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Abstract
Current cancer therapies are often associated with treatment failure and reduced patients’ survival due to drug 

resistance. There are various mechanisms involved in the acquisition of cancer drug resistance, including the selection 

of advantageous mutations, overexpression of transporter proteins and epigenetic alterations. In this context, epigenetic 

alterations refer to chromatin-mediated regulation of gene expression that results in heritable changes in the cellular 

phenotype. There is an ever-growing body of evidence suggesting that epigenetic mechanisms play an important role in 

bringing about drug resistance in cancer cells. While the relationship between chemotherapy and epigenetics has been 

widely discussed, emerging evidence indicates that specific epigenetic effectors are also crucial for the development of 

resistance to tyrosine kinase inhibitors (TKIs). One particular gene that encodes the histone lysine demethylase KDM5A 

is overexpressed in several cancers. In breast cancer tissues, cells with KDM5A  gene amplification were found to be 

more resistant to erlotinib, an inhibitor of the tyrosine kinase epidermal growth factor receptor (EGFR), when compared 

to cells without the same amplification. KDM5A was also shown to mediate resistance to a second EGFR inhibitor called 

gefitinib, in EGFR-mutant lung cancer cell lines. This evidence indicates that KDM5A could activate alternative survival 

pathways involved in overcoming EGFR inhibition. In line with these results, another histone demethylase (i.e., KDM1A) 

promotes liver cancer cells’ resistance to the TKI sorafenib. Current evidence provides a suitable rationale to consider the 

use of specific KDMs inhibitors to sensitize cells to tyrosine kinase targeted therapies and thus, presents an opportunity 

to prevent the further development of drug resistance. This review discusses the involvement of histone lysine 

demethylases in the development of resistance to TKI and highlights the importance to develop new cancer treatment 

regimens to counteract this phenomenon.
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INTRODUCTION
The introduction of targeted therapies against cancer-specific molecules and signaling pathways led to 
significant improvements in the quality of medical care for cancer, wider therapeutic indices and more 
limited non-specific toxicities, when compared to earlier forms of cancer therapies[1]. Tyrosine kinases 
(TKs) are particularly important targets because they play a key role in the modulation of growth factor 
signaling, therefore influencing many downstream pathways[2]. In recent years, numerous tyrosine 
kinase inhibitors (TKIs) have been developed as highly effective anti-tumor and anti-leukemic agents[3,4]. 
Unfortunately, intrinsic TKI resistance[5-7] and acquired therapeutic resistance[8-10] to TKIs often develops 
along the course of therapy, reducing TKIs clinical efficacy and hampering effective treatment of cancer. 

There are many molecular mechanisms that are involved in the acquisition of resistance to TKIs, such as 
mutation of drug targets, changes in drug metabolism and the over-expression of cancer drug resistance 
transporter proteins that result in increased rates of drug efflux[11]. Apart from this, tumors are highly 
adaptable to the biological microenvironment and changes in the activation and inactivation patterns of 
survival signaling pathways can also result in the emergence of drug resistance[12,13]. Epigenetic mechanisms 
have been found to play an important role in generating drug resistance in cancer cells[14,15]. In this context, 
epigenetic alterations refer to chromatin-mediated regulation of gene expression that results in heritable 
changes in the cellular phenotype[16].

In this review we will focus on the role of a specific family of epigenetic effectors (i.e., histone lysine 
demethylases, KDMs) in the context of TKIs resistance.

