per dMRI study.

2) Computing time-dependent optical flow within an ROI—An optical flow 

approach [42] is employed to automatically track the motion of the hemi-diaphragm in 

each lung (strictly speaking, the boundary that separates the base of the lung from the 

surrounding tissues) within the ROI. Since this motion tracking is done separately for each 

time sequence Az, we will describe the method for a single time sequence of slices. Without 

loss of generality, let any such time sequence be denoted by Az = {fT1, fT2, …, fTM} where 

subscript z has been dropped from the notation used for the slices for simplicity, fT1, fT2, 

…, fTM denote slices in the time sequence Az and T1, …, TM denote the time instances 

associated with the slices in Az. Fig. 4 illustrates the main idea of the approach. Consider a 

point such as P in the middle of the hemi-diaphragm dome. As the hemi-diaphragm in Fig. 

4(a) undergoes a complete inferior-superior-inferior (EI-EE-EI) motion during one breathing 

cycle. P’s y-location traverses a path. This is conceptually illustrated in Fig. 4(b) where dy 

(t) denotes this movement component of P. What is illustrated in Fig. 4(a) and (b) is an ideal 

situation where t is assumed to be continuous (not discrete), and an individual point (P) is 

tracked. In our practical set up, we can sample slices only at discrete time instances, which 

are indicated by small circles over one respiratory cycle in Fig. 4(b). Instead of tracking 

individual points (pixels), we estimate an average of the motion of all points in the vicinity 

of the hemi-diaphragm within the ROI by using the mechanism of optical flow estimated 

from each successive pair of adjacent time-slices fTi and fTi+1 in Az. The optical flow value 

we seek is a vector that denotes the velocity (speed and direction) of motion. The component 

v(t) of this vector in the y direction is illustrated in Fig. 4(c). The mechanism of optical flow 

assumes that the motion under consideration at every pixel (x, y) is small in going from slice 

fTi at Ti to slice fTi+1 at Ti+1. This assumption leads to the image constraint equation shown 

below where Δt = Ti+1 − Ti and (x+Δx, y+Δy) denotes a pixel neighboring pixel (x, y).

fTi + 1(x + Δx, y + Δy) = fTi(x, y) (1)

With the assumption of small motion from Ti to Ti+1, by Taylor series expansion,

fTi + 1(x + Δx, y + Δy) = fTi(x, y) +
∂fTi
∂x Δx +

∂fTi
∂y Δy +

∂fTi
∂t Δt + ε (2)

where ε denotes residual sum over higher order terms in the series. If we ignore ε and divide 

throughout by Δt, the above equation leads to

∂fTi
∂x u +

∂fTi
∂y v +

∂fTi
∂t = 0 (3)

where (u, v) = (Δx
Δt , Δy

Δt ) denotes the velocity vector with its horizontal (antero-posterior) 

component u and cranio-caudal component v at pixel p = (x, y) at time t = Ti. We will 

make use of only the v component for auto-labeling.
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We employ the Lucas–Kanade (LK) method [42] to solve for u and v. The LK algorithm 

is based on the assumption that the optical velocities in local neighborhoods of each pixel 

p = (x, y) are similar. This assumption can be used to derive the basic equation of optical 

flow for all pixels in a small neighborhood L(p) of pixel p and solve the resultant system 

of equations by the least squares technique for u and v at (x, y). In our implementation, we 

assumed 3 × 3 neighborhoods.

u
v = (x, y) ∈ L(p)

∂2ft(x, y)
∂x2 (x, y) ∈ L(p)

∂ft(x, y)
∂x

∂ft(x, y)
∂y

(x, y) ∈ L(p)

∂ft(x, y)
∂x

∂ft(x, y)
∂y (x, y) ∈ L(p)

∂2ft(x, y)
∂y2

−1

−
(x, y) ∈ L(p)

∂ft(x, y)
∂x

∂ft(x, y)
∂t

−
(x, y) ∈ L(p)

∂ft(x, y)
∂x

∂ft(x, y)
∂t

(4)

3) Determining the cranio-caudal component of motion and EE and EI time 
points—Let Vz(p, t) denote the image of the cranio-caudal component of velocity within 

the specified ROI at time t for the time sequence Az. That is, at any pixel p within the ROI, 

