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Abstract

Rhythmic gene expression is found throughout the central nervous system. This harmonized 

regulation can be dependent on- and independent of- the master regulator of biological clocks, 

the suprachiasmatic nucleus (SCN). Substantial oscillatory activity in the brain’s reward system 

is regulated by dopamine. While light serves as a primary time-giver (zeitgeber) of physiological 

clocks and synchronizes biological rhythms in 24-h cycles, nonphotic stimuli have a profound 

influence over circadian biology. Indeed, reward-related activities (e.g., feeding, exercise, sex, 

substance use, and social interactions), which lead to an elevated level of dopamine, alters rhythms 

in the SCN and the brain’s reward system. In this chapter, we will discuss the influence of the 

dopaminergic reward pathways on circadian system and the implication of this interplay on human 

health.
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4.1 The Dopaminergic Mesolimbic System and Reward

The mesolimbic system, also known as the reward system, is composed of brain 

structures that are responsible for mediating the physiological and cognitive processing 

of reward. Reward is a natural process during which the brain associates diverse stimuli 

(substances, situations, events, or activities) with a positive or desirable outcome. This 

results in adjustments of an individual’s behavior, ultimately leading them to search for 

that particular positive stimulus. Reward requires the coordinated release of heterogenous 

neurotransmitters. However, of the brain substrates implicated in reward, dopamine has a 

central position. Dopamine plays a critical role in mediating the reward value of food, drink, 

sex, social interaction, and substance abuse (Hernandez and Hoebel 1988; Everitt 1990; 

Robbins and Everitt 1996; Bardo 1998; Beninger and Miller 1998).

The dopaminergic pathway mostly involved in reward is the so-called mesolimbic system, 

which is formed by projections of midbrain dopamine neurons of the ventral tegmental 

area (VTA) to the striatum, prefrontal cortex, amygdala, hippocampus, and many other 

structures of the limbic system. When rewarding stimuli are experienced, the dopaminergic 

E. Borrelli, School of Medicine, Department of Microbiology and Molecular Genetics, INSERMU1233, Center for Epigenetics and 
Metabolism, University of California - Irvine, Irvine, CA, USA, Borrelli@hs.uci.edu. 

HHS Public Access
Author manuscript
Adv Exp Med Biol. Author manuscript; available in PMC 2022 April 08.

Published in final edited form as:
Adv Exp Med Biol. 2021 ; 1344: 57–69. doi:10.1007/978-3-030-81147-1_4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mesolimbic system is activated which causes the release of dopamine to the targeted nuclei 

(Small et al. 2003; Cameron et al. 2014). The ventral striatum, including the nucleus 

accumbens (NAcc), is a major substrate involved in reward (Marche et al. 2017). The 

dorsal striatum is critically involved in action selection and initiation components of decision 

making and also seems to mediate feedback properties such as valiance and magnitude in 

addition to controlling habitual behavior (Balleine et al. 2007; Burton et al. 2015; Lipton et 

al. 2019). Therefore, both dorsal and ventral regions have collaborative roles in mediating 

reward. Nevertheless, the NAcc is most appreciated for its involvement in reward processing 

and its role in evaluation and incentive-based learning (Schultz et al. 1992; Daniel and 

Pollmann 2014).

The most prominent striatal neurons are the γ-aminobutyric acid (GABA) producing 

medium spiny neurons (MSNs). These cells make up to 90–95% of the neuronal population 

and serve as the sole output from the striatum (Kemp and Powell 1971; Graveland and 

DiFiglia 1985). MSNs outputs generate two pathways: the direct pathway formed by 

dopamine D1 receptor (D1R) expressing medium spiny neurons (dMSNs) and the indirect 

pathway by dopamine D2 receptor (D2R) expressing medium spiny neurons (iMSNs). 

Coordinated dopamine signaling to dMSNs and iMSNs within the striatum is critical for 

integrating and responding to rewarding stimuli.

The other 5–10% of striatal neurons are interneurons, which serve as intrastriatal regulators 

of MSNs activity (Oorschot 2013). The majority of interneurons are inhibitory GABAergic 

interneurons which modulate reward through their signaling to MSNs and expression of a 

variety of modulatory peptides (Gittis et al. 2010). About 1–2% are formed by the tonically 

active cholinergic interneurons which, despite their low abundance, critically regulate MSNs 

(Kharkwal et al. 2016a; Lewis et al. 2020). Indeed, activation of cholinergic interneurons has 

been linked to the salience of events (Gittis and Kreitzer 2012). Thus, inter- and intra-striatal 

connections modulate striatal circuits and play a critical role in reward processing.