TYROSINE KINASES AND INHIBITORS: HYSIOLOGICAL FUNCTIONS AND RELEVANCE IN 

CANCER
TKs are enzymes capable of selectively phosphorylating tyrosine residues in different substrates, resulting 
in the activation of numerous proteins involved in the signal transduction cascade[17]. Therefore TKs 
play key roles in mediating biological processes such as cellular differentiation, metabolism, growth and 
apoptosis in response to both external and internal stimuli[18]. For example, FMS Like Tyrosine Kinase 
3 (FLT3) is a class III TK cytokine receptor that is expressed on the surface of immature hematopoietic 
progenitor cells and plays important roles in promoting the survival and correct growth of progenitor cells 
and hence, the control of hematopoiesis[19]. FLT3 mutations can be found in patients suffering from acute 
myeloid leukaemias (AMLs) and B-cell acute lymphoblastic leukaemias (ALLs) and cause uncontrolled 
receptor activation, constitutive FLT3 signalling and as a result, activation of the STAT4, RAS/MAPK and 
PI3K pathways important for cell division, apoptosis and cell formation[20]. 

Due to their wide roles in many signaling pathways, the level of intra-cellular tyrosine kinase phosphorylation 
must be tightly controlled; this is achieved through maintenance of the balance between TKs and their 
antagonists, tyrosine phosphatases. 

Despite being strictly regulated in physiological conditions, TKs may acquire aberrant functions caused 
by various mechanisms including mutations and overexpression of the TK genes, leading to constitutive 
oncogenic TKs activation and development of malignant phenotypes[21]. There are four main mechanisms 
resulting in the constitutive activation of receptor TKs in human cancers: (1) gain-of-function mutations; 
(2) overexpression and genomic amplifications; (3) chromosomal rearrangements; and/or (4) autocrine 
activation[17].

Gain-of-function mutations in TKs lead to abnormal downstream signal transduction and can be 
exemplified by “driver mutations” that result in a selective growth advantage to cells. This is an important 
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aspect of cancer initiation and progression[22]. Overexpression of TKs, as a result of gene amplification, 
in human cancers leads to an increase in the local concentration of the receptor TKs and consequent 
elevation of TK signaling[23]. Chromosomal rearrangements lead to the formation of new TK fusion 
oncoproteins, such as the BCR-ABL fusion protein[24]. Identification of such chromosomal rearrangements 
and the associated fusion oncoprotein can be instrumental to the development of new therapeutics as these 
fusion proteins are often good targets for small molecule inhibitors. Finally, autocrine activation refers to a 
situation where the cells are constantly secreting extra-cellular ligands that bind to receptors on the same 
cells, leading to the activation of specific TK pathways[25]. Autocrine activation of TKs has been identified 
and studied in various types of cancers, including HGF-MET in AML[26] and SCF-KIT autocrine loop in 
small cell lung cancer[27]. 

The effect of constitutively active TKs can be blocked through the use of TKIs, which have been found to 
be effective in the targeted treatment of various malignancies[1]. Imatinib was the first TKI to be developed 
for use against chronic myelogenous leukemia (CML)[14] and was the first TKI successfully introduced 
in clinical oncology[28]. Imatinib targets the BCR-ABL TK that is selectively expressed by CML cells and 
promotes their uncontrolled proliferation. 

Since then, numerous TKIs have been discovered and developed as anti-cancer treatments targeting a vast 
array of cancer types. These inhibitors include gefitinib[29,30] and erlotinib; two oral anti-cancer treatments 
that act as selective inhibitors of the TK domain of the EGFR. These drugs are approved for the treatment 
of lung cancer[22,23] and non-small cell lung cancer and pancreatic cancer[31-33] respectively. Ibrutinib is a 
first-in-class small molecule inhibitor of Bruton’s tyrosine kinase (BTK) and is used to treat B cell cancers 
such as mantle cell lymphoma[34] and Waldenström’s macroglobulinemia[35]. 

Subsequently, the activity of TKIs has been widened by designing molecules that target more than one 
enzyme. For example Sunitinib, an oral, small-molecule, multi-targeted receptor (PDGFR and VEGFR 
families) TKI was the first cancer drug to be approved for two indications, renal cell carcinoma (RCC) and 
imatinib-resistant gastrointestinal stromal tumour[36], at the same time. Most recently, dasatinib, another 
multi-targeted TKI developed to contrast imatinib resistance[37] and enhance TKI tolerability[38] in patients 
with CP-CML, was approved for the treatment of CML and ALL[39,40]. 

