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To predict grape maturity in solar greenhouses, a plant phenotype-monitoring platform (Phenofix, France) was used to obtain
RGB images of grapes from expansion to maturity. Horizontal and longitudinal diameters, compactness, soluble solid content
(SSC), titratable acid content, and the SSC/acid of grapes were measured and evaluated. The color values (R, G, B, H, S, and I)
of the grape skin were determined and subjected to a back-propagation neural network algorithm (BPNN) to predict grape
maturity. The results showed that the physical and chemical properties (PCP) of the three varieties of grapes changed
significantly during the berry expansion stage and the color-changing maturity stage. According to the normalized rate of
change of the PCP indicators, the ripening process of the three varieties of grapes could be divided into two stages: an
immature stage (maturity coefficient Mc < 0.7) and a mature stage (after which color changes occurred) (0.7 < Mc < 1). When
predicting grape maturity based on the R, G, B, H, I, and S color values, the R, G,and [ as well as G, H, and I performed well for
Drunk Incense, Muscat Hamburg, and Xiang Yue grape maturity prediction. The GPI ranked in the top three (up to 0.87)
when the above indicators were used in combination with BPNN to predict the grape Mc by single-factor and combined-factor
analysis. The results showed that the prediction accuracy (RG and HI) of the two-factor combination was better for Drunk
Incense, Muscat Hamburg, and Xiang Yue grapes (with recognition accuracies of 79.3%, 78.2%, and 79.4%, respectively), and
all of the predictive values were higher than those of the single-factor predictions. Using a confusion matrix to compare the
accuracy of the Mc’s predictive ability under the two-factor combination method, the prediction accuracies were in the
following order: Xiang Yue (88%)>Muscat Hamburg (81.3%) > Drunk Incense (76%). The results of this study provide an
effective way to predict the ripeness of grapes in the greenhouse.

1. Introduction

In the process of crop growth, it is very important for crop
managers to obtain information on fruit maturity time and
yield [1]. Traditional crop characteristic determination and
yield measurements are carried out by destructive sampling
in the field, which is time-consuming, laborious, and prone
to large amounts of human error [2]. Therefore, it is neces-
sary to explore a fast, accurate, and nondestructive method
of maturity prediction [3]. In recent years, with the develop-
ment of artificial intelligence, the development of green-
house intelligence has increased, and an increasing number
of greenhouses include dynamic monitoring that allows the
determination of main environmental factors [4], growth
factors [5], and phenotypic parameters [6] throughout the
whole life cycle of greenhouse crops and the accurate deter-

mination of greenhouse crop biomass, quality, and other
information; this in turn enables the determination of the
growth dynamics of greenhouse crops, on which basis accu-
rate regulatory and growth process controls can be imple-
mented. Therefore, it is of great significance to improve the
management of greenhouse crops and the quality and effi-
ciency of the greenhouse production industry [7].

In recent years, with the support of imaging technology
and machine vision technology, crop maturity prediction
has gradually become a popular research topic [8-10]. Previ-
ous studies have used image technology to predict crop
maturity, mainly via spectral information prediction [11],
electronic noses, and electronic tongues [12] combined with
partial least squares regression analysis and via color eigen-
values combined with back-propagation neural networks
[13]. The BP neural network is considered a highly accurate
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model when the internal mechanism and relation are uncer-
tain [14]. Among these methods, back-propagation neural
networks (BPNNs) are multilayer neural networks that can
be trained according to the error back-propagation, and
these networks are the most widely used neural networks
[15]. The use of BPNNs can improve the accuracy of predic-
tion by considering the interaction between input and out-
put, which makes them more effective evaluation models
than traditional discriminant analysis and multivariate logis-
tic regression area [16]. The majority of previous related
studies used BPNNs for functional approximation, regres-
sion analysis, numerical prediction, classification, and data
processing [17-19].

The computer vision technology was used to calculate
color values of tomato fruits. To distinguish the ripeness of
tomatoes, the correct recognition rate reached 90.8% [20].
Xiong et al. [21] studied the visual quality of immature,
mature, and rotten litchi fruits after maturity. The color
range of the Cr component in the YCbCr color space was
used to determine the ripeness of the fruit, and the recogni-
tion accuracy reached 91%. The color rate of navel oranges
was studied and established an artificial neural network
model by taking the mean value and mean square error of
the H, S, R, G, and B color components as color parameters
[22]. The grading consistency rates of this model and the
artificial standard were 90% and 92%, respectively. Image
technology and machine vision technology can be used to
predict crop maturity [23, 24]. Previous methods such as
the use of color eigenvalues combined with artificial neural
networks and partial least squares regression models have
mainly been used. Researchers have mainly focused on field
crop species, greenhouse fruits and vegetables, and other
crop species. However, research on greenhouse fruit is less
prevalent; research on greenhouse grape maturity prediction
is especially relatively scarce.

