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Abstract

Developing gene regulatory network models is a major challenge in systems biology. Several 

computational tools and pipelines have been developed to tackle this challenge, including the 

newly developed Inherent Dynamics Pipeline. The Inherent Dynamics Pipeline consists of several 

previously published tools that work synergistically and are connected in a linear fashion, where 

the output of one tool is then used as input for the following tool. As with most computational 

techniques, each step of the Inherent Dynamics Pipeline requires the user to make choices 

about parameters that don’t have a precise biological definition. These choices can substantially 

impact gene regulatory network models produced by the analysis. For this reason, the ability to 

visualize and explore the consequences of various parameter choices at each step can help increase 

confidence in the choices and the results.The Inherent Dynamics Visualizer is a comprehensive 

visualization package that streamlines the process of evaluating parameter choices through an 

interactive interface within a web browser. The user can separately examine the output of each 

step of the pipeline, make intuitive changes based on visual information, and benefit from the 

automatic production of necessary input files for the Inherent Dynamics Pipeline. The Inherent 

Dynamics Visualizer provides an unparalleled level of access to a highly intricate tool for the 

discovery of gene regulatory networks from time series transcriptomic data.

Introduction

Many important biological processes, such as cell differentiation and environmental 

response, are governed by sets of genes that interact with each other in a gene regulatory 

network (GRN). These GRNs produce the transcriptional dynamics needed for activating 

and maintaining the phenotype they control, so identifying the components and topological 

structure of the GRN is key to understanding many biological processes and functions. A 

GRN may be modeled as a set of interacting genes and/or gene products described by a 
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network whose nodes are the genes and whose edges describe the direction and form of 

interaction (e.g., activation/repression of transcription, post-translational modification, etc.)1. 

Interactions can then be expressed as parameterized mathematical models describing the 

impact a regulating gene has on the production of its target(s)2,3,4. Inference of a GRN 

model requires both an inference of the structure of the interaction network and estimation 

of the underlying interaction parameters. A variety of computational inference methods 

have been developed that ingest time series gene expression data and output GRN models5. 

Recently, a new GRN inference method was developed, called the Inherent Dynamics 

Pipeline (IDP), that utilizes time series gene expression data to produce GRN models with 

labeled regulator-target interactions that are capable of producing dynamics that match the 

observed dynamics in the gene expression data6. The IDP is a suite of tools connected 

linearly into a pipeline and can be broken down into three steps: a Node Finding step that 

ranks genes based on gene expression characteristics known or suspected to be related to the 

function of the GRN7,8, an Edge Finding step that ranks pairwise regulatory relationships8,9, 

and a Network Finding step that produces GRN models that are capable of producing the 

observed dynamics10,11,12,13,14,15.

Like most computational methods, the IDP requires a set of user-specified arguments 

that dictate how the input data is analyzed, and different sets of arguments can produce 

different results on the same data. For example, several methods, including the IDP, contain 

arguments that apply some threshold on the data, and increasing/decreasing this threshold 

between successive runs of the particular method can result in dissimilar results between 

runs (see Supplement Note 10: Network inference methods of5). Understanding how each 

argument may impact the analysis and subsequent results is important for achieving high 

confidence in the results. Unlike most GRN inference methods, the IDP consists of multiple 

computational tools, each having its own set of arguments that a user must specify and 

each having its own results. While the IDP provides extensive documentation on how to 

parameterize each tool, the interdependency of each tool on the output of the previous 

step makes parameterizing the entire pipeline without intermediate analyses challenging. 

For instance, arguments in the Edge and Network Finding steps are likely to be informed 

by prior biological knowledge, and so will depend on the dataset and/or organism. To 

interrogate intermediate results, a basic understanding of programming, as well as a deep 

understanding of all the result files and their contents from the IDP, would be needed.

The Inherent Dynamics Visualizer (IDV) is an interactive visualization package that runs in 

a user’s browser window and provides a way for users of the IDP to assess the impact of 

their argument choices on results from any step in the IDP. The IDV navigates a complicated 

directory structure produced by the IDP and gathers the necessary data for each step and 

presents the data in intuitive and interactive figures and tables for the user to explore. After 

exploring these interactive displays, the user can produce new data from an IDP step that 

can be based on more informed decisions. These new data can then be immediately used in 

the next respective step of the IDP. Additionally, exploration of the data can help determine 

whether an IDP step should be rerun with adjusted parameters. The IDV can enhance the 

use of the IDP, as well as make the use of the IDP more intuitive and approachable, as 

demonstrated by investigating the core oscillator GRN of the yeast cell-cycle. The following 
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protocol includes IDP results from a fully parameterized IDP run versus an approach that 

incorporates the IDV after runs of each IDP step, i.e., Node, Edge, and Network Finding.

Protocol

1. Install the IDP and IDV

NOTE: This section assumes that docker, conda, pip, and git are installed already (Table of 

materials).

1. In a terminal, enter the command: git clone https://gitlab.com/biochron/

inherent_dynamics_pipeline.git.

2. Follow the install instructions in the IDP’s README file.

3. In a terminal, enter the command: git clone https://gitlab.com/bertfordley/

inherent_dynamics_visualizer.git.