Cabozantinib is a newly developed small molecule inhibitor of the tyrosine kinases c-MET and VEGFR2 
that is used to treat medullary thyroid cancer[41] and a first-line treatment for advanced RCC[42], amongst 
other cancer types. Vandetanib is a small molecule TKI that targets key signaling pathways in cancer by 
inhibiting VEGFR-dependent tumour angiogenesis and EGFR- and RET-dependent cell proliferation and 
survival, and is used to treat tumours of the thyroid gland[43,44]. Trametinib is another first-in-class TKI, 
that acts as an allosteric inhibitor of MEK1 and MEK2 and which is approved for treatment of metastatic 
melanoma harboring the BRAF V600 mutation[45]. 

Interestingly, the TKI ruxolitinib was the first small molecule inhibitor of JAK1/2 kinases which was used 
in the treatment of myelofibrosis, applied to the field of myeloproliferative neoplasms[46] and as a result of 
the promising results achieved in clinical trials, approved for the treatment of myelofibrosis by the U.S. 
FDA[47,48]. The most recent receptor tyrosine kinase to be approved is lorlatinib, the first third-generation 
anaplastic lymphoma kinase (ALK) inhibitor approved for the treatment of patients with ALK-positive 
metastatic non-small cell lung cancer[49]. 

It is important to note that while the small molecules mentioned above, are mainly used to target TKs, 
other types of inhibitors such as monoclonal antibodies (mAbs) can also be used to target TKs. At present, 
more than 70 mAbs have been approved by the EMEA and FDA for therapeutic use[50] and the number of 
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approvals is rapidly increasing. The first two tyrosine kinases to be targeted by mAbs were the growth factor 
receptors EGFR and HER2. However, these treatments are currently being challenged by recently emerging 
therapeutics as a result of their associated side effects and the development of resistance.

KDMS AND TKI RESISTANCE
While the relationship between chemotherapy and epigenetics has been widely discussed[51,52], emerging 
evidence indicates that specific epigenetic effectors are also crucial for the development of resistance to 
TKIs in the treatment of cancer. 

Histones post-translational modifications (HPTMs) provide a mechanism for the regulation of gene expression 
that is transmissible from parent to offspring. The globular domain and unstructured C- or N-terminal tails of 
histones are subject to various covalent modifications including acetylation, phosphorylation and methylation 
as well as the additions of large groups such as ubiquitin and ADP-ribose[53].

These HPTMs contribute to the control of gene expression in a context-dependent manner, by influencing 
the compaction of chromatin or through signaling and recruitment of other protein complexes[53]. An 
appropriate balance between the stability and dynamics of HPTMs is required for accurate gene expression. 
Carcinogenesis and tumorigenesis are highly dependent on the dysregulation of normal gene expression 
and thus, HPTMs such as methylation and demethylation, play a critical role in tumour progression[54]. As 
a result, enzymes that catalyse the PTMs (e.g., histone lysine methylases) and their removal (e.g., histone 
lysine demethylases) are actively being pursued as small-molecule targets for the development of new 
oncology therapeutics.  

KDMs are a group of enzymes that catalyze the removal of mono- (me1), di- (me2) and tri-methyl (me3) 
marks on histones lysine residues[55]. In particular, genes encoding for various KDMs have been found to be 
overexpressed in several cancers[56-58]. In addition to this, some KDMs have been found to confer resistance 
to established TKIs [Table 1]. 

Over 20 KDMs enzymes have been identified thus far. 

KDMs can be classified into two broad categories, depending on their catalytic mechanism of action and 
sequence homology: (1) lysine-specific demethylases (LSDs or KDM1 family); (2) Jumonji C-containing 
histone demethylases (JmjC KDMs or KDM2-8 families)[59].