Vz(p, t) denotes the velocity component v at pixel p = (x, y) at time t estimated as described 

in the previous section. To avoid undue influence of noise, instead of following motion at 

every pixel within the ROI, we estimate the average of the signed cranio-caudal velocity 

components within the ROI

μz(t) = p ∈ ROIV z(p, t)
ROI (5)

where |ROI| denotes the number of pixels within the ROI. In summary, μz(t) is the average 

cranio-caudal velocity for slice location z at time t, with the convention that a +ve value of 

μz(t) indicates downward (caudal direction) motion of the hemi-diaphragm (inspiration) for z 
at time t and a −ve value denotes upward (cranial direction) motion (expiration) for z at t.

Fig. 5 illustrates the variation of μz(t) as a function of t as estimated by the above 

method in a time sequence Az associated with a patient dMRI data set for the right hemi-

diaphragm. The pseudo-periodic motion of the hemi-diaphragm seems to be well-captured 

by the proposed technique. Recall that μz(t) represents the cranio-caudal velocity of the 

hemi-diaphragm. During inspiration, the hemi-diaphragm moves caudally, μz(t) > 0, and 

the EI time points are identified at time instances just before μz(t) changes from a +ve 

(downward motion) to a −ve value (upward motion). Similarly, EE time points are estimated 

from μz(t) at time instances just before μzt changes from a −ve (upward motion) to a +ve 

value (downward motion). In other words, the conditions for EI and EE are:

EI: Time instance Ti such that
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μz T i > 0 AND μz T i + 1 < 0. (6)

EE: Time instance Ti such that

μz T i < 0 AND μz T i + 1 > 0 . (7)

A complete respiratory cycle in Fig. 5 extends from a colored time point to the next colored 

time point of the same color.

EXPERIMENTS, RESULTS, AND DISCUSSION

A. Experiments

We conducted experiments to ascertain the accuracy and precision of our auto-labeling 

method.

Accuracy: The EE and EI time points in the dynamic sequence Az (of M = 80 time 

points) associated with each sagittal slice location z for each of the 87 dMRI data sets 

(see Table I) were determined manually by a trained operator under the guidance of a 

radiologist (coauthor Torigian, a professor of radiology at the Hospital of the University 

of Pennsylvania with 24 years of experience in thoracoabdominopelvic CT, MRI, and PET 

imaging, interpretation, and image analysis) by visually examining the movement of the 

diaphragm on all ~250,000 slices of these data sets. These EE and EI markings served as 

ground truth for assessing the accuracy of our auto-labeling method in detecting these time 

points. Auto-labeling was performed on all 87 scans. Accuracy was quantified by estimating 

the deviation in the time instance determined by auto-labeling from the closest ground truth 

marking. To be specific, for a time sequence Az = {fT1, fT2, …, fTM} associated with 

a z-slice, let an EE time slice determined by auto-labeling be fTa and the closest “true” 

time-slice be fTt. Then, the deviation in this instance is |t − a|. We estimated the mean ε 
m (and standard deviation ε sd) of this error over the tested cases separately for EE and 

EI, EE and EI together (EE+EI), separately for left lung (LL) and right lung (RL), and 

left lung and right lung together (LL+RL). Since the performance at a z-location passing 

through the lateral and medial aspects of the hemi-diaphragm may be different from the 

performance at a z-location passing through the center of the hemi-diaphragm dome, we 

analyzed accuracy separately at the mid-level, lateral aspect, and medial aspect of each of 

left and right hemi-diaphragms instead of determining an overall accuracy.

Precision: Recall that the auto-labeling method requires interactive specification of the ROI. 

