
Locus coeruleus: a new look at the blue spot

Gina R. Poe1, Stephen Foote2, Oxana Eschenko3, Joshua P. Johansen4, Sebastien Bouret5, 
Gary Aston-Jone6, Carolyn W. Harley7, Denise Manahan-Vaughan8, David Weinshenker9, 
Rita Valentino10, Craig Berridge11, Daniel J. Chandler12, Barry Waterhouse12, Susan J. 
Sara13,14

1UCLA, Integrative Biology and Physiology, Los Angeles, CA, USA.

25312 Hampden Lane, Bethesda, MD, USA.

3Max Planck Institute for Biological Cybernetics, Physiology of Cognitive Processes, Tuebingen, 
Germany.

4Riken, Center for Brain Science, Saitama, Japan.

5ICM, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France.

6Rutgers University, Brain Health Institute, Piscataway, NJ, USA.

7Memorial University, Newfoundland, Psychology Department, St John’s, NL, Canada.

8Ruhr University Bochum, Medical Faculty, Neurophysiology, Bochum, Germany.

9Emory University, Human Genetics, Atlanta, GA, USA.

10NIH, National Institute on Drug Abuse, Bethesda, MD, USA.

11University Wisconsin-Madison, Psychology, Madison, WI, USA.

12Rowan University School of Osteopathic Medicine, Cell Biology and Neuroscience, Stratford, 
NJ, USA.

13Collège de France, Centre for Interdisciplinary Research in Biology, Paris, France.

14New York University Medical School, Child and Adolescent Psychiatry, New York, NY, USA.

Abstract

The locus coeruleus (LC), or ‘blue spot’, is a small nucleus located deep in the brainstem 

that provides the far-reaching noradrenergic neurotransmitter system of the brain. This 

phylogenetically conserved nucleus has proved relatively intractable to full characterization, 

despite more than 60 years of concerted efforts by investigators. Recently, an array of powerful 

new neuroscience tools have provided unprecedented access to this elusive nucleus, revealing 

new levels of organization and function. We are currently at the threshold of major discoveries 

regarding how this tiny brainstem structure exerts such varied and significant influences over brain 
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function and behaviour. All LC neurons receive inputs related to autonomic arousal, but distinct 

subpopulations of those neurons can encode specific cognitive processes, presumably through 

more specific inputs from the forebrain areas. This ability, combined with specific patterns of 

innervation of target areas and heterogeneity in receptor distributions, suggests that activation of 

the LC has more specific influences on target networks than had initially been imagined.

Research by a handful of anatomists, behavioural scientists and physiologists over the years 

has provided limited yet tantalizing clues that the noradrenaline (NA) containing nucleus 

locus coeruleus (LC) plays a critical role in core behavioural and physiological processes. 

Evidence of LC-NA involvement in multiple clinical conditions further underscores the need 

for achieving an advanced understanding of the function of this nucleus.

The position of the LC deep in the brainstem and its small size have made it difficult 

to record LC neuronal activity and correlate this activity with environmental events and 

behaviour. The LC, translated from Latin as ‘blue spot, comprises a mere 3,000 brain cells in 

the rodent and is similarly diminutive in primates. However, those LC-NA neurons display 

broad and divergent axonal pathways through the CNS. For more than 50 years, the LC was 

thought to be homogeneous in its structure and function, such that its primary transmitter, 

noradrenaline (NA), could be released uniformly and act simultaneously on cells and circuits 

throughout the forebrain, brainstem, cerebellum and spinal cord. Because the LC projects to 

a large number of CNS areas with widely divergent functions, researchers have tended to see 

the LC-NA as a system with unified action on neural networks and behavioural outcomes. 

Under such a unified conceptualization, however, it has been a challenge to develop testable 

hypotheses regarding a comprehensive and coherent role for the LC in physiology and 

behaviour. This struggle to find support for such unified theories is compounded by the fact 

that the input/output relationships of the LC are indeed complex, and for technical reasons 

have resisted detailed study.

Recent methodological advances have provided powerful new tools that can be applied to 

unlocking the mysteries of the LC. Studies utilizing optogenetics and chemogenetics, viral 

tract tracing, RNA sequencing, and neuron- and molecule-specific labelling methods in 

combination with behavioural measures have begun to dramatically expand our thinking 

about LC organization and function (see FIG. 1 for an overview). New discoveries 

indicate that the nucleus and its neurons are more heterogeneous than had previously been 

appreciated. Technical advances in functional MRI (fMRI) also promise to soon identify 

behaviour-specific activity in the LC of humans and other primates, opening a new avenue 

for future investigation. All these advances are enabling new clinical translational studies 

and treatment innovations (BOXES 1-3), as well as new directions for basic research (FIG. 

1).

One way to accelerate our understanding of the LC is to map leverage points where new 

approaches and additional expertise could have maximal impact in advancing the field. This 

report is the result of an intensive 3-day workshop in which participants were tasked with 

summarizing and synthesizing the current understanding of LC organization and function, 

with particular emphasis on recent breakthroughs. Contributors focused on identifying 

opportunities and priorities for exploitation, including pinpointing critical unanswered 
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questions to guide current and prospective investigators in the field. This report is not a 

consensus document adopting conventions or formalizing a database, nor is it a detailed 

review of the state of the field. Rather, it is an attempt (1) to identify major issues of 

LC organization and physiological function, which were previously intractable or poorly 

conceived, that can now be realistically addressed with our ever-increasing knowledge base 

and new methodologies; (2) to suggest new ways to think about how the LC is related to 

major behavioural and cognitive functions or clinical disorders, as well as describe new 

ways to use such knowledge translationally; and (3) to present major unsolved questions 

about LC function whose answers will encourage accelerated research in multiple directions.

Anatomy of the LC

The LC is a cluster of relatively large neurons containing NA that is located bilaterally in the 

brainstem just under the cerebellum and lateral to the fourth ventricle. What we thought we 

knew about the widely projecting efferent and convergent afferent anatomy of these neurons, 

prior to about 10 years ago, was inaccurate. We will here attempt to explain why this 

decades-long understanding has recently changed and describe the functional and clinical 

implications of this new understanding. We present several areas of LC functional anatomy 

in need of further exploration: its efferent and afferent projections patterns, neurotransmitter 

identities, presynaptic release profiles and reuptake, and the receptor make-up of its terminal 

fields.

LC efferent anatomy.

Understanding the anatomical organization of the LC is critical to unlocking its function, 

and this understanding has changed radically over the past 10 years. Nearly a dozen studies 

from different labs have provided compelling evidence that LC projection patterns may be 

modular in design, with segregated output channels and the potential for differential release 

and actions of NA upon its projection fields. Although this work is still ongoing, these new 

findings have prompted a wholesale shift in our thinking about LC operations and demand a 

revision of theoretical constructs regarding the impact of the LC-NA system on behavioural 

outcomes in health and disease. Target-specific projection patterns of individual LC neurons 

could enable differentiated modulation of diverse behaviours and cognitive functions1-3. 

New strategies employing transgenic animals and viral vector approaches4-8 are providing 

a picture of complex, targeted projections from some subsets of LC cells, divergent 

projections in other subsets, and a mixture of widespread projections with preferred targets 

in still others.

The distribution of LC-NA axonal fibres is nonuniform across the rat9 and primate10,11 

neocortex and is characterized by axon varicosities9. The axon collaterals of distinct LC 

neurons appear to be distributed in a coordinated fashion to functionally related target 

circuits, such as those coordinating aversion and/or anxiety in the anterior cingulate and 

amygdala versus those promoting analgesia in the spinal cord4,6,7,12-15. Thus, clusters of 

some LC neurons are organized into modules with respect to their efferent targets.