There have been few systematic studies on grape matu-
rity, especially on the relationship between grape skin color
and grape ripeness in different ripening periods under the
condition of solar greenhouse; on the other hand, the color
eigenvalue parameters and their combination are different
from the prediction methods in the previous research; there
is no uniform and referable method to predict the maturity
of grape. Therefore, this study was aimed at monitoring
the growth of grapes during the growth period via a plant
phenotype-monitoring platform; based on the back-
propagation neural network, the first three factors of grape
skin color characteristic value (R, G, B, H, I, and S) are com-
bined with each other to predict the grape maturity in green-
house, in order to provide reference for biomass monitoring,
fruit picking, and greenhouse management in solar
greenhouse.

2. Materials and Method

2.1. Study Site. This study area was a research greenhouse of
Shenyang Agricultural University (41°49'N, 123°34'E, alti-
tude 43 m above sea level), Liaoning, China. The greenhouse
is a Liaoning Solar Greenhouse [25]. The study area has a
temperate continental monsoon climate, with an annual
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sunshine duration of 2530 h and an annual average temper-
ature of 8°C. The greenhouse faces south, with a length of
60 m, a width of 8 m, and a ridge height of 4m. The green-
house is covered with PO film to prevent rain and to provide
thermal insulation. The tested soil was a clay loam, with a
bulk soil compactness of 1.44g/cm’ from a depth of 0 to
60 cm, a field water holding capacity of 22.3% (mass mois-
ture content), and a wilting point of 9.0% (mass moisture
content). During the study period, the greenhouse was not
affected by severe climate disasters or pests.

2.2. Image Acquisition and Sample Collection. The grape
varieties tested were Drunk Incense, Muscat Hamburg, and
Xiang Yue. Both Drunk Incense and Xiang Yue were planted
in March 2015, with a plant spacing of 0.5 m and a row spac-
ing of 2.5m, and Muscat Hamburg was planted in March
2016. Other greenhouse management practices were per-
formed in accordance with the actual production practices
of local greenhouse-produced grapes. In this study, the key
growth periods, such as the swelling period and the color
maturity period, of various grape varieties were selected for
measurement. Ten clusters of grapes with uniform growth
were selected for each variety, and a 20 cm x 40 cm white-
board was used as a reference object on which the grapes
were placed such that the same plane was used as the back-
ground of the grapes when the images were taken. The plant
phenotype-monitoring platform (Phenofix, France) was par-
allel to the image in the shooting frame, and the crop name
and shooting area number are inputted into the system soft-
ware before shooting. Starting at 4 weeks after flowering and
continuing to harvest, sampling was conducted twice a week.
After the samples were collected, their physical properties
were measured, and their quality properties were evaluated
after the image analysis process.

2.3. Determination of Physical and Quality Characteristics of
Grapes. The physical traits of the grapes were dynamically
monitored beginning four weeks after flowering. The vertical
and horizontal diameters of the grape berries were measured
with a Vernier caliper, and the measurement frequency was
every 7-10 days. Image] software was used to calculate the
fruit boundary area (i.e., the longitudinal diameterxthe hor-
izontal diameter) and the actual fruit area to calculate the
fruit compactness, that is, the fruit boundary area/the actual
fruit area. After the physical indicators of the sample were
measured, the chemical indicators of the samples were deter-
mined. The digital Abbe refractometer method [26] was
used to determine the soluble solid content, and the
0.1 mol-L™' NaOH titration method [27] was used to deter-
mine the titratable acid content.

2.4. Image Segmentation and Obtaining the Grape Skin Color
Values. Initially, geometric correction of projection transfor-
mation was used to make geometric correction on the image.
And then, the RGB images were segmented using an image
processing method developed in MATLAB software (Ver-
sion R2018a, MathWorks, USA). The images were processed
to identify the region of interest (ROI) and remove back-
ground and objects that are not part of the grape.
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FiGure 1: Flow chart of grape skin color feature value combined with back-propagation neural network (BPNN) for predicting grape

maturity.

Segmentation was performed using Otsu method [28]. The
flow of image preprocessing was shown in Figure 1.