Natural rewards, such as eating, drinking, and mating are necessary for survival and 

maintenance of a species. At its core, the reward system determines the valence of a stimulus 

and signals whether it is to be avoided or approached, as well as assigning the priority of one 

stimulus over another. Substances of abuse, whether illicit (e.g. cocaine, heroin, etc.) or licit 

(e.g. alcohol, nicotine, etc.), hijack the mesolimbic system by offering a reward without an 

obvious biological function. However, the pleasure and reward linked to initial substance use 

are then lost by their abuse, which leads to a vicious circle of addiction (Volkow et al. 2016).

Recent studies have shown that reward is subjective and is highly influenced by the 

chemistry of the individual, homeostatic state (Paulus 2007; Keramati and Gutkin 2014) 

and genetics (Comings and Blum 2000; Jia et al. 2016), as well as by the environment 

and epigenetics (Xu et al. 2007; Solinas et al. 2009; De Decker et al. 2017). Indeed, 

how, when, and where rewarding stimuli are experienced can have a profound influence 

on reward-related behaviors, as a result of activation of several circuits located in the 

striatum as well as in other brain regions responsible for encoding and storing memory 

of events. Importantly, the mesolimbic system is connected to the suprachiasmatic nucleus 

(SCN)—the master regulator of circadian rhythms (Grippo et al. 2017). The SCN is known 
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to influence reward-related behavior and reciprocally, rewarding stimuli can serve as time-

givers (zeitgebers) to entrain the SCN as well as peripheral clocks through the release of 

dopamine (Honma and Honma 1995; Davidson et al. 2005; Baba et al. 2017).

4.2 Rhythmic Variation in Dopamine-Related Activity

Rhythmic control of an organism’s behavior is a critical part of adapting and anticipating 

environmental changes in light, temperature, and resources. Though time-keeping 

mechanisms are more complex and developed in mammals, diurnal control is conserved 

throughout nature (Edgar et al. 2012). In mammals, the SCN organizes behavior and its 

correlated cellular activity through hormone and neurotransmitter release, in a 24-hour cycle 

based on daily light and dark phases (Dunlap 1999).

Support of a circadian regulation of reward was initially highlighted by admittance of 

patients experiencing substance overdose into the emergency room predominantly in the 

evening (Morris 1987; Raymond et al. 1992). Thus, the night spikes in overdose are 

likely related to differences in the metabolism of drugs of abuse during different times 

of day (Baird and Gauvin 2000; Abarca et al. 2002). Importantly, a variety of medications 

have been shown to have better clinical efficacy at precise times during day (Musiek and 

FitzGerald 2013; Nobis et al. 2019; Samir et al. 2020). Timing effects of rewarding stimuli 

also extend to natural rewards where time of day influences physiological responses as well 

as anticipatory rhythms (Castro 2004; Landry et al. 2012; Johnston 2014).

Dopamine levels in SN and VTA follow circadian oscillations, rising in the active phase 

and falling in the resting phase of the day (Smith et al. 1992; Hood et al. 2010; Ferris et 

al. 2014), as does its precursor and metabolites (Paulson and Robinson 1996; Castañeda 

et al. 2004) (Fig. 4.1). Rhythmic expressions of clock genes including Clock, Rev-ERBα, 
Per, Npas2, and Bmal1 are involved in dopamine metabolism (McClung et al. 2005; Chung 

et al. 2014). Indeed, Clock and Rev-ERBα negatively regulate the expression of tyrosine 

hydroxylase (TH), the rate limiting enzyme in dopamine synthesis (Musacchio 1975). Levels 

of TH increase during the active phase, which is opposite to that of Clock and Rev-ERBα; 
loss of either circadian gene results in disrupted rhythmic TH expression (McClung et al. 

2005; Chung et al. 2014). Transcription of monoamine oxidase A (MAOA), the enzyme 

responsible for dopamine breakdown, is regulated by the expression of NPAS2, BMAL1, 

and PER2 (Hampp et al. 2008). Deletion of Per2 causes a lack of MAOA expression during 

the resting phase, which leads to elevated basal levels of dopamine in the NAcc (Hampp et 

al. 2008).