These newly observed organizational features of the LC-NA system are based primarily on 

studies of a limited set of emotional, cognitive (for example, amygdala versus ventromedial 
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prefrontal cortex circuits for fear learning versus extinction7) and sensory regions of the 

forebrain and spinal cord12. However, additional evidence for projections from a subgroup 

of LC neurons to the caudate–putamen, along with increased NA turnover in striatum and 

the functional connectivity of striatal–motor networks with chemogenetic LC stimulation, 

is revising previous conceptions that LC-NA projections do not influence striatal–motor 

function16. Furthermore, the organization of well-known LC projections to other key motor 

structures (for example, cerebellum, inferior olive, or motor cortex) has largely been 

ignored. Misconceptions based on gaps in our anatomical understanding still limit theories 

of LC involvement in basic functions and disorders. However, these initial results point out 

an enticing area of study and collectively make a strong case for continued investigation 

of heterogeneity in LC efferent structure. One way forward is to probe the functional 

consequences of modularity in LC outputs by selective opto- or chemogenetic activation of 

subsets of terminal-field-specific LC neurons in waking, behaving animals.

The current challenge in understanding LC efferent anatomy is to develop a model that 

takes into account the limited number of LC neurons and the extensive distribution of 

LC axons throughout the neuraxis — an arrangement that requires massive arborization 

of individual axons — while also acknowledging recent findings of focused or modular 

efferent projections2 (FIG. 2). New imaging methods that target NA receptor occupancy17 

hold promise for establishing a detailed mapping of the spatial distribution and timing of 

NA release and receptors in terminal fields relative to sensory responses and behavioural 

output. Such information will provide an understanding of the LC axonal organization that is 

functionally relevant.

LC afferent anatomy.

Although modularity of the efferent connectivity of LC is an active area of research, the 

integration of LC efferent modularity and LC afferent patterning has largely been neglected. 

The LC microcircuitry consists of a dense, cell-rich ‘core’, where NA cell bodies and 

processes reside, and a pericoeruleus (peri-LC) ‘shell’ into which LC-NA dendrites extend 

and ramify18. Distinct populations of GABAergic neurons are also found in the peri-LC 

region and provide local regulation of LC-NA cell activity19,20. Early anatomical-tracing 

studies identified prominent afferent inputs from medullary nuclei into the LC core21, and 

subsequent work revealed that LC-NA neurons are innervated by many regions of both 

the brainstem and forebrain6,20,22. Inputs targeting peri-LC GABAergic cells are partially 

distinct from the inputs that directly innervate LC-NA neurons20.

Multisynaptic viral-tracing approaches have provided a broader analysis of LC input 

connectivity23. Inputs from diverse sources can produce differential effects on LC-NA 

neuronal output directly and indirectly, by differentially targeting the core nucleus versus the 

pericoerulear regions. One target of opportunity is to investigate how afferent connections 

and connectivity within the LC and peri-LC regions regulate discrete LC cell populations 

that themselves have different efferent connectivity. For example, while some LC cells 

receive common afferent drive, it is unclear whether cell populations with more specific 

efferent connectivity receive distinct afferent inputs6 (FIG. 2). Another mechanism for 

afferent-specific regulation would be differential expression of transmitter receptors between 
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LC modules. Elucidating how specific afferents are connected with local LC and peri-LC 

networks and modules will be important for understanding LC’s diverse functionality.

LC transmitters and co-transmitters.

Another area of LC anatomy that is ripe for investigation is the distribution of neuroactive 

substances, primarily peptides and dopamine24, that are colocalized in the NA-containing 

neurons. To date, galanin, neuropeptide Y, brain-derived neurotrophic factor, cocaine- and 

amphetamine-regulated transcript, dopamine and other neuroactive substances have been 

identified as co-transmitters in LC-NA cells25-31. Some are expressed in most, but not all, 

LC-NA neurons, while others are sparsely distributed29. There may be species differences as 

well32. The functional neuroanatomy of LC co-transmission is an untapped area of inquiry. 

For example, there is limited information about the efferent targets and discrete versus 

global inputs to these cells.

We also know little of the extent to which different neuroactive substances are stored in 

shared or separate vesicles, under what conditions they are released, and the physiological/

behavioural effects of LC-mediated neuropeptide and co-transmitter signalling. Recent 

technological advances in neuroanatomical mapping, opto- and chemogenetic methods of 

modulating neuronal activity, the detection of transmitter/modulator release, and genetic 

ablation can now be brought to bear. For example, to map monosynaptic inputs to LC 

cells that are co-expressing a specific neuropeptide, mouse lines with Cre recombinase 

knocked into a neuropeptide gene locus can be infused with a Cre-dependent modified 

rabies virus into the LC33. Similarly, LC-NA/neuropeptide output projection patterns can 

be identified following intra-LC infusion of neuropeptide gene Cre-recombinase-dependent 

AAV fluorescent tracers34.

While measuring neuropeptide release in real time has not previously been possible, 

the suite of new genetically encoded fluorescent neurotransmitter indicators can 

be expanded beyond those currently available for small-molecule neurotransmitters 

to include neuropeptides35. Pairing these indicators with optogenetic stimulation or 

silencing of specific subsets of LC neurons or with calcium-indicated or single-unit 

electrophysiological recordings of spontaneous activity will reveal, for the first time, the 

firing-frequency and pattern dependence of LC-NA peptide and dopamine co-transmission. 

The functional importance of non-noradrenergic LC neurotransmission is illustrated by 

recent demonstrations that dopamine release from LC terminals in the thalamus and 

hippocampus has distinct cellular and behavioural effects on stress responses, synaptic 

plasticity, and learning and memory36-38.

Combinatorial RNAi39 and characterization of conditional-knockout animals that lack a 

neuropeptide specifically in LC neurons should enable identification of the function of these 

co-transmitters. This approach was recently deployed to define a role for LC-derived galanin 

in active coping behaviours40. Utilizing inducible knockouts that remove the neuropeptide in 

adulthood rather than throughout development will further refine and improve this strategy.

Finally, we have only just begun to identify the mechanisms governing co-transmitter 

and co-peptide release and reuptake41, the dynamics of which determine transmitter 
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concentration and the duration of exposure to membrane-bound receptors. An important 

future direction will be to fully characterize the dynamics of LC co-transmitter release and 

reuptake across LC terminal fields. Microdialysis in combination with high-pressure liquid 

chromatography is available for examining fluctuations in local extracellular concentrations 

of NA42,43, and possibly other LC co-transmitters, in anaesthetized and waking animals, 

but measurements with this technique have poor spatial and temporal resolution. As such, 

this approach leaves open the question of how rapid transitions in the LC firing rate 

correspond to transmitter release and to specific physiological outcomes at the cellular, 

circuit and network levels. Fast-scan voltammetry operates in the range of seconds and 

has been used extensively in anaesthetized and waking animals for moment-to-moment 

measurement of extracellular concentrations of dopamine in different brain regions44,45. 

However, this technique has not been exploited to the same extent for NA. What is needed 

is an electrochemical or other biosensor methodology whereby rapid measurement of NA 

levels or of other LC co-transmitters can be made simultaneously in multiple brain sites 

of waking animals engaged in behavioural tasks46,47. In particular, NA receptor sensors 

with subsecond fidelity might hold the key to understanding the dynamics of NA release 

and receptor activation in LC terminal fields on a timescale capable of providing a link 

between measured release patterns and observable physiologic action17. Such capabilities 

would permit an evaluation of circuit-specific fluctuations of LC-NA transmitter levels in 

concert with transitions between behavioural states and concurrent with behavioural and 

sensory events.

Receptor activation.