NOTE: Cloning of the IDV should happen outside of the IDP’s top-level 

directory.

4. Follow the install instructions in the IDV’s README file.

2. Node finding

1. Create a new IDP configuration file that parametrizes the Node Finding step.

NOTE: All quotation marks in the following steps should not be typed out. The 

quotation marks are only used here as a delimiter between the protocol text and 

what is to be typed out.

1. Add the main IDP arguments to the configuration file.

2. Open a new text file in a text editor and type “data_file 

=“, “annotation_file =“, “output_dir =“, “num_proc =“, and 

“IDVconnection = True” on individual lines.

3. For “data_file”, after the equal to sign, type the path to and name of the 

respective time series file and type a comma after the name. Separate 

each data by a comma, if more than one time series data set is being 

used. See Supplemental File 1 and Supplemental File 2 for an example 

of time series gene expression files.

4. Type the path to and name of the annotation file for “annotation_file”, 

after the equal to sign. See Supplemental File 3 for an example of an 

annotation file.

5. For “output_file”, after the equal to sign, type the path to and name of 

the folder where results will be saved.

6. After the equal to sign, for “num_proc”, type the number of processes 

the IDP should use.

7. Add Node Finding arguments to the configuration file.
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8. In the same text file as in step 2.1.1, type in the order presented 

“[dlxjtk_arguments]”, “periods =“, and “dlxjtk_cutoff =“ on individual 

lines. Place these after the main arguments.

9. For “periods”, after the equal to sign, if one-time series data set is being 

used, type each period length separated by commas. For more than one 

time series data set, type each set of period lengths as before but place 

square brackets around each set and place a comma between the sets.

10. After the equal to sign, for “dlxjtk_cutoff”, type an integer specifying 

the maximum number of genes to retain in the gene_list_file output by 

de Lichtenberg by JTK_CYCLE (DLxJTK) (Table 1).

NOTE: It is highly recommended to review the dlxjtk_arguments 

sections in the IDP README to get a better understanding of each 

argument. See Supplemental File 4 for an example of a configuration 

file with the Node Finding arguments specified.

2. In the terminal, move into the IDP directory, named inherent_dynamics_pipeline.

3. In the terminal, enter the command: conda activate dat2net

4. Run the IDP using the configuration file created in step 2.1 by running this 

command in the terminal, where <config file name> is the name of the file: 

python src/dat2net.py <config file name>

5. In the terminal, move to the directory named inherent_dynamics_visualizer and 

enter the command: ./viz_results.sh <results_directory>

NOTE: <results_directory> will point to the directory used as the output 

directory for the IDP.

6. In a web browser, enter http://localhost:8050/ as the URL.

7. With the IDV now open in the browser, click on the Node Finding tab and select 

the node finding folder of interest from the dropdown menu.

8. Manually curate a new gene list from the gene list table in the IDV to be used for 

subsequent IDP steps.

1. To extend or shorten the gene list table, click on the up or down arrows 

or manually enter in an integer between 1 and 50 in the box next to 

Gene expression of DLxJTK-ranked genes. Top:.

2. In the gene list table, click on the box beside a gene to view its gene 

expression profile in a line graph. Multiple genes can be added.

3. Optionally specify the number of equally sized bins to compute and 

order genes by the time interval containing their peak expression, by 

inputting an integer into the input box above the gene list table labeled 

Input integer to divide the first cycle into bins:.
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NOTE: This option is specific to oscillatory dynamics and might not be 

applicable to other types of dynamics.

4. Select a heatmap viewing preference by clicking on an option under 

Order Genes By: First Cycle Max Expression (Table 1) which orders 

genes based on the time of the gene-expression peak in the first cycle.

NOTE: DLxJTK Rank orders genes based on the periodicity ranking 

from the DLxJTK algorithm of the IDP.

5. Click on the Download Gene List button to download the gene list into 

the file format needed for the Edge Finding step. See Supplemental File 

5 for an example of a gene list file.

9. In the Editable Gene Annotation Table, label a gene as a target, a regulator, or 

both in the annotation file for the Edge Finding step in a new Edge Finding run. 

If a gene is a regulator, label the gene as an activator, repressor, or both.

1. To label a gene as an activator, click on the cell in the tf_act column 

and change the value to 1. To label a gene as a repressor, change the 

value in the tf_rep column to 1. A gene will be allowed to act as both an 

activator and a repressor in the Edge Finding step by setting the values 

in both the tf_act and tf_rep columns to 1.

2. To label a gene as a target, click on the cell in the target column and 

change the value to 1.

10. Click on the Download Annot. File button to download the annotation file into 

the file format needed for the Edge Finding step.

3. Edge finding

1. Create a new IDP configuration file that parametrizes the Edge Finding step.

1. Add the main IDP arguments to the configuration file. Open a new text 

file in a text editor and repeat step 2.1.1.

2. Add Edge Finding arguments to the configuration file.

3. In the same text file as in step 3.1.1, type in the order presented 

“[lempy_arguments]”, “gene_list_file =“, “[netgen_arguments]”, 

“edge_score_column =“, “edge_score_thresho =“, “num_edges_for_list 

=“, “seed_threshold =“, and “num_edges_for_seed =“ on individual 

lines. These should go below the main arguments.