To study the dependence of the reproducibility of auto-labeling on this subjective operation, 

on a subset of 10 data sets (5 pre-operative scans of TIS patients and 5 scans of normal 

adult subjects), the auto-labeling process (including ROI specification) was repeated. The 

same operator who labeled EE and EI time points manually on all data sets repeated manual 

labeling in another repeated session conducted several months after the initial session on the 

same above 10 data sets. These data served to understand the variability in manual labeling 

itself and how the auto-labeling precision compared with this variability.
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B. Results and discussion

1) Qualitative—Fig. 6 illustrates manual and auto-labeling processes over one breathing 

cycle. In this example, the patient completes exhalation at time point T2 where the 

diaphragm reaches the highest point, and T2 is marked as EE. The patient completes 

inspiration at time point T5 when the diaphragm returns to the lowest point, and thus T5 is 

marked as EI. The lower half of Fig. 6 shows the variation in the direction of optical flow 

within the ROI during the breathing cycle. Overall optical flow values within the ROI can 

be positive or negative (shown by blue and orange arrows), indicating downward or upward 

motion of the diaphragm, respectively. The experimental results show that T2 and T5 are the 

last time points in the exhalation and inhalation processes, respectively. In many cases of 

slice acquisition, the diaphragm seems to pause for a short period of time near EI and EE, 

and only a slight deviation occurs. The position of the diaphragm in the two time-adjacent 

images does not change much. This phenomenon mostly occurs at the last time point of 

inhalation, which is near T5. Due to the huge workload of annotators and the need for 

active judgment, sometimes they cannot be distinguished quickly in a short time. Automatic 

labeling is more advantageous in this case. This inevitably results in differences between 

auto-labeling and manual labeling, although auto-labeling may often be more accurate due 

to its quantitative nature and ability in distinguishing between close cases. The proposed 

method does not use a complete image, but only uses the ROI containing the diaphragm to 

complete respiratory signal tracking. The principle is to use the change trend of the optical 

flow of pixels in the ROI area only from two adjacent images. For black-band artifacts of the 

balanced SSFP images at 3T, if the pixels in the two adjacent images do not find a matching 

point, then the pixel’s optical flow will not be influenced and hence will not be counted.

2) Quantitative—Accuracy: ε m and ε sd values for the different tested scenarios are 

summarized in Table II. Note that there were 86 4D dMRI acquisitions (excluding the 

phantom; see Table I) involved in our study, where each acquisition included 35-40 sagittal 

z-locations. Thus, our experiment involved roughly 3,000-3,500 time sequences Az (hence 

auto-labeling experiments) where each experiment (time sequence) involved detecting 2-4 

time points for each of EE and EI In other words, the total number of estimations of EE and 

EI time points in our study was ~20,000. Table II shows overall errors in the last column 

computed from all estimations for each scenario, but also separately for left lung (LL) 

and right lung (RL), pre-operative and post-operative data sets, right region (RR), middle 

region (MR), and left region (LR) of the hemi-diaphragm, and EE and EI time points. We 

make the following observations from these results. Comparisons for statistically significant 

differences are made based on T-test.

(i) The error in almost all scenarios is less than 1 time point. That is, in the sequence Az 

consisting of 80 time point slices, some of which are labeled as EE and EI time points, the 

separation between ground truth labeling and auto-labeling is on the average off by less than 

1 time point slice. This, we believe, is remarkable, considering that manual labeling can 

itself vary due to ambiguity (as explained above in Fig. 6) by about that amount. For normal 

subject data sets, error (ε m±ε sd) over all scenarios is 0.29±0.19, and for TIS patient 

data sets before and after surgery, errors over all scenarios are 0.52±0.28 and 0.50±0.26, 

respectively. The overall error in the case of patients (0.51±0.59) is statistically significantly 
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higher (P < 0.05) than that in the case of normal subjects (0.29±0.19). For phantom data 

sets (not listed in Table II), the results achieved the highest accuracy with an overall error of 

0.27±0.26. Note that although we observed statistically significant differences in comparing 

between some scenarios (as noted below), the differences themselves were insignificant 

given that most errors are less than one time point in magnitude.

(ii) Interestingly, at the LR position of the left lung and RR position of the right lung 

(denoted respectively by LR-LL and RR-RL), the error is statistically significantly greater 

(P <0.05) than in other positions. Based on all samples of patients and normal subjects, the 

error is (0.63±0.71) vs. (0.42±0.44). From the analysis of samples from normal subjects, the 

error is (0.76±0.76) vs. (0.39±0.43). At LR-LL before surgery, the errors for EI and EE are 

the largest among all positions, the error for EE is 0.90±0.65, the error for EI is 1.04±0.87, 

and the average error of EE+EI reaches 0.98±0.73. It appears that the greater the proportion 

of the reference structure (the hemi-diaphragm) in the ROI region, the higher will be the 

accuracy of the optical flow method for tracking motion. At LR-LL and RR-RL, the area 

of the diaphragm is much smaller than at other z locations, and it is overwhelmed by other 

tissues in the ROI region. The background has a significant influence on the optical flow 

value, resulting in lower accuracy at these two positions. This effect can be verified from 

results at other locations. Regardless of pre- or post-surgery condition, the average accuracy 

at MR-RL is greater than the accuracy at the lateral edge.