The net effect of NA release within a given neural circuit is dependent on the presynaptic 

and postsynaptic complement of α- and β-adrenergic receptors and their subtypes in that 

region. The nine known receptor subtypes have long been characterized: α1A, α1B, α1D, 

α2A, α2B, α2C, β1, β2 and β3 each have unique and sometimes overlapping distribution 

patterns in the brain, different sensitivities to the NA ligand and different actions upon 

the cells and the network in which they are embedded. For example, β2-receptors are 

more abundant in the hippocampus. A genetic variant of this β2-receptor subtype prolongs 

NA binding and is seen more in those who develop post-traumatic stress disorder48. The 

literature on the expression, turnover and function of adrenergic receptors across the brain 

and spinal cord is extensive, describing the NA receptors on neurons, glia, immune cells and 

even brain vasculature49-55. Any interpretation of the effects of LC output on brain functions 

and, ultimately, on behavioural outcomes must account for the relative distribution, density, 

binding properties and physiology of adrenergic receptors on specified cell populations 

within LC terminal fields. Likewise, information about the distribution of receptors for 

LC co-transmitters is also critical for a complete understanding of terminal-field responses 

to LC activation. However, the dynamics of receptor availability and activation are often 

neglected when considering the net outcome of LC actions on terminal-field operations. 

Consideration of these factors will provide for a more holistic interpretation of the impact of 

LC output on CNS function.
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Origin and development of the LC

The notable progress in our understanding of the complexity of LC organization3 reveals 

an urgent need to determine the mechanisms that generate such LC cell heterogeneity. 

We are only beginning to understand how diversity among LC neurons is obtained and 

maintained across the lifespan. Molecular and genetic tools appear indispensable for 

exploring the ontogeny of LC-NA neurons and, in combination with other methods, may 

provide important insights.

LC embryogenesis.

One possible clue to the origin of distinct LC modules lies in the finding that different 

populations of NA neurons originate from molecularly distinct progenitors, with most LC 

neurons emerging exclusively from a single rhombomere, defined by the expression of 

a factor named engrailed 1 (REF.5). An intersectional genetic fate-mapping method has 

demonstrated that embryonic origins define features of LC neurons such as their pattern 

of distribution within the LC complex, their cell morphology and their axonal projection 

pattern56. The development, maintenance and survival of LC-NA neurons are all regulated 

by complex molecular signalling cascades involving multiple genes and transcription 

factors57-61. A recent exciting study showed that by combining only seven transcription 

factors, astrocytes and fibroblasts could be converted in vitro into NA neurons by direct 

reprogramming62. A complete set of the genes and transcription factors that are necessary 

and sufficient for the generation and survival of NA cells in vivo would be helpful for 

restoring function after neurodegeneration — for example, in Alzheimer disease (where LC 

pathology begins early) — while the genes and transcription factors that regulate LC cell 

number and differential circuit formation all need to be catalogued61 in order to ensure 

replacement of the proper type and number of LC-NA neurons.

LC postnatal development.

At birth, LC-NA neurons are functionally active, yet some of their physiological features 

undergo postnatal developmental alterations, including changes in membrane properties, 

receptor expression, cellular coupling (from predominantly gap junctions to more synaptic 

connections) and responsiveness to sensory inputs63. In newborns, the LC’s responsiveness 

to somatosensory stimuli appears enhanced, whereas later in development, LC neurons 

become less sensitive to innocuous stimuli and more sensitive to noxious stimuli64. 

Enhanced response of neonatal LC neurons to sensory stimulation is thought to underlie 

some unique features of infantile learning, such as attachment65. Indeed, environmental 

factors in early life can have long-lasting effects on LC function and behaviour into 

adulthood. For example, high maternal care affects the densities of the benzodiazepine 

receptor, the α2-adrenoreceptor and the corticotropin-releasing factor receptor in the LC in a 

way that renders the adult offspring of high-licking mothers more resistant to stress66.

NA has a protective role for other neuronal cell types in the CNS. A recent study reported 

that early postnatal NA denervation reduces BDNF protein and the activation of TrkB 

receptors in the ventral midbrain, possibly leading to dopamine neuron degeneration67. 
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The possibility that NA plays a role in preserving neurons in other areas and allowing 

critical-period plasticity during development has not been adequately addressed.

LC neurons change their electrophysiological characteristics across early development. 

LC cells in infant rats display slower conduction velocities63 as well as synchronized 

subthreshold membrane-potential oscillations and synchronized spiking64,68. Interestingly, 

those LC neurons with oscillatory activity have lower input resistance and a tendency for 

more electric coupling via dendro-dendritic gap junctions than neurons that do not oscillate. 

These gap junctions are thought to underlie a high degree of synchrony in the LC of 

newborns, a synchrony that dissipates by postnatal day 21 (REFS64,68). Interestingly, the 

expression of NA itself fluctuates among LC cells during postnatal development, with some 

cells exhibiting only transient noradrenergic characteristics69. There is also a transiently 

expressed excitatory synaptic coupling among LC neurons in early infancy that is mediated 

by α1 adrenergic receptors70, whereas α2-mediated inhibitory coupling persists throughout 

the lifespan68,71. It is unknown how gap junctions and early activity relate to the final 

phenotype of LC cells. Better understanding of the molecular signalling mechanisms that 

control the expression and maintenance of the NA phenotype in the LC will likely lead 

to ground-breaking approaches for the preservation and restoration of LC function in 

neurodegenerative and neuropsychiatric disorders.

Electrophysiological properties

The electrophysiological properties of LC neurons have been well characterized by means 

of a number of intracellular and extracellular recording studies72,73. Individual LC neurons 

in vivo have almost exclusively been measured in adult animals, in which they display 

a relatively narrow range of discharge rates across varying arousal levels, from almost 

completely silent in REM sleep to 5–6 Hz in stress74,75. LC neurons ex vivo, recorded 

almost exclusively from very young brains, display spontaneous firing rates in the range 

of 0.5–5 Hz72,76. Although synchronous oscillations between LC neurons, mediated by 

gap junctional coupling of dendrites, have been reported72, ex vivo intracellular brain slice 

recordings have demonstrated that there remains variability among cells in spontaneous 

firing rate and resting membrane potential72. Such physiological variation supports the 

existence of distinct groups of LC neurons, as has been indicated by anatomical studies 

(FIG. 2).

Several important questions arise from observations of firing-rate variability among LC 

cells. First, what, if any, are the transcriptional differences between LC cells that could 

account for variations in their intrinsic physiological properties? A recent publication 

demonstrated that the LC neurons that innervate medial prefrontal cortex and ventral 

hippocampus are not only anatomically distinct but also differ in their physiological 

responses to clonidine, demonstrating phenotypic variability among cells77. The recent 

development of single-cell sequencing techniques performed in the same cells that have 

been characterized electrophysiologically offers a powerful window into the molecular 

determinants of intrinsic physiology. Such electrophysiological and genetic combinations 

could help reveal why different LC cells behave in unique ways in vivo across behavioural 

states, both with and without experimental manipulation78. Another important question is 
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whether LC cells with different electrophysiological properties also show distinct patterns 

of anatomical connectivity or neurochemical profiles in order to differentially affect CNS 

function.

Novel viral-genetic techniques allow investigation of the electrophysiological attributes of 

discrete assemblies of LC neurons that can be probed according to their connection patterns 

and/or their co-transmitter profiles, to reveal unique roles in specific behaviours. Early 

application of such viral-genetic approaches has started to show the compartmentalization 

of function within LC cells of different electrophysiological profiles, such that the neurons 

innervating different terminal fields can show different input resistances, excitability, after-

hyperpolarization profiles, action potential widths, excitability, firing rates and plasticity 

to afferents. For example, LC efferents to the forebrain (that is, basolateral amygdala and 

infralimbic prefrontal cortex) have higher input sensitivity and firing rates than the slower-

firing LC cells that innervate the motor cortex, which themselves are different from those 

that project to the spinal cord sensory system. These different electrophysiological properties 

combine with specific projection targets, co-transmitters and receptor arrays to influence 

discrete behaviours, such as fear conditioning versus fear extinction and anxiety/augmented 

responses to noxious stimuli versus analgesia7,12.