4. For “gene_list_file”, after the equal to sign, enter the path to and name 

of the gene list file generated in step 2.8.5.

5. For “edge_score_column”, after the equal to sign, enter either “pld” or 

“norm_loss” to specify which data frame column from the lempy output 

is used to filter the edges.
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6. Select either “edge_score_threshold” or “num_edges_for_list”, and 

delete the other. If “edge_score_threshold” was selected, enter a number 

between 0 and 1. This number will be used to filter edges based on the 

column specified in step 3.1.5.

1. If “num_edges_for_list” was selected, enter a value equal to 

or less than the number of possible edges. This number will 

be used to filter the edges based on how they are ranked in 

the column specified in step 3.1.5. The edges left over will be 

used to build networks in Network Finding.

7. Select either “seed_threshold” or “num_edges_for_seed” and delete 

the other. If “seed_threshold” was selected, enter a number between 0 

and 1. This number will be used to filter edges based on the column 

specified in step 3.1.5.

1. If “num_edges_for_seed” was selected, enter a value equal to 

or less than the number of possible edges. This number will 

be used to filter the edges based on how they are ranked in 

the column specified in step 3.1.5. The edges left over will 

be used to build the seed network (Table 1) used in Network 

Finding.

NOTE: It is highly recommended to review the 

lempy_arguments and netgen_arguments sections in the IDP 

README to get a better understanding of each argument. See 

Supplemental File 7 for an example of a configuration file 

with the Edge finding arguments specified.

2. Repeat steps 2.2 and 2.3.

3. Run the IDP using the configuration file created in step 3.1 by running this 

command in the terminal, where <config file name> is the name of the file: 

python src/dat2net.py <config file name>

4. If the IDV is still running, stop it by pressing Control C in the terminal window 

to stop the program. Repeat steps 2.5 and 2.6.

5. With the IDV open in the browser, click on the Edge Finding tab and select the 

edge finding folder of interest from the drop-down menu.

NOTE: If multiple datasets are used in Edge Finding, then make sure to select 

the last dataset that was used in the Local Edge Machine (LEM) analysis (Table 

1). It is important when selecting edges for the seed network or edge list based 

on LEM results to look at the last time series data listed in the configuration file 

as this output incorporates all preceding datafiles in its inference of regulatory 

relationships between nodes.

6. To extend or shorten the edge table, manually enter an integer in the input box 

under Number of Edges:.
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7. Optionally filter edges on the LEM ODE parameters. Click and drag to move 

either the left side or the right side of each parameter’s slider to remove edges 

from the edge table that have parameters outside of their new allowed parameter 

bounds.

8. Optionally create a new seed network if a different seed network is wanted than 

the one proposed by the IDP. See Supplemental File 8 for an example of a seed 

network file.

1. Select either From Seed to select the seed network or From Selection 
from the dropdown menu under Network:.

2. Deselect/select edges from the edge table by clicking the corresponding 

checkboxes adjacent to each edge to remove/add edges from the seed 

network.

9. Click on the Download DSGRN NetSpec button to download the seed network 

in the Dynamic Signatures Generated by Regulatory Networks (DSGRN) (Table 

1) network specification format.

10. Select additional nodes and edges to be used in the Network Finding step.

1. Select edges from the edge table by clicking the corresponding 

checkboxes to include in the edge list file used in Network Finding.

2. Click on Download Node and Edge Lists to download the node list 

and edge list files in the format required for their use in Network 

Finding. See Supplemental File 9 and Supplemental File 10 for 

examples of edge and node list files, respectively.

NOTE: The node list must contain all the nodes in the edge list file, so 

the IDV automatically creates the node list file based on the selected 

edges. Two options are available for viewing the edges in Edge Finding. 

The LEM Summary Table option presents the edges as a ranked 

list of the top 25 edges. Top-Line LEM Table presents the edges in 

a concatenated list of the top three ranked edges for each possible 

regulator. The number of edges viewed for each option can be adjusted 

by the user by changing the number in the Number of Edges input box.

4. Network finding

1. Create a new IDP configuration file that parametrizes the Network Finding step.

1. Add the main IDP arguments to the configuration file. Open a new text 

file in a text editor and repeat step 2.1.1.

2. Add Network Finding arguments to the configuration file.

3. In the same text file as in step 4.1.1, type in the order 

presented “[netper_arguments]”, “edge_list_file =“, “node_list_file 

=“, “seed_net_file =“, “range_operations =“, “numneighbors =“, 

“maxparams =“, “[[probabilities]]”, “addNode =“, “addEdge =“, 
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“removeNode =“, and “removeEdge =“ on individual lines, below the 

main arguments.

4. For “seed_net_file”, “edge_list_file” and “node_list_file”, after the 

equal sign, enter the path to and name of the seed network file and 

the edge and node list files generated in steps 3.9 and 3.10.2.

5. After the equal to sign, for “range_operations”, type two numbers 

separated by a comma. The first and second numbers are the minimum 

and the maximum number of addition or removal of nodes or edges per 

network made, respectively.