(iii) Based on the sample data of all positions of TIS patients, the accuracy of EI labeling 

(0.46±0.63) is greater than that of EE (0.56±0.54) (P < 0.05). This result seems reasonable. 

During inhalation, the rate of change in lung volume and the speed of the diaphragm are 

lower than during exhalation. Whether it is for manual labeling or automatic tracking, the 

end of the inhalation process is easier to identify accurately.

(iv) As explained previously, in the region close to the heart, we chose a smaller ROI to 

reduce the influence of the heart on the optical flow value. In the process of obtaining the 

optical flow value, the influence of other tissues in the background on the calculation is 

inevitable. The expansion and contraction of the heart will affect the labeling process, which 

can be shown by comparing errors of right and left lungs. The effect of heart motion on 

auto-labeling is more pronounced on the left side of the thorax. Before surgery, the accuracy 

of labeling at LR-RL (0.38±0.35) is better than that at RR-LL (0.59±0.50) although the 

difference is not statistically significant (P > 0.05). The post-surgical errors showed that 

although the accuracy of labeling at LR-RL is close to that at RR-LL, the accuracy for the 

right lung (0.48±0.27) is still higher than that for the left lung (0.52±0.36) based on all data 

(P > 0.05).

(v) The labeling error overall after surgery (0.50±0.26) is slightly lower than that before 

surgery (0.52±0.28) (P > 0.05), but for both conditions (0.51±0.58) the error is statistically 

significantly higher (P < 0.05) than that for normal subjects (0.29±0.19). After surgery, there 

was a statistically significant difference (P < 0.05) in the error in locating EE and EI time 

points at MR-LL, RR-LL, and LR-RL, with the values (mean ± sd) for the three scenarios 

being: 0.53±0.36 (EE) vs. 0.24±0.27 (EI), 0.56±0.49 (EE) vs. 0.30±0.29 (EI), and 0.54±0.41 

(EE) vs. 0.31±0.33 (EI), respectively. This possibly suggests that the surgery improved 
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the movement of the diaphragm near the heart making the distinction between EE and EI 

clearer.

Precision: In this part, we compare the differences among three repeated experiments to 

study how the reproducibility of auto-labeling compared with that of manual labeling. The 

three experiments are: (i) repeated automatic labeling where the same operator selected 

ROIs twice (Auto-1), (ii) different operators selected ROIs twice (Auto-2), and (iii) the same 

operator manually labeled twice (Manual). Considering the repeated experiments by the 

same operator (Auto-1), the deviation of auto-labeling over roughly 5000 cycles in these 

data sets was found to be 0.49±0.68. This is actually smaller than the deviation of our 

method from the manual ground truth (Manual). These results are summarized in E-Table 1 

in Supplementary Material.

We compared the deviation of repeated experiments with the same operator (Auto-1) 

and different operators (Auto-2) for each of the different scenarios: RR, MR, and LR 

locations for right and left lung and for EE and EI. We analyzed the12 pair-wise 

results using ANOVA. No pair showed a significant difference in the results of the two 

repeated experiments. Comparison of automatic labeling (Auto-1) and manual labeling 

(Manual), only LR-RL for EE, LR-RL for EI, and LR-LL for EE showed statistically 

significant differences (P < 0.05) between manual labeling reproducibility and auto-labeling 

reproducibility, with the value for the three scenarios being: 0.30±0.77 (Manual) vs. 

0.27±0.31 (Auto-1), 0.32±0.47 (Manual) vs. 0.27±0.18 (Auto-1), and 0.88±1.72 (Manual) 

vs. 0.63±0.80 (Auto-1), respectively. Again, as with accuracy, the deviations are all less 

than one time-point slice. This indicates that the variability found in auto-labeling is mostly 

comparable to that in manual labeling, and in those cases when the deviation is statistically 

significant, the difference with respect to manual labeling is less than one time point. 