Images of grape were acquired in the RGB color space.
The RGB parameters extracted from the images were red
color space (red), green color space (green), and blue color
space (blue). RGB values are key indicators for determining
the brightness of primary colors. The darker a color is, the
lower the brightness, and the smaller the value. HIS repre-
sents the vividness of the color. Compared with the RGB
color model, this method is more in line with the under-
standing of the human visual system. It is composed of
hue (H), intensity, (I), and saturation (S) values. HIS values
can be derived from the RGB color space, and the conver-
sion formulas are as follows (where “min” represents the
minimum R, G, and B value) [29, 30]:

I:R+G+B) (1)
3
3 min (R, G, B)
S = —_—— N 2
R+G+B @
H =60 * G-B (3)
B (max — min) if (R == max) ’
H=60* B-R (4)
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R-G
H=60 % (5)

(max — min) + 240 if (B ==max)

2.5. Prediction of Grape Maturity Level. The study used a
back-propagation neural network (BPNN) to predict the
maturity level of grape samples. The maturity coefficient
(Mc) of the detection value was defined as 0.1-1 Mc, and
samples for which the Mc ranged from 0.1-1 were selected
for image analysis to determine the color of the grape skin.
A feature value was used to construct a sample set of the
neural network training set (70 samples of different varieties

of grapes were collected), and the goal of the neural network
training set was set to 0.1-1.40. Other grape samples at three
different maturity levels were selected to obtain the values of
the skin color to establish the verification set of the neural
network. The number of neurons in the hidden layer was
determined by using MATLAB 2017a software and on the
basis of the accuracy of the test results. The recognition
function of the neural network was defined as a logarithmic
function [31]:

1
C l+exp (—x)

fx) (6)

2.6. Model Accuracy and Performance Analysis. The coeffi-
cient of determination (R?), root mean square error (RMSE),
consistency index (d) (the value ranged from 0~1; a larger
value indicates a higher degree of consistency between the
measured value and the predicted value), average absolute
error (MAE), and the overall evaluation index (GPI) were
used to evaluate the estimation effect of the grape maturity
prediction model. The model accuracy and performance
were evaluated under the following criteria [32]:
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where X; and X are the actual measured value and the mean
of the measured value, respectively; Y; and Y are the esti-
mated value and the mean of the estimated value, respec-
tively; n is the sample number of the estimated model; O;

is the normalized value of the above mentioned four evalua-
tion indicators (R?, RMSE, d, and MAE) [25]; and (3]- is the
normalized median of the index j of the 6 models. When j is
the MAE and RMSE, « = 1. When j is the R* and d, a = —1.
The higher the GPI is, the better the overall prediction effect.
The prediction effect was presented in the form of ranking.
The higher the ranking is, the better the prediction effect.

3. Results

3.1. Physical and Chemical Properties of Grapes of Different
Varieties. The growth of grape fruit usually begins about
four weeks after flowering. The research started from the
4th week after flowering to monitor the physical and chem-
ical indicators of the grapes. The dynamic changes in the
physical characteristics of the three grape varieties (Drunk
Incense, Muscat Hamburg, and Xiang Yue) in 2018 and
2019 are shown in Figure 2. In 2018, the single-grain weight
of the three grape varieties (Drunk Incense, Muscat Ham-
burg, and Xiang Yue) all showed a slow-fast-slow growth
trend; the growth curve of the single-grain weight of the
three varieties in 2019 was similar to that in 2018, but the
final single-grain weights of Drunk Incense, Muscat Ham-
burg, and Xiang Yue in 2019 reached 14.0g, 8.54¢g, and
11.02 g, respectively, which were 14.38%, 2.41%, and 1.85%
higher, respectively, than those in 2018. The increase in
single-grain weight may be due to the improved greenhouse
production.

The growth of the longitudinal and horizontal diameters
of grapes was similar, and the growth of both diameters was
highly synchronized. In 2018 and 2019, the longitudinal
diameters of Drunk Incense, Muscat Hamburg, and Xiang
Yue reached 28.75 and 31.03mm, 23.69 and 24.59 mm,
and 25.17 and 26.39mm, respectively. The compactness
and fruit diameter of the three grape varieties showed the
opposite trend, showing a trend of rapid decline first
followed by essentially stable growth. The final compactness
of Xiang Yue was the largest and was stable at approximately
1.55 in 2018 and 2019. The compactness of Muscat Ham-
burg and Drunk Incense grapes was approximately 1.45,
with little interannual differences. In general, the relation-
ship between the single-grain weight and horizontal diame-
ter of the three grape varieties was the same, showing a
slow-fast-slow increasing trend. The final single-grain
weight and horizontal and longitudinal diameters were in
the order of Drunk Incense > Xiang Yue > Muscat Hamburg.
The compactness of the three grape varieties showed a grad-
ual decreasing trend, and the final result was as follows:
Xiang Yue > Drunk Incense > Muscat Hamburg. There were
obvious differences in the type, weight, and compactness of
the three kinds of grapes, and these differences were mainly
related to the differences in varieties.