6. For “numneighbors”, after the equal to sign, enter a number that 

represents how many networks to find in Network Finding.

7. For “maxparams”, after the equal to sign, enter a number that represents 

the maximum number of DSGRN parameters to allow for a network.

8. Enter values between 0 and 1 for each of these arguments: “addNode”, 

“addEdge”, “removeNode”, and “removeEdge”, after the equal to sign. 

The numbers must sum to 1.

NOTE: It is highly recommended to review the netper_arguments 

and netquery_arguments sections in the IDP README to get a 

better understanding of each argument. See Supplemental File 11 and 

Supplemental File 12 for examples of a configuration file with the 

Network Finding arguments specified.

2. Repeat steps 2.2 and 2.3.

3. Run the IDP using the configuration file created in step 4.1 by running this 

command in the terminal, where <config file name> is the name of the file: 

python src/dat2net.py <config file name>

4. If the IDV is still running, stop it by pressing Control C in the terminal window 

to stop the program. Repeat steps 2.5 and 2.6.

5. With the IDV open in the browser, click on the Network Finding tab and select 

the network finding folder of interest.

6. Select a network or set of networks to generate an edge prevalence table (Table 

1) and to view the networks along with their respective query results.

1. Two options are available for selecting networks: Option 1 - Input 

lower and upper bounds on query results by inputting minimum and 

maximum values in the input boxes corresponding to the x-axis and 

y-axis of the plot. Option 2 - Click and drag over the scatterplot to 

draw a box around the networks to be included. After selection or input 

bounds are entered, press the Get Edge Prevalence From Selected 
Networks button.
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NOTE: If more than one DSGRN query was specified, use the radio 

buttons labeled with the query type to switch between each query’s 

results. The same applies if more than one epsilon (noise level) was 

specified.

7. Click the arrows beneath the edge prevalence table to move to the next page of 

the table. Press Download Table to download the edge prevalence table.

8. Input an integer in the Network Index input box to display a single network 

from the selection made in step 4.6. Click on Download DSGRN NetSpec to 

download the displayed network in the DSGRN network specification format.

9. Search networks for similarity to a specified motif or network of interest.

1. Use the checkboxes corresponding to each edge to select edges to be 

included in the network or motif used for the similarity analysis. Click 

on Submit to create the similarity scatterplot for the selected motif or 

network.

NOTE: Use the arrows in the edge list to sort alphabetically and the 

arrows beneath the table to move to the next page of the table.

2. Click and drag over the scatterplot to draw a box around the networks 

to be included to select a network or set of networks to generate an edge 

prevalence table and to view the networks along with their respective 

query results.

NOTE: If more than one DSGRN query was specified, use the radio 

buttons labeled with the query type to switch between each query’s 

results. The same applies if more than one epsilon (noise level) was 

specified.

3. Repeat steps 4.7 and 4.8 to download the edge prevalence table and the 

displayed network for the similarity analysis, respectively.

Representative Results

The steps described textually above and graphically in Figure 1 were applied to the core 

oscillating GRN of the yeast cell-cycle to see if it is possible to discover functional GRN 

models that are capable of producing the dynamics observed in time series gene expression 

data collected in a yeast cell-cycle study16. To illustrate how the IDV can clarify and 

improve IDP output, the results, after performing this analysis in two ways, were compared: 

1) running all steps of the IDP in one pass without the IDV and 2) stepping through 

the IDP with the aid of the IDV, which allows the adjustment of intermediate results 

both by incorporating prior biological knowledge and by making refined choices based on 

IDP outputs. The well-studied yeast cell-cycle GRN used as an example has many of its 

regulatory relationships experimentally verified. If a different and/or less annotated organism 

or biological process is being studied, the choices on how intermediate results or parameters 

are adjusted might be different. To illustrate one type of query that can be used to assess 
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networks, the robustness of each network was measured to support stable oscillations and 

match the observed transcriptional dynamics of their nodes across model parameters.

Gene expression time series data of two replicate series were taken from Orlando 200816 and 

preprocessed to remove any gene expression associated with the cell-cycle synchronization 

method applied in the original experiment (Supplemental File 1 and Supplemental File 2). 

An annotation file was created containing all the genes in the time series data that are 

supported by both DNA binding and expression evidence found in Yeastract17 and thus 

could function as a regulator in a GRN. TOS4, PLM2, and NRM1 were also included as 

regulators, even though they were not found in Yeastract to have both types of evidence, 

because they are believed to be important for the yeast core GRN based on evidence in the 

literature18,19 (Supplemental File 3). All regulators were labeled as both an activator and 

repressor as well as targets.