This result combined with the accuracy result demonstrates that the proposed auto-labeling 

method is comparable to manual labeling (with a deviation of not more than one time point) 

and is as reproducible as the manual method itself.

Computational time: For MATLAB 2015a implementation on a Lenovo computer with 4-

core, 3.7 GHz CPU (AMD A10-6700), 16GB RAM, and running the professional Windows 

7 operating system, the human interaction time required per patient study for auto-labeling 

is at most 15 minutes. The actual purely computational time per study subsequently is ~8 

minutes. In our experience of manually labeling all 86 human subject dMRI data sets (Table 

I), a study typically takes about 4 hours for a trained technician. Thus, the auto-labeling 

method greatly facilitates analyzing a large number of TIS patient studies in a routine 

manner for studying the TIS phenomenon and its treatment outcomes.

Comparison with results from the literature: Among all retrospective 4D imaging methods, 

the imaging principle of Ref. [17] comes closest to our method. This method needs 

to identify the first EE time point in acquired 2D image sequences as a reference for 

determining the weight to find the optimal path to complete the 4D reconstruction process. 

The authors use NiftyReg software to calculate the dense displacement fields between two 

temporal slices and lowpass filtering to extract the respiratory signals. To assess the accuracy 

of their auto-labeling strategy, the authors compare the results of their automated EE 
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detection algorithm with results manually labeled by 5 human operators. Data sets from 12 

patients were used in their experiments which involved 36 EE detection experiments. Note 

that our annotation method marks both EE and EI time points, although here we use only the 

results for EE for comparison. Romaguera et al. select three locations for their comparative 

assessment: Area covering the liver and right hemi-diaphragm, the heart, and the left hemi-

diaphragm. This is because the labeling reference can be different at these three locations, 

and the challenge of automatic labeling is also different. These three locations correspond to 

MR-RL, RR-LL, and MR-LL, respectively, in our evaluation method.

The image acquisition protocol in Romaguera’s paper is different from ours, with 150 time 

points for each spatial slice location and a much shorter time for acquiring data for a single 

slice. If error in auto-labeling is calculated in terms of number of time points, the error of 

Romaguera’s method will be much larger, which is unfair to their method. To standardize 

describing labeling error, we convert the number of time points of the error into time length 

deviation (in ms) based on the scanning protocol. As an example, an error of 0.12 time 

points in our method translates into 0.12 time slices x 480 ms per slice = 57.6 ms. The 

ground truth employed in their evaluation is the median number among the slices manually 

labeled by 5 operators.

Table III summarizes the labeling errors at the three locations for our method over all 

normal subjects and TIS patients and for Romaguera’s method over 12 normal volunteer 

subjects. The average errors of our method are smaller at all three positions regardless of 

normal subjects or patients. For the labeling of normal subjects, the labeling error of both 

methods at MR-RL and MR-LL is smaller than the error at RR-LL. Our method has very 

high accuracy at the left and right diaphragm positions, where the error is only 57.6 ms and 

120 ms, respectively. Considering that there is a short resting period before the start of the 

inspiratory phase, during which the diaphragm remains at the same height, these errors are 

extremely small, compared to the errors of Romaguera’s method at these two positions of 

355 ms and 233 ms, respectively. The labeling of data sets of patients with TIS is more 

challenging than that of normal subjects. Due to the more irregular breathing rhythm of the 

patients compared to normal subjects and the severe deformation of the lungs, the errors in 

our method at MR-LL (230.4 ms pre-operatively and 268.8 ms post-operatively) and RR-LL 

(220.8 ms pre-operatively and 254.4 ms post-operatively) are higher than at other regions. 

However, the errors at MR-LL are still much lower than the errors in Romaguera’s method 

on normal subjects.