Both categories of KDMs use oxidative mechanisms to catalyze N-methyl-lysine demethylation albeit 
in somewhat different manners. LSDs employ Flavin adenine dinucleotide and electron transfer in their 
mechanism of action. As a result of this, LSDs are unable to demethylate tri-methylated lysine residues on 
histones since the required electron lone pair is only present on mono- and di-methylated histones[59]. The 
second family of JmjC KDMs uses 2-oxoglutarate and O2 as co-substrate, with Fe(II) employed as a cofactor 
for the enzymatic oxygenase reaction[59]. This means that JmjC demethylases can remove mono-, di- and 
tri-methyl marks on lysine residues of histones[59].

The exact biological functions of KDMs are poorly understood. Having said this, there is significant 
evidence to suggest that many of these enzymes play an important role in the early stages of growth, 
development and differentiation of embryonic stem cells[60,61]. This is evidenced by pre-clinical experiments 
demonstrating that knockdown of KDM8 in mice embryos leads to protein 53 (p53) upregulation and 
thus, resulting in active resorption at early stages of development[62]. Strobl-Mazzulla et al.[63] also report 
that KDM4A is required for the expression of neural crest specifier genes in embryonic chicken since 
knockdown of KDM4A in these cells leads to a significant decrease in the expression of the said genes. 
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Apart from being involved in the early stages of embryonic development and differentiation, KDMs have 
been shown to exhibit dysregulated expression patterns in many cancer types[60]. This can have a myriad 
of effects on the cell functions, including transcriptional activation of tumour oncogenes, transcriptional 
repression of tumour suppressors, disruption of chromosomal stability as well as interaction with key 
hormonal receptors that control cellular proliferation[64-66]. The role of KDMs in mediating these pathways 
can also have implications in cancer TKI resistance. Table 1 summarizes the alterations of various KDMs 
and their links to TKI cancer treatment resistance.

Recently, some KDMs such as KDM1A and KDM5A, have been found to be critical epigenetic factors for 
the development of resistance to TKIs such as erlotinib[73], sorafenib[72] and gefitinib[67,74]. The relationship 
between KDMs and this resistance in various tumours is emerging from recent studies and seems to be a 
promising field to pave the way for future potential clinical applications[67,72-76]. Hence, there is a growing 
body of evidence documenting this interaction and the various roles played by KDMs in mediating TKI 
resistance[67,72-76]. 

Hou et al.[73] investigated the role played by KDM5A in breast cancer. The authors reported that breast 
cancer cells with KDM5A gene amplification and hence, with up-regulated KDM5A mRNA and protein levels, 
were found to be more tolerant to the EGF receptor TKI erlotinib when compared to cells without the same 
amplification[62]. Knockdown of KDM5A in these cells led to a significant reduction in the population of drug-
tolerant cells[62]. Of note, KDM5A was found to exhibit an inverse expression relationship with BAK1 (BCL2-
antagonist/killer 1), a protein that acts as a pro-apoptotic regulator. Hou et al.[73] reported that deletion of 
KDM5A in a population of breast cancer cells with amplified KDM5A, resulted in up-regulation of BAK1, 
suggesting that KDM5A regulates the expression of this gene, amongst others.

In addition to this, KDM5A was also shown to mediate resistance to a second EGFR inhibitor, called 
gefitinib, in EGFR-mutant lung cancer cell lines[77]. In order to investigate whether KDM5A was actively 
involved in this phenotype, Gale et al.[74] performed colony formation assays. Through these assays, the 
authors were able to show that fewer cells treated with a KDM5A inhibitor YUKA1, formed colonies during 
long-term treatment with gefitinib when compared to a population of control cells treated with DMSO 
(vehicle) and the same gefitinib long-term treatment[74]. Thus, the authors provided the first evidence that 
the demethylase activity of KDM5A is involved in gefitinib resistance in lung cancer cells[74]. 