The IDP was first parameterized to run through all steps of the IDP, that is Node, Edge, 

and Network Finding. A set of arguments was selected that appeared appropriate based on 

the current understanding of the yeast cell-cycle GRN, a small set of genes participating in 

a strongly connected network (Supplemental File 4). This understanding mostly influenced 

the Node and Edge Finding choices. The probabilities parameters in Network Finding 

were based on the assumption that only true genes and regulatory interactions would be 

passed onto Network Finding. This fully parameterized run of the IDP produced results 

for Node and Edge Finding (Figure 2B,C), yet in Network Finding no model-admissible 

networks were discovered (Figure 2A,D). Model admissibility is explained in the code 

documentation of the python module dsgrn_net_gen14, a dependency of the IDP. Briefly, 

networks that contain self-repressing edges or have too many inputs or outputs at a single 

node are not queryable by the DSGRN software (Table 1). The IDP gives many reasons why 

model-admissible networks may not be found and describes troubleshooting steps to resolve 

the issue(s). Essentially, this involves changing parameters and/or input files and rerunning 

the respective IDP step, and examining results. The IDV was used to make this process less 

tedious and time-consuming.

The Node Finding results were loaded into the IDV to examine the genes being passed to 

the Edge Finding step of the IDP. The nodes given by IDP are the top N genes as ranked 

by DLxJTK (Table 1), N being specified by the user, however, this gene list may not be 

appropriate for the goal of the analysis. Without prior biological knowledge, automatic 

selection of nodes using only DLxJTK scores returned a gene with limited evidence 

of a role in the yeast cell-cycle (RME1), while a few known cell-cycle transcriptional 

regulators were not highly ranked (Figure 2B). Yeastract experimental evidence was used to 

select from among the highest-ranking genes by DLxJTK those with cell-cycle annotation. 

These genes are SWI4, YOX1, YHP1, HCM1, FKH2, NDD1, and SWI5. Their known 

regulatory relationships can be seen in Figure 3. FKH2 does not appear in the top ten genes 

(dlxjtk_cutoff was set to ten in Supplemental File 4) as ranked by DLxJTK, so the gene 

list was extended using the IDV until FKH2 was found (Figure 4). Several of the additional 

genes in the extended gene list are known core genes and would have been missed without 

investigating the Node Finding results. While more known core genes have been found by 

extending the gene list down the DLxJTK ranked list, the focus was kept on the genes 
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of interest. Therefore, some high-ranking genes were deselected, resulting in a gene list 

(Supplemental File 5) containing seven genes (Figure 4). A new annotation file was created 

(Supplemental File 6) based on these seven genes, each gene was labeled as a target, and 

the regulator type was specified using Yeastract. The new gene list and annotation file were 

downloaded for subsequent use in the next IDP step, Edge Finding. Without the IDV, the 

procedure of adding and removing genes from the gene list and annotation file would require 

modest coding skills.

A new IDP configuration file was parameterized for just the Edge Finding step 

(Supplemental File 7), with the new gene list and annotation file. After completion of 

the IDP with the new configuration file, results were loaded into the IDV (Figure 5A). 

As the Network Finding step searches stochastically around the network space of the seed 

network supplied to it, providing a good seed network can be important. A good seed 

network can be thought of as one that contains true edges. With the IDV and using online 

databases such as Yeastract and the Saccharomyces Genome Database (SGD)20, the seed 

network can be viewed and adjusted using the regulatory relationships from LEM (Table 

1) that have experimental evidence. As an example, the edge YHP1 = tf_act(HCM1) was 

deselected because there is no documented evidence of this relationship (Figure 5B) in 

Yeastract. The edge SWI5 = tf_act(FKH2) was added as there is documented evidence of 

this relationship21. Once the seed network (Table 1) was satisfactory, the DSGRN network 

specification file for the network was downloaded (Supplemental File 8).

Without the IDV, there is a higher chance of edges for which there is no experimental 

evidence being used to construct the seed network. As can be seen in Figure 2C, the 

seed network generated in the Edge Finding step from running the IDP nonstop through 

each step contains an edge, SWI4 = tf_rep(NDD1), that is not supported by experimental 

evidence in Yeastract, likely because NDD1 is known to be a transcriptional activator22. This 

information was not encoded in the annotation file in the non-stop run, which allowed all 

regulators to be both activators and repressors.

Using the IDV, a seed network was manually curated that is a subnetwork of Figure 3, 

and the remaining four edges were placed in the edge list used for sampling network 

space (YHP1 = tf_act(SWI4), YOX1 = tf_act(SWI4), SWI4 = tf_rep(YOX1), SWI5 = 

tf_act(NDD1)). Selecting edges based on prior biological knowledge can also be used to 

build the edge list; however, in this case, the top 20 edges from the LEM Summary Table 

view were selected (Supplemental File 9). The node list file is created from the selected 

edges automatically (Supplemental File 10). The ODE parameters from LEM can also be 

used to filter edges if one believes the inferred parameters in the ODE model are not 

biologically realistic, but this information was not used here.

Next, a new IDP configuration file was parameterized for the Network Finding step 

using the three new files. As the seed network was created with edges well-supported by 

experimental evidence, the inclusion of these edges in all networks was desired. Thus, the 

Network Finding probabilities were set to allow the addition but not the removal of nodes 

and edges (Supplemental File 11). The Network Finding parameter numneighbors was set 

to search for 2,000 networks. After running the IDP, 37 model-admissible networks were 
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found in the Network Finding step, as opposed to the non-stop run that had zero. Loading 

the Network Finding results into the IDV, 64% (24) of these 37 networks had the capacity to 

stably oscillate (Figure 6A). Of these 24 networks, the best performers were two networks 

that matched the data at 50% of their stably oscillating model parameters (Figure 6B).