The variation in the chemical properties of the three
varieties of grapes from four weeks after flowering to matu-
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rity is shown in Figure 3. It can be seen from this figure that
during the fruit ripening process, the soluble solid content
and SSC/acid were essentially synchronized, showing a
“slow-fast-slow” change trend, but there were obvious differ-
ences in the values of these two chemical properties of the
three varieties. In the first stage, each chemical property
increased slowly, and the three varieties of grapes differed lit-
tle at this stage; this stage lasted approximately 4 weeks for
all three varieties, and the second stage was the rapid growth
stage. The duration of this stage was the shortest for Drunk
Incense, lasting only 4-5 weeks; this stage was longer for
Muscat Hamburg and Xiang Yue than for Drunk Incense,
which lasted approximately 6 weeks and 7 weeks, respec-
tively, and the duration of the third stage was 3-4 weeks.
In 2018, the final soluble solid content of Drunk Incense,
Muscat Hamburg, and Xiang Yue reached 22.25, 20.75,
and 18.23%, and the SSC/acid reached 71.16, 36.08, and
26.04.

In 2018, the titratable acid content of the three varieties
showed a trend of increasing first and then decreasing. The
titratable acid contents of Drunk Incense, Muscat Hamburg,
and Xiang Yue reached their maximum values at 9 weeks, 11
weeks, and 12 weeks after flowering, respectively, which
were 1.05%, 1.2%, and 1.93%, respectively; afterward, they
showed a downward trend, and the final values were 0.3,
0.57, and 0.7, respectively. The chemical properties of grapes
in 2019 were essentially the same as those in 2018, and the
soluble solids of the three varieties ultimately were 22.45,
21.25, and 18.4%. The final SSC/acid of Drunk Incense,
Muscat Hamburg, and Xiang Yue were 60, 45.21, and
26.67, respectively; the titratable acid contents reached
0.368, 0.47, and 0.69%, respectively; and the final chemical
properties had little interannual differences. The two-year
data showed that the final chemical properties of the three
varieties were consistent. The soluble solids and SSC/acid
showed a gradual increasing trend of “slow-fast-slow,” and
the titratable acid showed a trend of increasing first and then
decreasing.

In general, the two-year data showed that beginning at 4
weeks after flowering to maturity, the horizontal and longi-
tudinal diameter, single-grain weight, soluble solid content,
and SSC/acid of the grapes all showed an increasing trend,
while the compactness was the opposite, showing a decreas-
ing trend. The titratable acid content shows a trend of first
increasing and then decreasing. The three varieties of grapes
exhibited similar changes in physical and chemical proper-
ties, but their change rates and final values were quite differ-
ent. In addition, the horizontal and vertical diameters and
the single-grain weight of the various grape varieties in
2019 were significantly higher than those in 2018, which
may be related to the interannual differences in the green-
house grape planting period and in the greenhouse environ-
ment in 2019.

3.2. Determination of the Grape Maturity Coefficient Based
on the Physical and Chemical Properties of Grapes. The phys-
ical and chemical indicators of the three varieties of grapes
during different weeks after flowering were different in terms
of their rate of change (Figures 2 and 3). As such, the
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FIGURE 2: Changes in the physical characteristics of the three grape varieties at different postflowering weeks (PFW).

indicators in different weeks after flowering were normal-
ized, and each normalized value was then obtained. The rate
of change of the normalized indicators is shown in Figure 4.

The two-year data showed that the change rate of the
normalized indicators of the physical and chemical proper-
ties of Drunk Incense from 6 weeks after flowering to 11
weeks after flowering was relatively steep (Figure 4). After
11 weeks after flowering, the normalized rate of change of
the soluble solid content and SSC/acid of Drunk Incense
decreased significantly, and the normalized rate of change
of the other indicators gradually tended toward zero. For
Muscat Hamburg and Xiang Yue, the normalized rate of
change of each index showed irregularity at 6-14 and 6-17
weeks after flowering, and the rate became more intense.

However, after 14 and 17 weeks, the normalized titratable
acid content and SSC/acid of these two grape varieties also
decreased rapidly and gradually tended toward zero.
According to the above-mentioned physical and chemical
indicator changes at different stages of grape ripening, the
ripening process of the grapes could be divided into two
stages: an immature stage and a mature stage. The first stage
is the immature stage. For the three varieties, the first stage
starts at 4 weeks after flowering and progresses until 12
weeks (Drunk Incense), 14 weeks (Muscat Hamburg), and
17 weeks after flowering (Xiang Yue). During this stage,
the physical and chemical properties of the three varieties
of grapes all changed drastically; the second stage is the fruit
color change and ripening period, and the durations of this
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F1GURE 3: Dynamic changes of quality characteristics such as soluble solid content (SSC), titratable acid content, and SSC/acid at different

postflowering weeks (PFW) of the three grape varieties.