Two other KDMs, KDM1A and KDM5B were also found to play key roles in the development of hypoxia-
induced resistance to gefitinib in patients with non-small cell lung cancer (NSCLC)[67], albeit through a 
different mechanism than the one reported by Gale et al.[74]. Lu et al.[67] were able to show that knockdown 
of KDM1A and KDM5B, prevented hypoxia-induced gefitinib resistance and also, inhibited epithelial-
mesenchymal transition (EMT) that is critical for metastasis and drug resistance[67,78]. The results suggested 
that hypoxia is critical for the acquisition of resistance to EGFR TKIs, as a result of epigenetic change and 
mediation of EMT in NSCLC[67]. 

Table 1. KDMs and their links to human cancers tyrosine kinase inhibitor treatment resistance

Enzyme Cancer TKI Ref. KDM inhibitors in clinical trials
KDM1A Non-small cell lung cancer Gefitinib [67] 4SC-202[68]

ORY-1001[69]

Tranylcypromine[70,71]Hepatocellular carcinoma Sorafenib [72]

KDM5A Breast cancer Erlotinib [73]

Lung cancer Gefitinib [74]

KDM5B Non-small cell lung cancer Gefitinib [67]

KDM5C Lewis lung carcinoma, renal cell carcinoma Sunitinib [75]

KDM6A TEL-ABL-positive acute lymphoblastic leukaemia Imatinib [76]

TKI: tyrosine kinase inhibitor
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In line with these results, KDM1A, was found to promote liver cancer cells’ resistance also to the TKI 
sorafenib[72]. In their publication, the authors reported an increased expression of KDM1A in sorafenib-
resistance hepatocellular carcinoma cells. Furthermore, the inhibition of KDM1A using two potent 
KDM1A inhibitors, GSK2879552[79] and pargyline[80,81] was found to re-sensitize the same cells to the effect 
of sorafenib, partly through suppression of the Wnt/b-catenin signalling pathway and through reduction 
of the population of cancer stem cell-like cells[72]. Signalling mediated by the Wnt family of glycoproteins is 
one of the most important mechanisms that direct cell proliferation, polarity and determine cell fate during 
embryonic development and tissue homeostasis[82]. As a result of this, alterations in the Wnt pathway are 
often linked to cancer, amongst other diseases.  

Other KDMs have also been implicated in the development of TKIs resistance, although their roles in 
this context need to be furtherly investigated. KDM5C was found to be a critical epigenetic modulator 
in the development of resistance to sunitinib in two different cancer cell lines of Lewis lung carcinoma 
and RCC[75]. Zimmermannova et al.[76] have also reported the aberration of the KDM6A gene in imatinib-
resistant cell lines of TEL-ABL-positive acute lymphoblastic leukaemia. In contrast with this finding, the 
aberration of this gene did not result in the expression of aberrant KDM6A protein[76], so further research 
is required to fully determine the involvement of this demethylase in the development of TKI resistance in 
this cancer type. 

Taken together this experimental evidence indicates that KDMs play key roles in the development of 
resistance to TKIs in several cancer types. Recent evidence also provides a suitable rationale to consider 
the use of new therapies that can be used to combat this phenomenon and prevent further development 
of cancer drug resistance. One approach could be to consider the use of specific KDM inhibitors to re-
sensitize cells to tyrosine kinase target therapies. The data presented in this article also suggest that 
combination therapies that make use of TKIs and KDM inhibitors could possibly prevent, or reverse, the 
acquisition of resistance through epigenetic modulations and thus, could offer an attractive therapeutic 
strategy for certain cancers. In this context, it will be important to employ genetic and epigenetic 
stratification techniques to select patients that are more likely to benefit from the combination between 
TKIs and KDM inhibitors. 

CONCLUSION
To conclude, targeting KDMs is currently an active area of research in the development of new epigenetic 
drugs. Taking into account that many KDMs have been found to be amplified or overexpressed in a 
wide variety of human cancers and have been shown to play critical roles in mediating TKI resistance, 
these enzymes could be considered to be very attractive targets for the development of new therapeutic 
combinations. 
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