The Edge Prevalence Table (Table 1) tabulates the number of times an edge occurs in a 

selected collection of networks, giving an indication of its prevalence in high-performing 

networks. Examining the Edge Prevalence Table produced by selecting the previous two 

networks in the scatter plot reveals that all the seed network edges are present in each 

of the two networks, as expected, along with two non-seed network edges (Figure 6B), 

SWI4 = tf_act(SWI5) and HCM1 = tf_rep(YHP1). Neither of these two edges had evidence 

supporting them in Yeastract. As such a small amount of network space was explored so it is 

difficult to assess the importance of edges and nodes in producing the observed dynamics.

Only 37 model-admissible networks were found in Network Finding even though the 

parameter numneighbors was set to 2,000, which suggests that the network search may 

have been unduly limited. As described in the documentation for the dsgrn_net_gen python 

module in the IDP, the issue could be related to the seed network, edge list, node list, 

Network Finding parameter choices, or some combination of these. To investigate, the 

same seed network, edge list, and node list as before were used, but the Network Finding 

parameters were altered by adding the ability to remove edges during network generation 

(Supplemental File 12). Loading the new Network Finding results into the IDV shows that 

612 networks were found in this step, with 67% (411) of these networks having the capacity 

to stably oscillate (Figure 7A). Interestingly, 13% (82) of the networks that were capable of 

stable oscillatory dynamics were not capable of producing dynamics similar to those seen in 

the data (Figure 7B). Of the 411 networks, 30% (124) exhibited robust matches to data (i.e., 

more than 50% of their stably oscillating model parameters exhibited a data match) (Figure 

7C).

The edge prevalence numbers generated by the second round of Network Finding are 

now based on a much larger selection of networks and can be more confidently used 

in assessing the importance of a regulatory relationship in a GRN. For instance, HCM1 

= tf_rep(YHP1) is still represented highly in networks that produce robust dynamics, 

suggesting that this relationship could be worth investigating experimentally (Figure 7C). 

Further examination of the Edge Prevalence Table (based on the 124 networks mentioned 

above) revealed that the edges SWI4 = tf_rep(YOX1) and YOX1 = tf_act(SWI4) are not 

highly ranked yet the edges SWI4 = tf_rep(YHP1) and YHP1 = tf_act(SWI4) are highly 

ranked (Figure 7C). Negative feedback is important for producing oscillatory dynamics23 

and both of these sets of regulatory relationships provide this function in the GRN in Figure 

3. Finding if a network exists that contains all four of these edges could provide some 

insight into why these do not frequently exist together in the collection of GRN models; 

however, clicking through individual networks would be tedious. Instead, the Similarity 

Analysis portion of the Network Finding page was used to search for networks that may 

contain all four edges (Figure 7D). Examining the scatter plot that displays how similar 

the 612 networks are to a motif of these four edges versus the percentage of the model 

parameter space that matches the observed dynamics reveals that only 0.65% (4) of the 612 
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networks contain all four of these edges (Figure 7D). This suggests a testable hypothesis 

that only one of the two negative feedback loops is needed for a network of this size to 

produce the observed dynamics. This hypothesis can be further investigated computationally 

by reparameterization of IDP steps and a more exhaustive search of network space or 

experimentally, such as gene knockouts. All results from this analysis can be found in 

Supplemental File 13.

Discussion

The inference of GRNs is an important challenge in systems biology. The IDP generates 

model GRNs from gene expression data using a sequence of tools that utilize the data in 

increasingly complex ways. Each step requires decisions about how to process the data and 

what elements (genes, functional interactions) will be passed to the next layer of the IDP. 

The impacts of these decisions on IDP results are not as obvious. To help in this regard, 

the IDV provides useful interactive visualizations of the outputs from individual steps of 

the GRN inference tools within the IDP. The IDV streamlines and facilitates the process of 

evaluating results from these computational inference methods to speed up experimentation 

and inform analysis choices, which in turn will allow for the accelerated production of high-

confidence network models and hypotheses. The IDV also implements features that expand 

on the functionality of the IDP, including filtering edges by LEM ODE parameter choices, 

binning of genes by their expression time, and clustering networks based on similarity to a 

motif or network. Importantly, the IDV allows for manual interventions between each IDP 

step, which allows the user to easily incorporate human knowledge and prior information 

from the literature in ways that cannot be easily automated. A naive run of the IDP will not 

natively incorporate this information, so the use of the IDV will increase the confidence in 

the results whenever information specific to the experiment is available. Overall, using the 

IDV in conjunction with the IDP allows users to create network hypotheses for biological 

processes with greater confidence, even with little or no knowledge of the true GRN.

There are three critical steps in the IDV. The first is evaluating IDP Node Finding results 

in the IDV. IDV’s Node Finding page can produce a new gene list and, if desired, a gene 

annotation file. Curating a new gene list is a critical step as it greatly reduces the potential 

network space by limiting which genes are allowed to be modeled as GRN targets and/or 

regulators. Additionally, as GRNs are mostly made up of transcription factors, having gene 

annotations will greatly help in creating coherent GRN models.