Similarly, high-density electrode arrays have recently enabled large-scale ensemble 

recording in the LC, allowing discoveries that could not be inferred from patterns of LC 

single or multiunit activity. The anaesthetized preparation in these studies permitted the 

necessary long-duration recording of stable spiking of a large population of LC neurons 

that has not yet become available for the brainstem of behaving animals. Nevertheless, 

the LC properties observed under anaesthesia or in vitro require confirmation in awake 

animals. In anaesthetized rats, spiking among random pairs of LC neurons is predominantly 

uncorrelated, but on a moment-to-moment basis, clusters of LC neurons may self-assemble 

to form functional arrays that relay meaningful information79. Individual LC neurons do 

not respond reliably on a trial-by-trial basis to attention-eliciting stimuli7,79 or to cortical 

delta waves79, but output from groups of otherwise inconsistently responding cells may 

produce a high-fidelity ensemble code that represents LC information processing. These 

and other results suggest that ensemble-based LC coding underlies the spatially and 

temporally selective neuromodulation of cognitive, sensory, memory and motor functions1. 

An important open question that is ripe for further investigation is how distinct ensembles 

arise and are modulated through differences in circuit connectivity and heterogeneous 

intrinsic physiological properties.

Effects of LC-NA activation

Through its widespread efferent network, the LC-NA system impacts a diverse array of 

core behavioural processes, including the regulation of waking/arousal and a diversity of 

state-dependent cognitive and motivational processes. These processes include prefrontal 

cortex-dependent ‘executive’ functions like attention and working memory80,81, sensory 

processes, synaptic plasticity and long-term memory82,83, high-arousal/emotional amygdala-

dependent memory74,84, cognitive and behavioural responses to stress (BOX 2) and goal-

directed motivated behaviour85-87, including motivation for drugs of abuse88. The diverse 
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behavioural effects of this neurotransmitter system reflect the complexity of the effects 

of NA receptor activation on neuronal signal processing, gene transcription and neuronal 

plasticity that optimize behavioural outcomes in complex environments.

LC-NA in sensory processing.

Many studies have shown that local administration of NA or activation of LC can modulate 

the responses of single cells, local circuits and neural networks to external and internal 

sensory signals74,89,90. In anaesthetized and unanaesthetized animals, the application of 

NA or activation of the LC results in a spectrum of changes in sensory neuronal 

response properties across thalamic and cortical sensory regions, including changes in 

the magnitude91-96 and timing of stimulus-evoked discharges97,98. Moreover, NA-mediated 

actions induce alterations in the receptive-field properties of visual cortical neurons99,100, 

modulate odour detection and discrimination thresholds in the olfactory bulb101, enhance 

the plasticity of frequency tuning in the auditory cortex93, enhance auditory perception102 

and improve performance in a visually guided signal detection task103. Studies in awake 

animals have underscored the importance of evaluating LC-mediated effects in terminal 

fields not only at the single-cell level, but also across ensembles of simultaneously recorded 

neurons, to account for the heterogeneity of effects on target neurons, leading to net 

changes in neural circuit and neural network output104. Importantly, the experimentally 

demonstrated modulatory effects of NA and LC activation on cells, circuits and networks 

follow an inverted-U-shaped function94,104; that is, the facilitating effects of NA and LC 

activation are initially modest, rise to optimal as NA output elevates, and then gradually 

diminish with further increases in NA concentrations. In vitro studies have shown that, 

at moderate concentrations, NA acts at α1 receptors to strengthen peri-threshold sensory 

neuronal responses, whereas at higher concentrations, NA acts via α2 receptors to degrade 

signal processing105.

Further experiments in awake, behaving animals will be needed that combine LC 

manipulations, in vivo recording of neuronal responses to sensory stimulation, and precise 

psychophysical measures of behavioural responses, to better understand the relationship 

between differing rates and modes of LC activity, sensory processing, perception and 

action94,96,104. A recent promising study in that direction with human participants combined 

the pharmacological manipulation of NA with measurement of visually evoked potentials, 

fMRI activation in visual cortex and the participants’ performance on various visual 

perception tasks. Several aspects of visual perception were improved in tandem with 

increases in the consistency of the evoked potentials and in the fMRI signal when increasing 

NA; the opposite results were obtained when decreasing NA106.

LC-NA state effects.

Early correlative observations documented a strong positive relationship between LC firing 

rate and arousal level107,108. Subsequent studies demonstrated that LC neuronal activity 

and NA receptor activation are sufficient to invoke the alert (conscious) waking state and 

are necessary for the maintenance of wakefulness74. The arousal-promoting actions of NA, 

at least in part, involve α1- and β-receptors within a network of subcortical sites75. The 

relation between NA and arousal is monotonic, with low LC firing rates being associated 

Poe et al. Page 10

Nat Rev Neurosci. Author manuscript; available in PMC 2022 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with sedation or sleep, and the highest rates being associated with high levels of arousal 

(however, arousal during REM sleep is an exception; see BOX 4). Recent LC optogenetic 

and chemogenetic studies have confirmed and extended these earlier observations using a 

variety of arousal measures, such as pupillary diameter, which is highly linked with LC 

activity and a diversity of behavioural responses. Taken together, these studies indicate 

a very tight positive linkage between LC activity, a corresponding NA release and 

arousal, with LC activity playing a sufficient and necessary role in changing the arousal 

level20,109-113.

LC-NA and plasticity.

A half century ago, Seymour Kety hypothesized that LC release of NA potentiates the 

activation of small numbers of neurons that, under the influence of NA, strengthen 

connectivity as a means to store information and adaptively alter sensory and motor 

circuits69. He suggested that the inhibition of random and spontaneous activity by NA 

throughout the brain is a characteristic of plasticity-promoting arousal, with smaller, sharply 

focused and activated circuits mediating learning. Intracellular cAMP-cascade pathways 

engaged by NA β-adrenoreceptors were proposed to support these learning-associated 

changes. Developing visual114,115 and olfactory116 networks provided direct evidence of 

such LC-NA-dependent plasticity. NA-induced long-term potentiation (LTP) of entorhinal 

throughput in hippocampal dentate gyrus provided mechanistic support for the predicted 

LC-NA effects117,118.

Since the proposal of Kety’s hypothesis that LC mediates learning through circuitry 

enhancement, we have learned that LC is involved in multiple distinct and learning-

critical forms of hippocampal and cortical plasticity, including habituation119,120, long-

term depression (LTD)121-123 and depotentiation124. These contrasting forms of plasticity 

are related in part to LC effects on specific synaptic pathways121,122 and, in the case 

of depotentiation, to pauses in LC firing124. LC activity that occurs in conjunction 

with hippocampal and cortical synaptic transmission triggers input-specific synaptic 

plasticity122,123, and its temporal parameters can determine whether the direction of change 

is potentiation or depression122,123.

Glutamate amplification of NA (GANE) is a recent proposal to account for the input-specific 

potentiating and depressing actions of LC-NA on neural circuitry. GANE proposes that NA 

concentrations linked to LC activity are modulated locally in target structures by glutamate 

activity125 (FIG. 3). Specifically, GANE hypothesizes that informational glutamate circuits 

compete for metabolic and molecular plasticity resources, with a winner-take-all outcome. 

Losers are suppressed. The suppression or enhancement depends on the local NA 

concentrations. NMDA, AMPA and metabotropic glutamate receptors on NA terminals all 

increase NA release125. Nearby astrocytes also play a role in supporting GANE-mediated 

plasticity (FIG. 3a). These competitive interactions underpin the contrasting cognitive effects 

of LC activation on concurrent inputs, with salient inputs becoming memorable and others 

being ignored (FIG. 3b).

Other LC actions are linked to plasticity. LC-NA modulates astrocytes in order to 

increase cortical perfusion and generate astrocytic calcium waves126,127. There is a 
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growing appreciation of the brain-wide modulation of astrocytic signalling that LC-NA 

produces127-129, as astrocytes are critically involved in multiple plasticity support functions. 

The influence of too much or too little NA on the functions of astrocytes for plasticity is 

open to investigation.