stage for the three varieties were 12-15 weeks after flowering
(Drunk Incense), 14-17 weeks (Muscat Hamburg), and 17-
20 weeks (Xiang Yue). During this stage, the normalized rate
of change of various chemical indicators of grapes decreased
significantly, and the rate of change of other indicators grad-
ually tended toward 0. The Mc was used to quantitatively
describe the ripening process of grapes. When the Mc was
between 0.1 and 0.7, the grapes were immature (the growth
stages of Muscat Hamburg, Drunk Incense, and Xiang Yue
were 4-12 weeks, 4-14 weeks, and 4-17 weeks after flowering,
respectively). When the Mc was between 0.7 and 1, the
grapes gradually matured; 0.7 represents partially mature
grapes, and 1 represents fully mature grapes (the normalized
rate of change of all indicators was less than 0.2). The
dynamic changes in grape maturity coefficients during dif-
ferent weeks postflowering are shown in Figure 5(a). It can
be clearly seen from this figure that the Mc values of Drunk
Incense, Muscat Hamburg, and Xiang Yue grapes showed a
“slow-fast-slow” trend during fruit development and matu-
ration. However, there were obvious differences in the matu-
rity cycle; they reached partial maturity at approximately 12,

14, and 17 weeks after flowering (Mc =0.7), which corre-
sponded to the early, middle, and late stages of the maturity
cycle, respectively. The corresponding relationship between
the Mc values and the fruit images of the three varieties at
the ripening stage is shown in Figure 5(b).

Machine vision technology was used to collect the pixel
data (R, G,and B) of the grape images, and the H,I,and S
color values were calculated according to Formulas (1)-(5).
The changes in the RGB color values and HSI values of the
three grape varieties during the whole growth period are
shown in Figures 6 and 7. Figure 6 shows that during the
development of the grapes, the R pixel values of the epider-
mis of Muscat Hamburg and Xiang Yue grapes differed a lit-
tle, and both show a single peak change. The Muscat
Hamburg peak supersedes the Xiang Yue peak by 160.13,
and the decreasing trend occurs almost simultaneously.
The change in R value of Drunk Incense is different from
that of the previous two varieties, showing a steady increas-
ing trend. Moreover, the change trends of the G values and R
values of the grape epidermis of the Muscat Hamburg and
Xiang Yue varieties are essentially the same—both show a
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single peak change trend. However, the G value of the Drunk
Incense variety of the epidermis increases steadily through-
out the growth process, and the B values of the three varie-
ties of grapes exhibited essentially the same change in the
epidermis, showing a trend of first increasing and then
decreasing. The B values of the Muscat Hamburg and Xiang
Yue grape epidermis are essentially the same, and the B
values are obviously relatively low.

It can be seen from Figure 7 that the H, S, and I values of
the grape skins of the Muscat Hamburg and Xiang Yue vari-
eties are essentially synchronized with the change trend of
the maturity coefficient; these values first decrease and then
increase, gradually decrease, and first increase and then
decrease, respectively. The H, SandI values of the skin of
Drunk Incense grape are opposite the color values of the
other two kinds of grapes; these values first increase and
then decrease, first decrease and then increase, and gradually
increase, respectively. The RGB pixel values and HSI color
values of the three grape varieties vary with maturity coefhi-
cient. However, the overall performance of Muscat Ham-

burg and Xiang Yue is essentially similar. This may cause
some interference in the prediction of grape maturity.
Except for the B value Drunk Incense grapes, the change
trend of the other two varieties is not much different, but
the change trend of other pixel values and color values is
obvious.

3.3. Prediction of the Maturity of Greenhouse-Grown Grapes.
According to the above research, the number of weeks post-
flowering can be used to roughly estimate the ripening status
of grapes. To further accurately determine the ripening sta-
tus of grapes, the color value of the grape skin was used to
predict the maturity of the grapes during the ripening
period. The color feature values (R, G, B, H, S,and I) were
used to predict the maturity of the three grape varieties,
and the predictive effects are shown in Table 1. It can be seen
from the table that the coefficient of determination (R?) of
each color value for the maturity prediction of the three vari-
eties of grapes was between 0.36 and 0.65 (P < 0.05). For
Drunk Incense grape, the R value prediction accuracy was
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the highest: the R* of the prediction model reached 0.65, the
MAE and RMSE were only 0.09 and 0.12, respectively, and
the d value was 0.76. The prediction accuracy of the G and
I models was also good, of which the R*, MAE, and RMSE
of the G model reached 0.63, 0.1, and 0.13, respectively,
which were better than those of the I model; however, the
consistency index (d) of the G model was 0.7, which was
slightly lower than the 0.73 of the I model. The GPI evalua-
tion index was used to comprehensively evaluate the indica-
tors of each prediction model [13]. The three models with
greatest evaluation scores were the R, G, and I models, and
their comprehensive evaluation scores were 0.87, 0.39, and
0.14, respectively. For the Muscat Hamburg G index model,
the R* was the highest, reaching 0.61, but the d of the H
model was 0.73. The GPI comprehensive index revealed that
the three models with the best simulation results were the H,
G, and I models. For Xiang Yue, after the comprehensive
GPI-based evaluation, the three models with the best simu-
lation results were the H, I, and G models. In general,
although the best single-factor prediction models were dif-
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ferent for different varieties of grapes, the R, G, H, and I
models were all single-factor prediction models with predic-
tion effects better than those of two-factor models.