The next step is evaluating IDP Edge Finding results in the IDV. Curating a new seed 

network is a critical step since it localizes the region of network space that will be sampled 

in the Network Finding step. However, knowing where to start isn’t always obvious, so 

it is recommended to use edges that have some form of experimental evidence to provide 

confidence that one is starting in a region of network space that contains high confidence 

edges. The IDV’s Edge Finding page enables easy assembly of seed networks and generates 

the associated DSGRN network specification file as well as node and edge lists.

The last step is evaluating IDP Network Finding results in the IDV. IDV’s Network Finding 

page allows for easy exploration of sampled networks and their associated scores that 
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estimate the capacity of the network to produce the observed dynamics. While Node and 

Edge Finding will always return results (if at least two genes are passed on from Node 

Finding), Network Finding can return zero results. Therefore, knowing whether adjustments 

in parameters are needed will be more obvious in Network Finding than in Node and Edge 

Finding. Such occurrences of few to no networks found could be a result of constraints 

placed on what networks can be analyzed. These constraints are: 1) whether or not the 

networks are always strongly connected, 2) the minimum and the maximum number of 

input edges to each node, 3) the probabilities of adding and removing nodes and edges, and 

4) the number of additions and removals of nodes and edges allowed. If few or no model-

admissible networks are found, as in Figure 2, then referring to the IDP documentation 

is recommended for guidance on reparameterization of any or all steps of the IDP with 

subsequent evaluation of results in the IDV.

A current limitation of this approach is that the Node Finding page is mostly focused on 

oscillatory dynamics, such as those seen in the transcriptional programs of the cell-cycle and 

circadian clock. In particular, the IDP Node Finding step is currently configured to search 

for genes that exhibit oscillatory dynamics at a specified period. As the IDP expands to 

include analyses that can quantify different types of transcriptional dynamics, so too will the 

IDV be updated to support visualization and interrogation of these other behaviors. The size 

of networks searched for and analyzed in the Network Finding step are currently limited to 

networks of smaller size, e.g., around 10 genes. This is a necessity as computations in the 

DSGRN scale occur combinatorially. Another limitation is that exploring model parameter 

space for a selected network is not possible in the IDV. However, the DSGRN network 

specification file for a given network can be downloaded and the dynamics associated 

with each model parameter can be visualized on the DSGRN Visualization website (https://

sites.math.rutgers.edu/~gameiro/dsgrn_viz/). Lastly, the IDV has been tested using Linux 

(Ubuntu) and iOS (Big Sur) systems. The IDV has been tested on Windows 10 using the 

Windows Subsystem for Linux (WSL), which allows Windows 10 users to run Linux and the 

IDV without the need for a different computer, a virtual machine, or a dual-boot setup. IDV 

does not currently run on native Windows.

Studying GRNs is difficult due to their inherent complexity and useful inference tools such 

as the IDP can be difficult to understand and deploy with confidence. The IDV provides a 

method to reduce the complexity of studying GRNs inferred using the IDP while facilitating 

the inclusion of additional information beyond gene expression dynamics. Using the IDV in 

conjunction with the IDP as described here will empower researchers to develop and analyze 

functional models of well-studied systems, such as the human cell-cycle. Furthermore, these 

tools will generate testable hypotheses for less understood processes, such as the malaria 

intra-erythrocytic development cycle, which is suspected to be controlled by a GRN24 but 

for which a model is yet to be proposed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: IDP and IDV workflow overview.
The bottom row depicts the three major steps of the IDP: Node, Edge, and Network Finding. 

The top row depicts the major steps of the IDV and describes various ways a user can 

interact with the results. The dark gray arrows between the two depict how the IDV and the 

IDP can work synergistically to allow users to make informed decisions for each step of the 

IDP, with individual IDP steps providing results for the visualizations in the IDV, individual 

IDV steps allowing for the input of new or adjusted parameters and adjusted results and 

inputs for the subsequent IDP step.
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Figure 2: Example of results from running every step of the IDP consecutively without using the 
IDV between steps.
(A) A screenshot of the terminal output from running every IDP step consecutively. The 

IDP ran to completion, but zero networks were found during the Network Finding step. 

(B) Node Finding results directory node_finding_20210705183301 (Supplemental File 13) 

loaded into the IDV. All the genes in the gene list table were selected (red arrow) to show 

their respective expression profiles in the line graph and to generate an annotation table. The 

annotation table was filled in to reflect how the genes are labeled in the original annotation 

file (green arrow). (C) Edge Finding results directory edge_finding_20210705183301 

(Supplemental File 13) loaded into the IDV. (D) Network Finding results directory 

network_finding_20210705183301 (Supplemental File 13) loaded into the IDV. The 

Network Finding page shows no results, suggesting either reparameterization of the 

Network Finding step or reevaluating the Node or Edge Finding step is needed. The IDP 

documentation contains troubleshooting steps for helping the user determine what they 

could try next.
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Figure 3: A yeast cell-cycle GRN model.
A set of known yeast cell-cycle regulators were selected from SGD and known regulatory 

relationships between genes were extracted from Yeastract.
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Figure 4: Example of IDP Node Finding results in the IDV.
Loaded into the IDV is the Node Finding results directory node_finding_20210705183301 

(Supplemental File 13). The adjusted results after inspecting curated online yeast databases. 