Psychostimulants increase extracellular dopamine levels and alter the expression of clock 

genes in the striatum (Nikaido et al. 2001; Uz et al. 2003; Lynch et al. 2008). Though drugs 

like cocaine and methamphetamine simultaneously alter levels of other neurotransmitters 

such as serotonin (Haughey et al. 2000; Andrews and Lucki 2001), their impact on clock 

gene expression is largely dependent on dopamine signaling. Indeed, administration of the 

D1R agonist, SKF-38393, increases mRNA levels of Per1, Clock, Bmal1, and Npas2 while 

the D2R agonist, quinpirole, decreases Clock and Per1 expression (Imbesi et al. 2009). D1R 

signaling plays a critical role in Per2 expression, as D1R-null mice have reduced Per2 in the 
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striatum (Gallardo et al. 2014). Interestingly, depletion of dopamine by 6-hydroxydopamine 

lesions of dopaminergic neurons results into suppression of PER2 oscillations which can 

be rescued by D2R agonists (Hood et al. 2010). These results imply that the simultaneous 

activation of both D1R and D2R is necessary for the normal Per2 oscillations in the striatum. 

The effect of D2R on Per2 expression might not be direct, but mediated by the inhibitory 

regulation of iMSNs on dMSNs through collaterals (Lemos et al. 2016; Kharkwal et al. 

2016b).

Dopamine’s influence on the SCN was inferred by expression of both D1R and D5R on its 

neurons (Weiner et al. 1990; Rivkees and Lachowicz 1997; Doyle et al. 2002). In neonatal 

hamsters, light pulses mirror the effects of D1R agonists suggesting that the maternal levels 

of DA correspond to the active phase in the fetal SCN (Viswanathan and Davis 1997). 

Dopamine has been reported to play a critical role in entraining fetal development through 

the SCN and that after this period the SCN’s responsiveness to dopamine declines (Weaver 

and Reppert 1995; Mendoza and Challet 2014). Nevertheless, D1R activation in the SCN 

shifts the phase of circadian rhythms and a direct connection between the VTA and the 

SCN has been described (Grippo and Güler 2019). Furthermore, D2R seems to be absolutely 

required for the light-induced suppression of locomotor activity (masking), whereas other 

visual or nonvisual photic responses seem to be D2R independent (Doi et al. 2006). These 

results showed a yet unappreciated function of D2R-mediated signaling in regulating the 

proper organization of daily locomotor activity in light-dark cycles.

Thus, the daily fluctuation in VTA dopamine neuron activity has a substantial role in SCN 

entrainment and other circadian activities.

4.3 Food and its Relationship to the Circadian Control of the Mesolimbic 

System

It is a complex process that both the type of food we consume and how much is 

consumed integrates the homeostatic and reward systems. Controlled food intake relies 

on balanced responses between orexigenic and anorexigenic neurons of the hypothalamus, 

which respond to circulating hormones and nutrients (Kalra et al. 1999; Meister 2007). 

The hypothalamus regulates the production of neuropeptides like ghrelin, leptin, and 

neuropeptide Y (NPY) in a diurnal manner, which contributes to appetite regulation (Kalra 

et al. 1999). Genetically engineered mice with deletions of genes encoding either ghrelin, 

leptin, or NPY have aberrant feeding behaviors or metabolic fuel preference (Bannon et al. 

2000; Wortley et al. 2004; Cristino et al. 2013; Schéle et al. 2016). In a simplistic model, 

low levels of nutrients such as glucose, fats, and amino acids increase levels of ghrelin and 

decrease leptin (Weigle et al. 1997; Tschöp et al. 2000; Klok et al. 2007). Ghrelin acts on 

NPY-producing neurons in the hypothalamus which cause the release of NPY (Kohno et al. 

2003). Food intake restores deficits in nutrients, decreasing ghrelin and causes the release of 

leptin from adipose tissue (Izadi et al. 2014). Leptin acts on NPY-producing neurons in the 

hypothalamus, reducing the amount of NPY released (Baver et al. 2014). An intact control 

of homeostatic regulation through integration of these signals and the subsequent response 

is necessary for the maintenance of a stable body weight. Dysregulation of this system leads 
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to obesity and its associated comorbidities including heart disease and diabetes (Turek et al. 