To further improve the accuracy of grape maturity eval-
uation, this study used three single-factor models with
higher prediction accuracy for each variety to construct a
multifactor prediction model. For Drunk Incense, the seven
models were R, G, I, RG, RI, GI and RGI; for Muscat Ham-
burg and Xiang Yue, seven other models (G, I, H, GI, GH,
IH, and GIH) were used to make predictions. For the two-
factor and three-factor models, a back-propagation neural
network was used to predict the whole growth of the three
grape varieties. The number of nodes in the input layer of
the BPNN was consistent with the corresponding number
of features. The transfer function of the layer and the hidden
layer was a tangent S-type function, and the transfer func-
tion of the output layer was a linear function. The recogni-
tion result is shown in Figure 8. It can be seen from the
figure that the use of the two-factor combination model for
different grape varieties improved the prediction accuracy
of grape maturity to varying degrees. Compared with the
accuracy of its the single-factor model (model I), that of
Drunk Incense’s two-factor model increased by approxi-
mately 15.7%. Moreover, compared with that of the three-
factor RGI model, the accuracy the optimal two-factor GI
model was further improved by 1.1%, although the improve-
ment was not large; Muscat Hamburg and Drunk Incense
also showed similar results. The two-factor model had sig-
nificantly improved accuracy compared with that of the
single-factor model, but the optimal two-factor model’s
accuracy was not much different from that of the three-
factor model; moreover, the addition factor significantly
increased the complexity of the model. Therefore, the GI,
HI, and HI models were selected as the best models for judg-
ing the maturity coefficient of Drunk Incense, Muscat Ham-
burg, and Xiang Yue.

Prediction of the grape maturity coeflicient can lead to
improved management of grapes. When the grapes were
in the ripening period (during which the maturity coeffi-
cient was between 0.7 and 1), the grapes gradually
matured, and the difference in physical indicators was
small. Accurate determination was crucial for accurately
determining the prime time for grape picking. Based on
a BPNN, a two-factor model with relatively high predic-
tion accuracy was used to predict the maturity coefficient
of grapes during the color-changing ripening period. The
corresponding relationships between the maturity image
of each grape variety and the maturity coefficient are
shown in Figure 3(b).

The three varieties of grapes were judged at the ripening
period. As shown in Table 2, in the ripening period, when
the optimal model was used, the accuracy of judging the rip-
ening period of the three varieties was between 76.0% and
88.0%. Among them, the judgment accuracy of Xiang Yue
was the best, with an accuracy rate of 88.0%. The overesti-
mation rate and the underestimation rate were only 6.7%
and 5.3%, respectively, followed by Muscat Hamburg and
Drunk Incense, which had the lowest overestimation rate,
and the accuracy rate of discrimination was 76.0%.
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Using the confusion matrix, the maturity of the three
grape varieties (Drunk Incense, Muscat Hamburg, and
Xiang Yue) was judged separately (when the Mc was 0.7,
0.8, 0.9, and 1, the sampling number was divided into 25,
25, 15, and 10, respectively; the total sampling number of
each variety was 75 bunches of grapes). Figure 9 shows that
the RG and HI combination method was used to judge the
maturity of the three varieties (Muscat Hamburg, Drunk
Incense, and Xiang Yue). When the maturity of the three
varieties was 1, the accuracy of Xiang Yue’s predictive ability
was the highest. The accuracy rate of Muscat Hamburg was
90.0%, followed by that of Muscat Hamburg, which was
80.0%. Drunk Incense had the lowest accuracy rate of
70.0%. When the maturity coefficient was 0.9, the accuracy
rates of the three grape varieties (Muscat Hamburg, Drunk
Incense, and Xiang Yue) were 80.0%, 66.7%, and 86.7%,
respectively. Xiang Yue’s prediction accuracy was the high-
est, Muscat Hamburg’s was the second highest, and Drunk
Incense’s was the lowest, at only 66.7%. When Drunk
Incense grapes were mature (Mc of 0.9), the prediction error