CONCLUDING REMARKS

In this paper, to make image-based 4D construction practical, we presented an auto-labeling 

method for identifying EE and EI time points in free-breathing thoracic dMRI slice 

acquisitions based on time-dependent optical flow concepts. Our method tracks movement 

of the hemi-diaphragm using the optical flow technique to determine respiratory phase. The 

method is independent of the image acquisition process and does not require setting internal 

or external markers on the patient. The auto-labeling process saves time greatly compared 

to manual labeling currently performed, which in turn makes the entire process of dMRI 

analysis for the study of TIS significantly more practical. Our extensive evaluation based 
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on 87 dMRI data sets suggests that the accuracy of the auto-labeling method to identify EE 

and EI phases is within 1 discrete time unit of temporal sampling. More importantly, this 

deviation is well within the deviation found in manual labeling by an expert who labeled all 

87 data sets by visually examining all ~250,000 slices. We conclude that the auto-labeling 

method performs at least as accurately as manual expert labeling and saves a considerable 

amount of human time needed in the process.

The main limitation of this approach is that at present it assumes that the acquired MRI 

slices constitute spatiotemporal sampling of the thorax under tidal breathing conditions. The 

method is not able to distinguish between normal tidal breathing cycles and abnormal cycles 

such as when subjects take a long deep breath or when they perform shallow breathing by 

almost holding their breath. Interestingly, we find such abnormal patterns of breathing more 

frequently in normal subjects than in TIS patients. We are developing separate techniques to 

automatically detect such abnormal events before auto-labeling is performed, again by using 

optical flow but combined with machine learning techniques.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A schematic illustration of the auto-labeling method.
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Fig. 2. 
Part of a time sequence Az from a patient dMRI data set illustrating the EE and EI time 

points marked based on visually observed movement of the diaphragm dome.
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Fig. 3. 
ROIs selected at different sagittal z-locations of the thorax. Slices through mid-right lung 

(left), mid-thorax at the level of heart (middle), and mid-left lung (right) are shown.
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Fig. 4. 
(a) A sample ROI. For the image coordinate system, x and y indicate the two directions 

of the sagittal plane. The y direction corresponds to superior-inferior direction and the 

x direction indicates anterior-posterior direction. (b) The graph shows conceptually the 

continuous motion of the hemi-diaphragm over one respiratory cycle at point P. The 

small circles in (b) and (c) denote the sampled time-slices. (c) The vertical (cranio-caudal) 

component v(t) of the velocity of the hemi-diaphragm at P. The detected EI and EE time 
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points are marked in blue and orange, respectively. The EI time point corresponds to the 

time instance just before v(t) changes from a +ve to a −ve value, and vice versa for EE.
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Fig. 5. 
A plot of μz estimated from the time samples in Az for a patient dMRI data set. The time 

axis has 80 time points and a total of 79 optical flow values are equivalently spaced on the t 
axis. The blue and orange dots denote EI and EE time points, respectively.
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Fig. 6. 
The upper row shows ROIs selected over one respiratory cycle (from T1 to T6) of a time 

sequence associated with a z-location of a sample data set. The orange and blue lines denote 

the superior-most point and inferior-most point of the hemi-diaphragm during breathing, 

respectively. The lower row illustrates optical flow direction from T0 to T1, …, T5 to T6. 

The upward and downward motions detected by optical flow are denoted by orange and blue 

arrows, respectively.
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TABLE I

SUMMARY OF DMRI DATA SETS UTILIZED IN OUR STUDY

Scan 1 Scan 2 Total dMRI data sets

TIS –pediatric 29 (pre-op) 29 (post-op) 58

Normal–pediatric 20 - 20

Normal – adult 5 3 8

Dynamic phantom 1 - 1

TIS patient data set contains 16 males and 13 females, with age 4.5±4.2 yrs before surgery and 4.5±4.2 yrs after surgery (no significant difference 

in age; p > 0.05). Normal pediatric data set contains 12 males and 8 females, with age 11.0±2.3yrs and body mass index of 18.8±2.8 kg/m2. 
Normal adult subjects were 3 males and 2 females, with age 27.6 ± 2.5 yrs.
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TABLE III

MR-RL RR-LL MR-LL

(Romaguera et al., 2019) 355 509 233

Our method for TIS (pre) 182.4 230.4 220.8

Our method for TIS (post) 163.2 268.8 254.4

Our method for Normal 57.6 211.2 120

The average EE auto-labeling errors (ms) of our method compared with Romaguera’s method[17] at 3 locations MR-RL, RR-LL, and MR-LL. RL 
& LL: right & left lung. RR & MR: right & middle region.
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