2005; Depner et al. 2014; Reutrakul and Knutson 2015).

Taste, smell, texture, and temperature all contribute to the subjective pleasantness of food 

and rely on the mesolimbic dopamine system. The taste of saccharin sweetened water, 

for example, is chosen over intravenous cocaine administration in mice (Lenoir et al. 

2007). Food that is more palatable, and as a result more rewarding, is expected to cause 

increased release of dopamine in the NAcc (Volkow et al. 2010, 2012). Indeed, palatable 

foods containing high levels of sugars (Rada et al. 2005) and fats (Rada et al. 2012; Cone 

et al. 2013) are known to stimulate the release of dopamine into the NAcc. Dopamine 

has an essential role in mediating appetite which goes above the homeostatic system. 

Dopamine-deficient mice with inactive TH in VTA neurons (Szczypka et al. 2001) as well 

as mice with constitutive deletions of both D1R and D2R (Kobayashi et al. 2004) develop 

early fatal hypophagia. Dopaminergic pathways have been found to be altered in obese 

subjects. Striatal D2R expression is reduced by a palatable food diet in mice (Johnson and 

Kenny 2010) and in humans striatal D2R availability is significantly lower in obese patients 

compared to control individuals (Wang et al. 2001).

Repeated exposure to food with high fat and sugar content results in compulsive food 

consumption, poor control of food intake, and food stimulus conditioning (Jauch-Chara 

and Oltmanns 2014). These results suggest that palatable food can disrupt endogenous 

homeostatic regulation of food intake through activation of the reward system. Interestingly, 

leptin receptors have been found in the VTA and SNpc, and a putative role in regulating 

dopamine release has been proposed (Figlewicz et al. 2003). Moreover, ghrelin is known to 

stimulate VTA dopamine neurons to release dopamine into the NAcc (Abizaid et al. 2006). 

Thus, endogenous and exogenous signals control appetite through important interactions 

between the physiological need for food and the reward system.

Food consumption follows circadian rhythms. Through regulation of complex networks 

involving the homeostatic and reward systems, food intake sets time. One hypothesis posits 

that orexigenic pathways, which increase feeding behavior, become gradually activated 

during fasting while sleeping. However, this hypothesis contrasts evidence in humans 

showing that hunger has an endogenous circadian rhythm with lowest levels in the morning 

(8am) and greatest in the evening (8pm) regardless of the type of food intake (Scheer et al. 

2013). Moreover, in the absence of external time cues individuals seek 2–3 meals during 

their active phase; however, the timing when these meals occur shows massive subject 

variability and is influenced by differences in circadian period and wakefulness (Aschoff et 

al. 1986).

A number of clocks in the brain can be reset by peripheral metabolic signals, which 

may contribute to food anticipation. Palatable foods can trigger anticipatory bouts of 

locomotor activity and arousal indicating an activation of the mesolimbic dopamine system 

(Mistlberger 1994). Despite this insight, the anatomical locations and molecular mechanisms 

for the food clock remain elusive. Mice with genetic deletions of Bmal1, Per1, and Per2 
have normal food anticipatory behavior as do SCN-lesioned mice (Storch and Weitz 2009). 

This information indicates that the central clock is not required for food anticipation. 
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However, mutations in Per1 have been shown to shift food intake to the resting phase, which 

leads to obesity in mice (Liu et al. 2014). Additionally, mice carrying deletions of Bmal1 
and Per2 become obese from eating food equally during day and night as do ClockΔ19 

mutant mice (Turek et al. 2005; Guo et al. 2012). The most likely candidates for the food 

clock lie in other regions of hypothalamus as well as in the striatum (Gallardo et al. 2014).

Nutrition, metabolism, and circadian rhythms are intricately linked with each other (Fig. 

4.2). Timing of food intake can alter the circadian system positively or negatively. Indeed, 

meal timing can affect sleep/wake cycles, body temperature, performance, and alertness 

(Hotz et al. 1987; Hawley and Burke 1997; GRANT et al. 2017; Hou et al. 2019). 

These effects are enhanced by calorie restriction, high-fat and high-sugar, among others. 