with this method was relatively large, and the judgment was
underestimated 33.3%. The prediction accuracy of the three
varieties (Muscat Hamburg, Drunk Incense, and Xiang Yue)
was also relatively high, reaching 80.0%, 84.0%, and 88.0%,
respectively, at an Mc value of 0.7 and 84.0% and 76.0%
and 88.0%, respectively, at an Mc values 0.8. The prediction
accuracy for the three varieties was in the following order:
Xiang Yue > Muscat Hamburg > Drunk Incense. In addition,
at different maturity levels, the model had different predic-
tion accuracies for the three varieties. Muscat Hamburg
had the highest prediction accuracy when it was mature
(84.0%), and Drunk Incense had the highest prediction
accuracy when its Mc value was 0.7 (84.0%). The accuracy
of judging Xiang Yue grapes was the highest (90.0%) when
its Mc value was 0.9. In addition, Figure 9 also shows that
when the grapes presented an Mc value of 0.9 or were fully
mature, the different methods underestimated the maturity
of the grapes by a certain percentage. At an Mc of 0.8, over-
estimation and underestimation were likely to occur, espe-
cially for Muscat Hamburg and Drunk Incense. At an Mc
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Ficurg 7: Changes in H, S, and I values during the growth and development of the three grape varieties.

of 0.8, the proportions of overestimation and underestima-
tion reached 12.0% and 4.0% and 16.0% and 8.0%, respec-
tively. To reduce the damage to the grapes, the number of
grape spikes sampled at each maturity level of the same vari-
ety was different, so this study did not compare the predic-
tion accuracy of the same variety under different maturity
levels.

4. Discussion

The prediction accuracy (R?) values of Drunk Incense, Mus-
cat Hamburg, and Xiang Yue using the H value were 0.56,
0.58, and 0.59, respectively. These prediction accuracies were
not good, and they were lower than those of recent studies
that used the H value to predict tomato maturity (R* up to
99.3%) [31]. This may be due to the difference in the color
values of H in different pericarps. The color of tomato skin
changed from green to orange and then to red, and the value
of H tended to steadily decrease, changing obviously during
the whole growth period. Grape skins, on the other hand,
changed from green to purple, pink, or a yellowish color.

The H value of the epidermis of Muscat Hamburg and Xiang
Yue grapes tended to steadily increase during the color-
changing maturity period (Figure 7), and the change was
obvious throughout the whole growth period, so the predic-
tion accuracy was relatively high. However, the RH value of
the Drunk Incense grape variety during the whole growth
period increased first and then decreased; the variation trend
was not obvious, so the prediction accuracy was the lowest.
The color changes of the grape skins were similar to results
in a previous study [30]. In addition, the results when the
G value was used to determine the maturity of the three
grape varieties were all less than 0.63, and these results were
similar to those of a previous study [33]. In the RGB color
space, the R, G,andB values are highly correlated, and
RGB pixel values are easily affected by light conditions in
an open environment [34]; therefore, it is difficult to predict
grape maturity when RGB color feature values are used.
However, unlike us, Pereira et al. [28] used the normalized
average value of the RGB color space to predict the maturity
of papaya; the effect was better, and the accuracy rate was
78.1%. The color of the papaya skin changes mainly from
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TaBLE 1: Predictive effect of the three varieties of grape maturity.
. e Color feature value
Variety Statistical indicators R G B H S I
R? 0.65 0.63 0.41 0.56 0.37 0.61
MAE 0.09 0.1 0.11 0.12 0.18 0.12
. RMSE 0.12 0.13 0.24 0.14 0.26 0.13
Drunk incense
d 0.76 0.7 0.67 0.72 0.62 0.73
GPI 0.87 0.39 -2.448 -0.216 -3.03 0.142
GPI rank 1 2 5 4 6 3
R 0.36 0.61 0.48 0.58 0.41 0.58
MAE 0.24 0.1 0.14 0.16 0.17 0.11
RMSE 0.29 0.12 0.13 0.13 0.25 0.16
Muscat Hamburg
d 0.53 0.75 0.68 0.73 0.59 0.71
GPI -2.915 0.855 -0.653 1.085 -1.707 0.653
GPI rank 6 2 4 1 5 3
R 0.38 0.6 0.42 0.59 0.46 0.57
MAE 0.23 0.08 0.1 0.09 0.16 0.13
. RMSE 0.27 0.11 0.23 0.12 0.11 0.12
Xiang Yue
d 0.51 0.61 0.54 0.6 0.54 0.59
GPI -2.683 0.785 -1.484 1.317 -0.776 1.042
GPI rank 6 3 5 1 4 2
90 90 90 _
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FIGURE 8: Recognition accuracy of different color feature value combinations based on BPNN.

TaBLE 2: Comparison of the prediction accuracy of the maturity coefficients of the three varieties of grapes during the color transition

period.
. Prediction Total Correct Numl?er of Numbgr of Accuracy Overestimation Underestimation
Variety number of number of overestimated underestimated
model rate rate rate
samples samples  number of samples samples
Muscat RG 75 61 7 6 81.3% 9.3% 8%
Hamburg
Drunk HI 75 57 8 10 76% 10.7% 13.3%
incense
Xiang HI 75 66 5 4 88% 6.7% 5.3%

Yue
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green to yellow, and the color change is relatively simple,
which may be the main reason explaining their results.