In the hippocampus, optogenetic experiments have revealed a shift in CA1 place cell firing 

towards a newly rewarded place in an otherwise stable map. Pairing of LC activity with the 

newly rewarded place is required. The authors suggest that this plasticity is supported by 

high neuromodulatory tone, changes in local inhibition and astrocytic activation130. These 

results contrast with results from another experiment showing global remapping in CA1 with 

phasic glutamatergic LC activation120, strongly supporting a hypothesis of concentration-

dependent differences in LC functional effects.

Recent data suggest that long-range glutamate projections play a role in LC plasticity. The 

pairing of a tone with LC activation both strengthens the representation of the tone in the 

cortex and leads to the tone now activating the LC through increased synaptic strength of 

the LC neurons. This tone-evoked LC activation is required to support the enhanced auditory 

response, which, in turn, improves auditory perception102.

Taken together, both data and theory speak to a complex and multifaceted LC role in 

neural plasticity and the resultant adaptive behaviour (FIG. 3). The updated view highlights 

NA suppression as well as enhancement of neural circuitry and suggests that both local 

and long-distance interactive feedback loops support plasticity. The selective spatial and 

temporal activations afforded by optogenetics, combined with the ability to monitor LC 

output through electrophysiological and imaging methods, will allow rapid progress in 

testing these hypotheses. One example of a hypothesis ripe for further testing is the 

discovery that LC-released dopamine in the hippocampus, which mediates novelty-enhanced 

memory consolidation, is dependent on the reversal of NA transporter activity triggered 

by high levels of local glutamate and activation of NMDA receptors on NA terminals41. Co-

release of dopamine in the presence of high local glutamate is a new mechanism consistent 

with the GANE hypothesis, and its elucidation could increase our understanding of local LC 

plasticity effects throughout the brain41.

LC-NA and memory formation.

LC neurons fire in bursts in novel environments or when encountering unexpected novelty in 

a familiar environment119. Consequent NA release and postsynaptic activation of adrenergic 

receptors at LC targets potentiates evoked responses in the hippocampus131 (see LC-NA and 

plasticity), changes plasticity-related signal-to-noise ratios122,132,133, facilitates contextual 

learning38 and enhances everyday memory24. Beyond the hippocampus, NA action at β- and 

α1-receptors within the amygdala enhances emotional learning2,84. LC activation is critical 

for offline memory consolidation at discrete time windows after learning in both appetitive 

and aversive learning134-137. LC input may facilitate cross-regional interactions that underlie 

offline memory consolidation, particularly during sleep138,139 (BOX 4). NA release impacts 

various molecular signalling cascades that underlie memory trace stabilization across 

multiple time windows140,141. Questions that are open to future investigation include the 

factors triggering experience-dependent delayed activation of the LC-NA system and the 
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function of critical silent periods of LC neurons during REM sleep, which could uniquely 

allow synaptic depotentiation and the updating of memories (BOX 4).

Executive function.

LC projections to the prefrontal cortex modulate distinct attentional processes, including 

focused81, flexible142 and spatial attention143. The modulatory actions of NA on attentional 

processes follow an inverted-U-shaped curve, with optimal function at moderate NA doses, 

as was reported for working memory144. Interestingly, in contrast to what is seen with 

working memory, α1 receptor activation promotes both flexible attention and focused 

attention81. The neural mechanisms for promoting focused attention remain to be elucidated 

and are an area of opportunity. For instance, can we understand the influence of LC 

activation on attention solely by looking at the actions of the LC-NA system in the prefrontal 

cortex, or is LC activation related to a more global influence on networks centred on the 

prefrontal cortex? Also, what are the specific components of attention that are affected by 

LC activation?

Behavioural and cognitive flexibility.

A key to understanding the involvement of the LC in cognitive processes is to determine the 

environmental stimulus pattern or context that elicits changes in LC neuron activity that are 

associated with the behavioural response. Here the data are sparse, due to the challenges of 

recording from this small population of neurons located deep in the brainstem. Nevertheless, 

existing studies in rats and monkeys engaged in formal conditioning protocols have revealed 

that LC neurons are engaged from the onset of the learning process, responding to both 

novel stimuli and reward85,86,145,146. Conditioning of LC neurons occurs rapidly, occurring 

many trials before any behavioural expression of learning or any sign of conditioned 

responding in cortex73,145. Importantly, once the conditioned behaviour is well-established, 

LC cells no longer respond reliably to the conditioned stimulus. However, any change in 

reward contingencies that requires a behavioural adaptation, such as extinction or reversal, 

elicits a robust response in the LC85,86. This striking sensitivity of LC neurons to changes 

in a context led to the hypothesis that the LC-NA system is involved in cognitive flexibility 

and allows rapid behavioural adaptation to changes in environmental contingencies73,85,147. 

Experiments designed explicitly to test this hypothesis have used pharmacological or 

genetic manipulation of the NA system and behavioural protocols involving reversal or 

extra-dimensional shift in rodents142,148-153. The results lend strong support to this idea. 

Recent refinement of fMRI techniques has allowed functional assessment of areas as small 

as the LC87, which revealed that this important role of the LC in cognitive flexibility 

may also operate in humans. These advanced fMRI techniques have opened new vistas 

for further investigation of the role of the LC-NA system in cognitive and behavioural 

flexibility16,139,154,155.

This striking sensitivity of LC neurons to environmental imperatives has been observed 

across species and within different behavioural situations; nevertheless, new evidence 

suggests that subpopulations of LC neurons respond in specific behavioural/cognitive 

contexts12,156,157. Two important questions arising from these data are how this type of 

context-dependent coding is implemented, and whether and how LC neural processing is 
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coordinated within a modular organization (see Anatomy of the LC). Given that small or 

large numbers of LC neurons can be activated in different contexts, these two questions may 

be interrelated. Further experiments recording multiple LC single units during behaviour 

will be needed in order reveal how these subpopulations respond to specific environmental 

contingencies (see Theories from behavioural correlates for further discussion).

LC-NA in motivation and decision making.

LC neurons are phasically activated by the outcome of task-related decision making145,158. 

However, the activation of LC neurons is limited to decisions to act and is not involved 

in the decision to cancel or prevent action159. Recent studies in monkeys have indicated 

that LC activity correlates with effort production, which is not the case for DA neurons 

recorded under the same conditions160. In an effort–reward task, decreasing the NA level 

with clonidine specifically affects effort without affecting reward processing161. While the 

site of action of NA-dependent modulation of effort is unknown, these effects are compatible 

with the idea that NA enhances cognitive control and modulates executive functions162,163.

NA has been strongly implicated as a motivational factor in drug-seeking behaviour. 

Activation of adrenergic receptors in select brain regions reinstates a previously extinguished 

drug-seeking behaviour, whereas NA receptor blockade prevents reinstatement elicited by 

various stimuli. In particular, engagement of the LC-NA system is required for drug-primed 

and cue-induced reinstatement, while other noradrenergic nodes (for example, the A2 group) 

regulate stress-induced reinstatement164. At least some of these effects involve actions 

of NA within arousal-related subcortical structures and are associated with increases in 

affectively neutral arousal165.

Theories from behavioural correlates

Early theoretical models articulated a strong relationship between LC activity and arousal, 

on the one hand, and the inverted-U relation between arousal and performance in cognitive 

tasks, on the other. Aston-Jones and Cohen166 developed a model (the adaptive gain theory) 

centred on modes of LC activity. The phasic mode, characterized by a low baseline firing 

rate and a strong phasic response to task-relevant stimuli, was seen as enhancing task-related 

activity, whereas the tonic mode, where LC neurons display sustained activation, would 

be associated with exploratory behaviour. In early versions of this model, the transient 

release of NA was proposed to enhance stimulus processing, thereby mediating the role 

of NA in attention. In later versions, after it was discovered that LC activation was more 

closely aligned with the behavioural response than with stimulus onset, the NA-induced 

increase in signal gain in target regions was proposed to facilitate the decision itself — 

that is, the execution of the action in response to the stimulus. The idea that transient LC 

activation promotes action execution is compatible with the idea that it enhances effort 

and is closely related to the notion of cognitive control90,160. Altogether, both the results 

of experimental studies and the model emphasize the specific temporal relation between 

transient LC activation and the mobilization of cognitive resources to provide an optimal 

response.