Rhythmic dopamine levels from the VTA to the NAcc underlie motivation, food craving, and 

anticipation (Parekh et al. 2015). The SCN indirectly projects to the VTA through the medial 

preoptic nucleus of the hypothalamus (Luo and Aston-Jones 2009); this connection might 

conceivably allow for food-seeking directed movement through modulation of dopamine 

signaling in the striatum. This connection may also affect reinforcement and conditioned 

learning associated with food intake. Thus, the control of food intake is dependent on a 

balanced interaction between metabolic and hedonic circadian brain circuits.

4.4 Rhythmicity of Mating Behavior and Sex-Driven Reward

To facilitate necessity for species survival, mating activity highly engages the reward 

system and principally involves dopamine (Balfour et al. 2004). Dopamine release critically 

affects mating at the motor, arousal, motivation, and reward levels. In rats, systemic 

pharmacological treatments, which increase or decrease dopamine signaling, improve or 

worsen parameters of copulatory activity, respectively (Melis and Argiolas 1995). Dopamine 

signaling in the striatum has been postulated to mediate the reinforcing properties of sexual 

reproductive activity (Becker et al. 2001; Sanna et al. 2020). Regardless, dopamine signaling 

appears to play a critical role in sex-driven reward.

Like almost all physiological parameters in animals and humans, mating also shows some 

rhythmicity. In humans, most sexual encounters occur around midnight (Refinetti 2005). 

Environmental factors, namely partner availability, is the predominant factor important for 

human sexual activity. Peripheral tissues in the reproductive axis have been shown to have 

rhythmic clock gene expression, which might influence or synchronize with sexual behavior 

(Sen and Hoffmann 2020).

In animals, mating rhythmicity is important for avoiding predation and is also important for 

finding the right mating partner. Strong seasonal rhythms, which are linked to the amount of 

light, are apparent in males of many species including rodents and sheep, which are better 

suited models in this area of chronobiology (Reiter et al. 1980). As an example, rams are 

sensitive to daily changes in light across the year which induce hormonal variations and 

modulate gonadal function as well as libido without changes in hormone secretion (Lincoln 

et al. 2003). This provides evidence that, unlike other natural rewards like food, reproductive 

behavior is not under homeostatic regulation.
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Anticipation rhythms have been observed in rodents in response to schedules; thus, 

suggesting that anticipatory rhythms may be located within the reward system or could 

be entrained by stimuli, which also engage the reward system. Indeed, circadian clock genes 

in the dopaminergic pathways can be shifted by natural rewards as well as dopaminergic 

compounds. These findings imply that copulation could also induce robust circadian 

anticipatory rhythms. Male rodents can anticipate daily opportunities to mate (Landry et al. 

2012). Interestingly, rats can anticipate scheduled mating toward the end of their daily active 

phase and in the middle of their resting phase. Reproductive behavior also shows diurnal 

variation as does sex-related reward, which peaks in the daily active phase and corresponds 

with dopamine levels in the striatum (Webb et al. 2009). These results suggest that sexual 

anticipation and reward are linked with diurnal rhythms in the dopaminergic mesolimbic 

system (Melis and Argiolas 1995) though the molecular mechanisms remain elusive.

4.5 Drugs of Abuse

Although our understanding of the specific actions of drugs on the reward system has 

been growing, the complexity of the fundamental mechanisms underlying drug abuse and 

dependence increases. Drugs of abuse share one common mechanism: they raise dopamine 

levels in the brain, which elicits reward, driving vulnerable (Swendsen and Moal 2011) 

substance users to seek for more drugs leading to addiction. At the cellular level, the 

drug-induced dopamine increase alters neuronal plasticity at the molecular level leading to 

alterations of gene expression and the consequent modification of neuronal circuits.

A growing body of evidence connects perturbations of circadian rhythms and clock genes to 

the development and progression of addictive disorders (Webb 2017). People with addiction 

have highly disrupted rhythms which could be a result of genetic and/or epigenetic factors 

like sleep deprivation (Logan et al. 2018). Indeed, those with an evening chronotype 

(night owls) have been linked to disorders of the mesolimbic dopamine system including 

depression, insomnia, and substance abuse (Merikanto et al. 2013; Kivelä et al. 2018). Many 

behaviors that depend on the mesolimbic system, such as psychomotor sensitization and 

drug-seeking, show rhythmic patterns and are under the control of circadian genes (Abarca 

et al. 2002). Surprisingly, substance abuse leads to lasting changes in circadian rhythms, 

which can persist even after cessation of the drug intake (Jones et al. 2003).