In this study, Drunk Incense’s two-factor model (RG
model) improved the prediction accuracy by approximately
15.7% compared to that of the single-factor model (I model).
When using the HI model to predict the maturity coefficient
of Muscat Hamburg and Xiang Yue, this model was better
than single-factor model (I model), and the prediction accu-
racy increased by 13.5% and 13.9%, respectively. However,
when the three-factor RGI and GHI models were used to
predict the maturity coefficients of Drunk Incense, Muscat
Hamburg, and Xiang Yue, the maturity coefficients
increased by 1.1%, 1.2%, and 1.4%, respectively, compared
with the highest accuracies achieved with the two-factor
RG and HI models. The two-factor models could predict
the maturity of different grapes, and the prediction accuracy
was significantly higher than that of the single-factor
models. However, the accuracy of the three-factor models
was not significantly improved. These findings were similar
to those of the previous studies that used machine learning
models and digital images to predict fresh spinach stages
[35]. The results of the present study showed that the more
combination factors there were, the lower the accuracy of
the model and the overall prediction effect. The reason can
be explained by probability theory; in the same random sam-
pling method, the fewer the number of factors, the easier it is
for accuracy to increase.

In addition, previous studies have also pointed out that
using an image segmentation algorithm based on a BPNN
to classify mangoes was more accurate than existing
methods [36]. Based on the BPNN model, using the com-
bined information of two color channels to predict the solu-
ble solids of apples was better than using a single-channel
model, which was consistent with the research results in this
paper [37]. From the analysis of the confusion matrix of
grape maturity judgment, it can be concluded that the accu-
racy of the two-factor combination method for the judgment
of grape maturity was the best; specifically, the ability of this
model was best for Xiang Yue, followed by Muscat Hamburg
and then Drunk Incense (Figure 9). The reason for these
results may be due to the different trends and degrees of
change of the three varieties during the color conversion
and maturity periods. For Drunk Incense, the skin color of
grapes on the same bunch is relatively similar throughout

the growth process, and the judgment error mainly occurs
between Mc values of 0.8 and 0.9 [38]. For example, Ponce
et al. [39] also found that due to the different cherry fruit
varieties, differences in the accumulation of anthocyanins
during the fruit development process led to potential differ-
ences in fruit evolution, similar to the results of our study.

5. Conclusion

The two-year data showed that the fruit development pro-
cess of Drunk Incense, Muscat Hamburg, and Xiang Yue
grapes showed a “fast-slow-fast” change trend from 4 weeks
after flowering to maturity. According to the comparative
analysis of the normalized rate of change of the physical
and chemical indicators of the three varieties, the maturity
coefficient (Mc) of the three varieties was determined, the
relationship between the maturity coefficient and the post-
flowering cycle was determined, and Drunk Incense and
Muscat Hamburg were clarified. The demarcation points of
the immature and color-changing ripening periods of Drunk
Incense, Muscat Hamburg, and Xiang Yue grapes were 14,
15, and 17 weeks after flowering (Mc =0.7). Through the
determination ~ of  grape  skin  color  values
(R, G, B, H, S, and I), it was found that there was little differ-
ence between the R, G,andB and H,I,andS changes of
Muscat Hamburg and Xiang Yue, but the difference between
these for Drunk Incense was obvious. Using the above single
factors to construct a grape maturity prediction model, the
best prediction indicators of the different varieties were
inconsistent, but the R, G, H, and I models were all single-
factor prediction models with better prediction effects than
those of the other models. Using two factors can significantly
improve the prediction accuracy of the models, but the accu-
racy of the three-factor models did not significantly improve.
The best two-factor prediction models for Muscat Hamburg,
Drunk Incense, and Xiang Yue were the HI, RG, and HI
models, respectively, with prediction accuracies of 77.0%,
78.2%, and 78.0%, respectively. Using a better two-factor
model to compare the prediction accuracy of Muscat Ham-
burg, Drunk Incense, and Xiang Yue’s color conversion
maturity period, the prediction accuracy of Xiang Yue was
the highest (88.0%), followed by Muscat Hamburg; the accu-
racy of Drunk Incense was the lowest (only 76.0%). In addi-
tion, there were also differences in the prediction accuracy of
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different grape varieties at each maturity level. Muscat Ham-
burg, Drunk Incense, and Xiang Yue had the highest predic-
tion accuracies at Mc values of 0.7, 0.8, and 0.9, respectively,
and the accuracy of judgment reached 84.0%, 84.0%, and
90.0%, respectively.
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