Poe et al. Page 14

Nat Rev Neurosci. Author manuscript; available in PMC 2022 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Arnsten167 provides a neurobiological account of the relation between arousal and cognitive 

performance through specific sites of NA action. In this framework, optimal performance is 

achieved at intermediate levels of NA via specific stimulation of high-affinity α2 receptors 

in the dorso-lateral prefrontal cortex, which supports executive functions. At higher 

concentrations, NA acts on lower-affinity α1 and β receptors located in posterior, sensory–

motor regions, where it promotes fight-or-flight behaviours. Thus, both Aston-Jones and 

Arnsten provide a noradrenergically based accounting of the inverted-U relation between 

arousal and performance, with Aston-Jones and Cohen166 focusing on the dynamics of LC 

activation, and Arnsten80 emphasizing different affinities and the heterogeneous distribution 

of NA receptors. Further refinements of these models will require a better understanding 

of the factors underlying LC activation and of the consequence(s) of this activation in LC 

terminal fields.

Another theory of LC function derived from behavioural correlates of LC activity 

emphasizes the role of NA in cognitive flexibility. Network reset refers to the reorganization 

of target networks enabling the rapid switch of the cognitive representation of the world 

to guide behaviour73,168-173. Bouret and Sara derived this theory from recordings of LC 

neurons in rats undergoing learning or extinction73,85,145 (see above). More recent studies 

in humans, using fMRI combined with behavioural protocols designed to evaluate cognitive 

flexibility, have shown that the LC is indeed engaged when shifts in attention or behavioural 

strategy are required16,154,155,174. Pupil dilation, as a correlate of LC activation, has been 

validated in the monkey112 and is now widely used in human research. Here again, 

engagement of the LC in cognitive flexibility has been corroborated175,176.

A version of this network reset theory of LC function proposed by Dayan and Yu168 

suggests that LC neurons are activated in the context of “unexpected uncertainty”, sending a 

“neural interrupt signal” to prepare the organism for adaptation of behaviour.

These earlier conceptual theories were founded on the idea that LC-NA cells behave 

homogeneously. However, recent studies have shown that subpopulations of LC neurons 

can be engaged in a more specific fashion and that their activity patterns, as well as the 

number and identity of the cells that are activated, can vary depending on the sensory or 

behavioural context1,145,157. Furthermore, emerging evidence suggests that these different 

patterns of LC activity are coordinated with distinct cell modules that have unique efferent 

connectivity (from widely divergent to more specific; see FIG. 2). Together, this suggests 

a new theory of LC function in which the representational (that is, what information is 

encoded) and modular features are coordinated. One possibility is that in very critical 

arousal-eliciting situations, such as exploration of a novel environment or exposure to a 

stressor, all cell modules are recruited to send a unified, widely broadcast NA signal to many 

brain regions. In other situations, where information is more subtly scattered in space and 

time (for example, in response to specific task events or during the initiation of movement), 

smaller populations of efferent-specific or molecularly identified neurons may respond, 

sending an NA signal selectively to distinct target sites7. This situationally dependent 

targeting of responsive LC cells has been termed “context-dependent modular coding”2. 

Such coding could be implemented through a combination of intrinsic physiological 

properties that enable LC neurons to switch between coupled and uncoupled modes177 and 
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between partially distinct afferent inputs onto individual cell modules that either engage 

many or recruit select LC cell populations2 (FIG. 2). Determining whether and how context-

dependent modular coding is coordinated with the structural organization of the LC will 

provide important insights into LC function and potentially link theoretical constructs and 

LC neuronal representations to anatomical and physiological mechanisms. Exploring the 

dynamics of activity across these modules as animals experience different sensory and 

behavioural contexts should provide new insight into the influence of LC-NA on its target 

regions and its involvement in behavioural adaptation.

Caveats, challenges, conclusions

Until recently, our understanding of the causal relation between LC neuronal activity 

and behaviour had been limited by an inability to selectively modulate LC-NA neurons 

in temporally precise and physiologically relevant patterns. This situation has changed 

dramatically with the advent of optogenetic and chemogenetic approaches, which allow 

us to activate or inhibit selected subsets of LC projection pathways. However, to provide 

unambiguous, informative data related to the behavioural consequences of LC activity, it is 

important that (1) the manipulations accurately reproduce the rate and pattern changes in 

LC activity that are elicited by physiological stimuli; (2) the efficacy of these manipulations 

be confirmed through electrophysiological or transmitter-selective sensors under conditions 

identical to those associated with behavioural testing; and (3) consideration be given to 

selective (module) versus global (whole-nucleus) activation of LC output channels and their 

efferent targets.

The establishment of a relation between LC output and behaviour will also require taking 

timescales into account. LC activity affects behaviour over relatively broad timescales, 

influencing behavioural states from sleep to arousal, while at the same time, event-related 

phasic increases in LC activity also influence perceptual processes and promote executive 

control or single-trial learning at the moment of a decision or at the time of effort 

production. Many gaps still prevent a full understanding of the local and global dynamics 

underlying brain-wide NA modulatory effects and the behavioural impact of these actions. 

We have delineated some of these gaps in each of the sections and subsections of this 

Perspective, with the aim of orienting current and future investigators.

As we have reviewed, neurophysiological work in rodents and primates indicates that, even 

if all LC neurons receive inputs related to autonomic arousal, distinct subpopulations of LC 

neurons can encode specific cognitive processes, presumably through more specific inputs 

from forebrain areas6,7,156,178. This, combined with specific patterns of innervation of target 

areas and heterogeneity in receptor distributions16,179, indicates that activation of the LC 

should have a more specific influence on target networks than had initially been imagined. 

Future theoretical constructs will need to incorporate not only the fine temporal scale but 

also the fine anatomical scale of LC function in order to capture the role of the LC in 

executive function, sensory signal processing, stress responses, motor control and learning, 

and ultimately in adaptive and maladaptive behaviours. Finally, recent imaging studies in 

rodents and primates, both human and non-human, have started to unravel the network effect 

of global LC activation16,155,180. Combining such approaches with local pharmacology and 
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behaviour will be critical to better understanding the complex relation between the LC and 

behavioural outcomes.

Finally, for neural systems such as the LC-NA, with its multiple brain targets and dynamic 

patterns of behaviourally related activity, behavioural functions cannot be understood while 

we know only physiological and anatomical properties. The task of fully integrating such 

complexity requires computational modelling that can take into account multiple dimensions 

of action in order to make predictions regarding behavioural outcomes and functions, which 

in turn can be tested in additional biological experiments; this methodology has proven 

useful in developing prior LC theories164,166. The findings of higher complexity across LC 

neurons and projection targets than had previously been realized indicate an increased need 

for iterative biological–computational approaches to extend theories of the function of the 

LC system.

The remarkable advances of the past few years, prompting our ‘new look’ at the blue spot, 

have certainly energized and provided new tactics for the field of LC investigation. Such 

precise and powerful approaches also provide opportunities for investigators focused on 

any one of the many neural systems that receive LC input, allowing them to effectively 

attack questions about how that input participates in the operations of their particular system. 

However, even with recent methodological advances, the unique anatomy and physiology 

of the LC continue to pose challenges to its precise characterization and to assigning it 

functional attributes. More data and innovative hypotheses will be needed to develop a 

comprehensive picture of LC functions. The present Perspective is meant to attract new 

investigators to help unravel the mysteries of the ‘blue spot’.
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Glossary

Chemogenetics
Viral introduction of chemically engineered neurotransmitter receptors into neuronal 

membranes. These can be subsequently activated by pharmacological ligands that are 

specific to the receptor.

Co-transmitters
Neuromodulators released from a neuron along with a primary neurotransmitter.

Fast-scan voltammetry
Voltammetry examines fluctuations in current that are driven by variations in voltage/

potential. In cyclic voltammetry, after the desired potential is reached, the potential is 

ramped in the opposite direction to return to the initial potential (time-locked voltage 

oscillations), causing the substance of interest to be oxidized and reduced in predetermined 

cycles. The concentration of the substance can be calculated by generating a calibration 
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curve of current against concentration, allowing the relative concentration to be calculated 

within milliseconds, and thus the real-time detection of neurotransmitter concentration.

Fear extinction
Learning that a context or cue that was associated with an aversive event no longer predicts 

that event, and thus the fear response to that context or cue is no longer expressed.

Frequency tuning
In the auditory cortex, individual neurons exhibit a specific response pattern based on the 

sound frequency applied. Delivery of a set of different sound frequencies determines the 

frequency tuning of the neuron.

Optogenetics
Analysis via the viral introduction of light-sensitive channels or ion pumps into neuronal 

membranes, which subsequently can be driven by the external application of a specific light 

wavelength.

RNAi
RNA interference, which comprises the inhibition of gene expression or translation by 

silencing the target mRNA.

Terminal fields
Neural areas targeted by axonal projections.
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Box 1 ∣

LC in ageing and neurodegenerative disorders

Although it was originally reported that locus coeruleus (LC) degeneration occurs over 

the lifespan, more recent post-mortem studies have indicated that frank LC neuronal 

loss does not appear to be a component of normal ageing183. Some LC-sensitive MRI 

studies have indicated an age-related reduction in LC integrity, but this signal may reflect 

changes in neuromelanin, neuron shrinkage and/or the loss of proximal dendrites rather 

than cell body death125,184. LC MRI will be a critical research tool moving forward, 

as cognitive reserve and memory performance have been linked to higher LC signal 

intensity and to changes in connectivity in older participants182,185,186. Noradrenergic 

regulation of plasticity in LC terminals also declines with age125, as does noradrenaline 

(NA) regulation of hippocampal synaptic plasticity187, perhaps contributing to the 

increased difficulty with learning flexibility in healthy ageing individuals, as well as 

to difficulty with reshaping cortical circuits after brain injury in the aged.

Regardless of the controversy concerning LC integrity during normal ageing, it is 

well established that LC-NA cells are exquisitely sensitive to pathology and death in 

neurodegenerative diseases of aging; hyperphosphorylated ‘pretangle’ tau appears in the 

LC prior to any other brain region in Alzheimer disease (AD). LC neurons are also 

among the first touched by α-synuclein inclusions in Parkinson disease (PD), and LC cell 

loss becomes catastrophic in both late-stage AD and PD188-190. Because LC neurons can 

survive for years despite harbouring inclusions of tau or a-synuclein, and because many 

prodromal symptoms of AD and PD are consistent with LC dysfunction (for example, 

sleep disturbances, anxiety, depression and so forth)191,192, it is critical to understand 

the consequences of aberrant tau and α-synuclein for LC physiology. Transgenic 

animals developed using noradrenergic-selective promoters, LC-specific infection with 

tau/α-synuclein viral vectors, or intra-LC infusion of preformed fibrils represent fresh 

approaches to overcome the confounds associated with the ubiquitously expressed 

protein aggregates in earlier models193-195. Characterizing the molecular signatures and 

electrophysiological properties of beleaguered LC neurons and assessing LC-relevant 

behaviours top the list of priorities in this research area. Further development of sensitive 

and specific MRI methods to assess LC integrity and the use of such integrity as a 

biomarker for AD and PD have shown promise but are yet to be fully exploited184.
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Box 2 ∣

LC and stress

The locus coeruleus (LC) has been implicated in neuropsychiatric disorders through its 

role in the stress response196,197. Stressors engage the LC-noradrenaline (NA) system 

through corticotropin-releasing factor (CRF), which biases LC neuronal discharge to 

favour high-tonic activity and diminishes responses to discrete stimuli197,198. These 

effects could be adaptive in life-threatening environments, where high general arousal 

and cognitive flexibility would be advantageous. Chemogenetic LC activation in order to 

mimic acute stress increases brain-wide functional connectivity, particularly in salience 

networks and amygdala networks, and this is accompanied by decreased exploratory and 

increased anxiogenic behaviour16. A caveat is that it is not known whether chemogenetic 

stimulation produces the same rate and pattern changes in LC activity that acute stress 

does, and these results may differ for different types of stressors.

Enkephalin-containing axon terminals converge on some of the same LC dendrites 

as CRF-containing axon terminals and have opposing effects on LC discharge199,200 

during stress, implicating enkephalin afferents to the LC (acting at μ-opioid receptors) 

as an important stresscoping and recovery system. Acute stressors engage both CRF 

and enkephalin afferents to regulate LC activity201,202. Although CRF excitation of 

LC activity predominates during acute stress, μ-opioid receptor antagonism results in a 

greater magnitude of LC activation and delays recovery201.

Sex is an important determinant of LC sensitivity to stress, because in rodents the LC 

neurons of females are more sensitive to CRF and less sensitive to enkephalin than 

are those of males203-205. This increased female sensitivity to CRF has been linked to 

synaptic CRF receptor and internalization changes in females compared to males204. This 

would translate to a greater LC-NA response to stressors and a decreased ability to adapt 

through the process of receptor internalization. The role of cycling hormones remains 

to be thoroughly investigated, but oestrogen and progesterone receptors abound on LC 

cells and likely have mitigating effects on LC activity206. These many sex differences 

suggest a molecular basis for the higher prevalence of stress-related psychiatric disorders 

in females207.
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Box 3 ∣

Therapeutics

Dysfunction of the locus coeruleus-noradrenaline (LC-NA) system has been implicated 

in many neuropsychiatric and neurological diseases, including depression, anxiety, 

attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), 

Alzheimer disease (AD) and Parkinson disease (PD). Even in cases where the LC is not 

involved in establishing the disorder itself, it is possible that manipulating LC activity 

could disrupt the feedback loop that supports the dysfunction, thus re-establishing a 

healthy physiological response pattern and moving the patient towards normal daily 

activity.

Given the cornucopia of available pharmacological agents targeting N A synthesis, 

signalling and metabolism, it is surprising how few are currently in use. The selective NA 

reuptake inhibitors such as atomoxetine, for ADHD208, and reboxetine, for depression209, 

the synthetic NA precursor L-3,4-dihydroxyphenylserine (DOPS; droxidopa), for PD210, 

and the α2-adrenergic receptor agonist lofexidine, for opioid withdrawal211, have all 

been tried with some success. There are several reasons noradrenergic compounds are 

not being used more frequently. Although NA dysfunction contributes to many aspects of 

brain disorders, it is not known to be the specific cause of any symptomatology or known 

disease process (in contrast to dopamine neuron degeneration, which causes the cardinal 

motor symptoms of PD and has spawned multiple dopaminergic therapies). Systemic 

effects of noradrenergic drugs on cardiovascular function prompt caution in their use for 

treating CNS disorders. Minimally invasive procedures are emerging for manipulating the 

LC, taking advantage of studies of circuits that regulate LC neurons — for example, the 

circuit from the suprachiasmatic nucleus (SCN) to the LC via a relay in the dorso-medial 

hypothalamus23. As specialized retinal ganglion cells strongly innervate the SCN, retinal 

stimulation (for example, using chemogenetics) may modulate the LC for therapeutic 

benefit212. Transcutaneous vagus nerve stimulation is another non-invasive procedure 

that has positive effects on psychiatric and neurological disorders such as depression213, 

epilepsy214 and cognitive dysfunction215, all of which are mediated, at least in part, 

through LC activation. As we learn more about the diversity of LC neurons (for example, 

efferents, afferents, co-transmitters, survival factors and so forth) and their modulatory 

organization, and as we develop technologies to target subpopulations of these cells, 

LC-based therapies for neuropsychiatric and neurological diseases will become more 

credible and effective while minimizing peripheral side effects.
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Box 4 ∣

LC activity across sleep: relevance to waking functions and disease

Although the locus coeruleus (LC) firing rate typically slows at sleep onset, within 

sleep, LC firing rates do not predict either arousal levels or arousal thresholds. In all 

animals recorded to date, which have included only males, the LC falls nearly silent 

during the state of rapid eye movement sleep (REMS) and is also silent in the seconds 

immediately preceding sleep spindles during non-REMS108,216. These sleep states show 

intense brain activity in limbic circuits, ample synaptic plasticity217,218 and rich cognitive 

content, in the form of vivid dream reports. LC activity during sleep after learning 

has been little studied, but the few existing reports reveal an intriguing interplay of 

activity and silence, both of which could play essential roles in sleep-dependent memory 

consolidation216,219,220. Specifically, LC activity is timed to deliver noradrenaline at 

forebrain synapses just in time to strengthen or protect circuits during non-REMS 

memory replay events — that is, at the peaks of slow oscillations134; however, LC 

silences precede non-REMS spindles and REMS replay periods, which would uniquely 

allow a depotentiation of synapses that would be necessary for memory networks to be 

reshaped124,221,222.

Violations either of LC activity at non-REMS slow oscillations or of LC silences before 

spindles and in REMS could disrupt memory consolidation processes216,223. Indeed, 

the characteristic sleep aetiology of post-traumatic stress disorder (PTSD), insomnia, 

and opiate withdrawal (BOX 2) suggests an overactive LC during sleep224, which 

may underlie the emotional and hippocampal memory consolidation deficits of those 

disorders225. The overactive LC seen in early Alzheimer disease (AD) (BOX 1) may 

also cause the disturbed sleep apparent at the earliest diagnoses of that disease, and the 

catastrophic degradation of the LC in late AD could fail to provide NA at forebrain 

synapses in support of memory preservation during slow oscillation reactivations, 

contributing to overall memory erasure. These questions have yet to be addressed.

Given the strong effect of the LC-NA on plasticity, one area for future study is the 

activity of the LC during sleep in females across the oestrous cycle. Increased LC activity 

during sleep at some phases of the oestrous/menstrual cycle could underlie increased 

vulnerability to memory consolidation disturbances, opiate use disorder, AD and anxiety-

related disorders such as PTSD226.
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Fig. 1 ∣. The blue spot: past discoveries and future horizons.
The discovery of the existence of monoamine-containing neurons in the CNS by Dahlstroem 

and Fuxe in 1964 (REF.181) inspired subsequent systematic research on locus coeruleus 

(LC) structure and function. Use of the available neuroscience methodologies allowed many 

pioneering discoveries and influential theories of function (second panel). Unprecedented 

technological advances in recent years have been a catalyst for obtaining new results that 

confirmed, but also challenged, the existing knowledge about the LC-noradrenaline (NA) 

system (third panel). Newly revealed complexity of the organization of the LC-NA system 

has raised many new questions (fourth panel), opening new vistas for future research. fMRI, 

functional MRI.
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Fig. 2 ∣. Evolving views of the LC synaptic architecture and functional organization.
a ∣ Historically, the locus coeruleus (LC) had been thought to contain functionally 

homogeneous neurons (indicated here by a uniform blue colour) whose axons extensively 

collateralize and indiscriminately innervate functionally diverse terminal fields21. b ∣ More 

recently, several studies4,7,12-14 have shown that the axons of LC neurons are less extensive 

than had previously been recognized, and instead innervate anatomically and functionally 

distinct targets. In the schematic, each colour represents a population of LC neurons that 

projects strongly to a preferred terminal field, including olfactory bulb (medium blue), 

frontal cortex (medium green), visual cortex (light blue), thalamus and midbrain (red), 

cerebellum (light green) and spinal cord (pink). Note that this schematic is illustrative only 

and that there are likely more than six efferent LC pathways. Evidence also suggests that 

LC neurons also innervate terminal fields beyond their preferred targets, though less densely. 

c–f ∣ The organization of the presynaptic inputs to LC is less clear. Early studies suggested 

that all LC neurons were innervated by a limited set of common afferents, which then went 

on to innervate all regions of the CNS16 (part c). Another possibility is that a common set 

of afferents equally innervate all LC neurons, which then transmit information in a selective 

way to specific terminal fields (part d). A more complex arrangement would have unique 

afferents linked to discrete LC neurons that preferentially innervate functionally distinct 

terminal fields, such that there is discrete coding of information as it passes through the 

nucleus (part e). Another possibility is that the LC is organized such that some afferents 

innervate all of the LC, and so can modulate the activity of the nucleus as a whole, while 

others are more discrete and allow for point-to-point communication4. The same holds 

true for LC efferents: some LC neurons have a preferred terminal field that they densely 
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innervate, while others broadly innervate vast expanses of the CNS1. Under this model, the 

LC is capable of globally broadcasting information to all its terminals simultaneously when 

its broad afferents are engaged. In some circumstances, however, only discrete afferents may 

be engaged, to allow for discrete coding of information by LC and transmission only to 

specific terminals (part f). NA, noradrenaline.
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Fig. 3 ∣. GANE release creates local NA ‘hot spots’ and alters network processing: the network 
GANE model.
a ∣ A noradrenaline (NA) ‘hot spot’. Local spillover glutamate (blue dots) from active 

glutamate terminals (step 1) interacts with depolarized NA varicosities. These NA 

varicosities (pink) are depolarized by locus coeruleus (LC) activation. Spillover glutamate 

acting on three kinds of glutamate receptors — NMDA receptors (NMDAR), AMPA 

receptors (AMPAR), and metabotropic glutamate receptors 1/5 (mGluR1/mGluR5) — 

may increase NA release from these varicosities (green dots; step 2). β-Adrenoceptors 

on glutamate terminals can promote additional glutamate release, in a positive feedback 

loop. Spillover glutamate also recruits astrocytes (step 3) to release the NMDA co-agonists 

serine and glycine (grey dots) and additional, astrocyte-sourced glutamate (blue dots). 

Finally, on the postsynaptic glutamate neuron, local NA activates higher-affinity α2- and 

α1-receptors. If NA concentrations are sufficiently high, NA also recruits the lower-affinity 

β-adrenoreceptors to promote long-term potentiation (LTP) at those glutamate synapses. To 

generate LTP, a high level of β-adrenoreceptor activation is needed, because lower levels 

of β-adrenoreceptor activation promote long-term depression, attenuating the input strength. 

Failure to recruit β-adrenoreceptors will leave the glutamate circuitry unchanged. Increased 
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local NA can also act in an autocrine fashion on α2-and β-adrenoreceptors expressed on 

the NA varicosities, modulating further NA release. β-Adrenoreceptor activation would 

also increase NA release in a positive feedback loop. b ∣ The system-wide effects of 

glutamate amplification of noradrenaline (GANE) interact with local ‘hot spot’ effects. 

Salience-evaluating structures, such as the anterior cingulate cortex and insula, recruit LC 

firing in order to enable NA to modulate ongoing processing at multiple levels of brain 

function. Local glutamate–NA memory-enhancing effects occur in parallel with more broad-

scale suppression, as NA recruits lateral and auto-inhibitory processes that suppress weaker 

glutamate signals in lower-priority processing pathways. These noradrenergic mechanisms 

lead to ‘winner-take-more’ and ‘loser-take-less’ outcomes in perception and memory under 

arousal. For example, if the girl in the yellow raincoat has high priority at the moment, either 

because of her perceptual salience or because of a goal (for example, rooting for her team), 

memory for her should be enhanced if something else (for example, loud thunder) induces 

arousal at that moment, whereas the peripheral inputs are more likely to be forgotten. 

High-priority input interacts with LC-induced arousal and recruits resources and networks 

to create new memory circuits, whereas lower-priority input is unsupported. Part a adapted 

with permission from REF.125, Cambridge University Press. Part b image courtesy of David 

Clewett, UCLA.
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