Like for natural rewards, there are diurnal variations in the behavioral response to substances 

of abuse. Addictive drugs are known to influence behavioral rhythms, through modifications 

of the expression of clock genes such as Clock, Per1, and Per2. Clock is expressed in 

the VTA and NAcc and has been implicated in modulating reward processing. Mice with 

Clock null mutations show enhanced sensitivity to cocaine which has been demonstrated by 

conditioned place preference (CPP) (McClung et al. 2005) and self-administration (Ozburn 

et al. 2012) models of substance abuse. Similarly, Per1 and Per2 seem to have roles in 

cocaine sensitization (Uz et al. 2003), which is thought to be a critical component of drug 

craving that leads to dependence (Robinson and Berridge 2008). Per1 and Per2 expressions 

appear modulated by D1R and D2R. Interestingly, Per1 and Per2 mutants show increased 

alcohol CPP compared to WT controls (Gamsby et al. 2013). Per1 null mice show decreased 

morphine CPP (Perreau-Lenz et al. 2017) and absence of cocaine CPP (Abarca et al. 2002). 
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In contrasts Per2 mutants show no difference from WT littermates when tested for cocaine 

CPP (Abarca et al. 2002).

4.6 Social Reward, Electronics, and the Clock

The developed world has a long-held fascination for technologies with entertainment 

purposes, which continues to grow. Adults in the United States spend 2–4 h per day using 

electronic devices, making technology a deeply engrained part of our lives (Dyck et al. 

2011). The aberrant and persistent usage of these devices has called into question whether 

one could become addicted to them. Indeed, research focusing on television (Horvath 

2004), internet (Caplan 2010), and smartphone (van Deursen et al. 2015) use has sought 

to understand these behaviors in terms of addiction. As previously discussed, natural rewards 

release dopamine through activation of the mesolimbic system to promote survival and 

maintenance of the species. Like for substance use disorders, could technology equally 

hijack the reward system? Social media platforms leverage the reward system in ways 

similar to what gambling does to promote usage as much as possible through activation of 

the dopaminergic pathways (Izuma et al. 2008). Evidence has recently been presented which 

connects successful social interactions and the dopaminergic mesolimbic system (Torquet et 

al. 2018).

Growing evidence suggests that electronic devices can negatively impact circadian rhythms. 

Studies recently emerged have linked smartphone usage to increased anxiety and depression 

as well as poor sleep quality (Demirci et al. 2015). Indeed, lights from backlit screens 

can delay and advance circadian timing causing asynchronization (Blume et al. 2019). 

Associations between loss of sleep and electronic media exposure have been extensively 

reported in adolescents and adults (Suganuma et al. 2007; Fossum et al. 2014; Lemola et al. 

2015). The alerting effects of night time use of electronics could be due to the suppression 

of melatonin by blue light exposure from the device in the retina (West et al. 2010). This 

emphasizes the utility of using “night shifting” modes, which switch displays to decreased 

blue light. Beyond the effects light has on sleep disruption, nighttime use of electronics 

and media engagement likely has profound effects on circadian rhythms. This effect can 

in part be ascribed to the release of dopamine in the striatum from the rewarding nature 

of social interactions. It is clear that more studies are required to trace the links between 

dopamine-mediated reward and circadian rhythms. While the connection is warranted, the 

molecular mechanisms that define dopamine-circadian interactions and their consequences 

on our health are still in their infancy.
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Fig. 4.1. 
Overview of dopamine-related activity in the reward system. Dopamine levels peak in the 

active phase when tyrosine hydroxylase (TH) levels are high while monoamine oxidase 

A (MAOA) levels are low and dopamine transporter (DAT) activity is decreased. This 

corresponds to core clock gene expression in the striatum, which regulates the expression of 

these dopamine metabolism-related gene expressions
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Fig. 4.2. 
A schematic representation of the brain's reward system in relation to circadian rhythms. 

Diurnal rhythms of the mesolimbic dopamine system and suprachiasmatic nucleus directly 

influence the activity of these brain regions. Rhythmic dopamine levels influence the 

activity of the mesolimbic dopamine system and suprachiasmatic nucleus. The activation of 

dopamine receptors in these brain regions alters core clock gene expression. The expression 

of core clock gene affects rewarding behaviors including food consumption, drug use, sexual 

activity, and social interactions, which activate the mesolimbic dopamine system
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