The gene list table was extended (yellow arrow) to find the remaining gene in the GRN 

model of Figure 3 and genes were deselected to remove genes not found in the same GRN 

model (red arrow). The annotation table was filled in based on evidence of regulation for 

each gene found on Yeastract (green arrow). The new gene list and annotation file were 

downloaded by selecting their respective download buttons (blue arrows).
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Figure 5: Example of IDP Edge Finding results in the IDV.
Loaded into the IDV is the Edge Finding results directory edge_finding_20210701100152 

(Supplemental File 13). (A) The initial result as produced by the IDP. The Network 
dropdown option From Seed was selected (red arrow) to view the seed network produced 

by the IDP based on the arguments in the configuration file used (Supplemental File 7). 

The selected genes in the edge table are the edges used in the seed network. (B) The 

adjusted results after inspecting the seed network for edges that do not contain experimental 

evidence. The Network dropdown option From Selection was selected (red arrow). Edges 

were selected/deselected from the edge table (green arrow). The seed network, edge list, 

and node list files were downloaded by clicking their respective buttons (yellow arrows). 

The edge table shown is for the last time series data as listed in the configuration file 

two_wts_EdgeFinding_config.txt (Supplemental File 7). It is important when selecting 

edges for the seed network or edge list based on LEM results to look at the last time 

series data listed in the configuration file as this output incorporates all preceding datafiles in 

its inference of regulatory relationships between nodes.

Moseley et al. Page 21

J Vis Exp. Author manuscript; available in PMC 2022 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: Example of IDP Network Finding results in the IDV from using the IDP configuration 
file two_wts_NetFind_rd1_config.txt (Supplemental File 11).
(A) The query Stable Full Cycle was selected (red arrow) to display the respective data on 

the y-axis in the scatter plot. Blue dots in the scatter plot represent selected points using the 

Box Select function for the scatter plot. The dotted selection box was illustrated to show 

what the box selection looks like. (B) The min and max integers for the y-axis and x-axis 

were manually entered to selected networks within these bounds (green arrow). After each 

selection, the Get Edge Prevalence from Selected Networks button (yellow arrows) was 

clicked and the Edge Prevalence Table and Selected DSGRN Predicted Networks areas were 

generated. In the Network Index, up and down arrows can be clicked to browse the selected 

networks (blue arrows).
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Figure 7: Example of IDP Network Finding results in the IDV from using IDP configuration file 
two_wts_NetFind_rd2_config.txt (Supplemental File 12).
(A-C) The selection of networks was performed by entering values into the min and max 

input boxes (red arrows). The Get Edge Prevalence from Selected Networks button was 

clicked to generate the Edge Prevalence Table and Selected DSGRN Predicted Networks 

areas. (D) Edges of interest were selected in the edge_list table (yellow arrow) and the 

Submit button (green arrow) was clicked to compute similarity scores to plot in the scatter 

plot against the query selected (blue arrow). The Box Select function was used to select a 

set of networks (purple arrow) to generate the Edge Prevalence Table and Selected DSGRN 

Predicted Networks areas. The Network Index was increased to 2 (orange arrow) to view the 

second network in the selection.
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Table 1:

Definition of Inherent Dynamics Pipeline and Inherent Dynamics Visualizer terms.

Term Pipeline Step Definition

de Lichtenburg 
by JTK-CYCLE 

(DLxJTK)

Node Finding A single quantitative measure of both periodicity and regulation strength used to rank genes. 
Combines previously published periodicity metrics de Lichtenberg (DL) and JTK-CYCLE (JTK).

First Cycle Max 
Expression

Node Finding The maximum gene expression during the first cycle of periodic gene expression. Genes ordered 
by First Cycle Max Expression will be ordered based on the time point from the first cycle at 

which they reach their maximum gene expression.

The Local Edge 
Machine (LEM)

Edge Finding A Bayesian network inference method which ranks potential models of gene interactions to 
identify the most likely regulator(s) and modes of regulation (activation or repression) of a given 

target gene using time series gene expression data.

Seed Network Network 
Finding

An initial guess at a plausible network of global interactions by selecting the top ranked LEM 
edges. The seed localizes a region of network space that is highly oscillatory with a high 

probability of showing consistency with the provided time series data.

Dynamic Signatures 
Generated by 

Regulatory Networks 
(DSGRN)

Network 
Finding

A software package for comprehensively computing the variety of long-term dynamical behaviors 
that a network can exhibit.

Edge Prevalence Network 
Finding

The percentage of top scoring networks from the network finding step that include the edge in 
question. The score permits a ranking of edges that have a nonzero prevalence.

J Vis Exp. Author manuscript; available in PMC 2022 April 08.


	Abstract
	Introduction
	Protocol
	Install the IDP and IDV
	Node finding
	Edge finding
	Network finding

	Representative Results
	Discussion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Table 1:

