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Abstract
An estimated 30,000 men in the United States will die of metastatic prostate cancer (PCa) each year due to the 
development of therapy resistance, most notably resistance to second-generation antiandrogen enzalutamide. The 
vast majority of PCa is driven by the androgen receptor (AR). Enzalutamide is an AR antagonist, which extends 
patient survival and is widely used in the clinic for the treatment of castration-resistant prostate cancer (CRPC); 
however, many patients will have primary or develop acquired resistance and continue to progress. Characterization 
of the molecular mechanisms of enzalutamide resistance provides insight into potentially efficacious therapies for 
enzalutamide-resistant CRPC (ER-CRPC). Understanding these mechanisms is critical for the identification of 
biomarkers predictive of therapy resistance and the development of therapeutic strategies to target ER-CRPC.

Keywords: Drug resistant cancers, resistance modulation, biomarkers of drug responsiveness, targeted therapy 
resistance 

INTRODUCTION
Nearly 30,000 men in the United States will die of metastatic prostate cancer (PCa) in 2019[1,2]. Despite the 
introduction of seven new Food and Drug Administration-approved therapeutic agents since 2007, metastatic 
PCa is incurable. The mainstay of treatment for metastatic PCa remains androgen deprivation therapy (ADT), 
via pharmacological or surgical castration. The majority of patients will initially respond to ADT; however, a 
significant proportion becomes therapy-resistant and develops castration-resistant prostate cancer (CRPC)[3,4]. 

http://crossmark.crossref.org/dialog/?doi=10.20517/cdr.2019.25&domain=pdf


The androgen receptor (AR) is a steroid hormone nuclear receptor that drives the vast majority of PCa. 
CRPC remains dependent on AR signaling and second-generation antiandrogens, such as the AR antagonist 
enzalutamide or the androgen synthesis inhibitor abiraterone, extend the overall survival of metastatic CRPC 
patients by a median of 4-5 months[5,6]. However, primary or acquired resistance to these agents is common 
with cancer recurrence and progression. Multiple mechanisms of enzalutamide resistance have been defined 
and offer insights into further therapeutic strategies against enzalutamide-resistant CRPC (ER-CRPC)[7-9]. In 
this review, we present a critical evaluation of the defined molecular mechanisms, potential biomarkers, and 
therapeutic options for ER-CRPC.    

AR AMPLIFICATION
For receptor-ligand interactions, the relative concentrations of receptors, agonists, and antagonists in a cell 
can dictate whether antagonists will be efficacious in inhibiting their target. Stoichiometric ratios of AR, 
enzalutamide, and androgens determine whether AR is bound to agonist or antagonist, and whether AR 
signaling is active. Sequencing of CRPC and ER-CRPC patient tumors demonstrates that 70% of patients 
have significant AR pathway alterations, with the vast majority containing AR gene amplifications[10,11]. Thus, 
AR antagonists, like enzalutamide, apalutamide, or darolutamide, may be effectively unable to antagonize 
all AR proteins in this context. Furthermore, since CRPC and ER-CRPC tumors may synthesize their 
own androgens, sustained or enhanced AR signaling is noted, even under castrate-level serum androgen 
conditions[12]. Thus, AR amplification and increased AR signaling are robust mechanisms of resistance to 
first- and second-generation antiandrogens[10,11,13-16].  

AR MUTANTS
AR point mutations that convert first-generation antiandrogens, such as flutamide and bicalutamide, 
from antagonists to agonists have been well-characterized. These mutations are in the ligand binding 
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Figure 1. Model of androgen receptor (AR)-dependent and AR-independent mechanisms that enable a castration-resistant prostate 
cancer (CRPC) to become an enzalutamide resistant-CRPC. EMT: epithelial-mesenchymal transition; GR: glucocorticoid receptor; 1C: 
one-carbon; NEPC: neuroendocrine prostate cancer

AR-dependent

AR-independent



domain (LBD), and include T877A and W741C point mutations, which mediate resistance to flutamide and 
bicalutamide, respectively[13-16]. Similarly, resistance to enzalutamide has been modeled to be driven by an 
AR F876L point mutation. This mutation has been infrequently identified in ER-CRPC samples and confers 
agonistic properties to both enzalutamide and apalutamide[17-19]. Importantly, since these mutations are 
specific for each antiandrogen, other antiandrogens can have activity against AR. For example, CRPC cells 
with T877A and W741C mutations are resistant to flutamide and bicalutamide, respectively, but are sensitive 
to enzalutamide and apalutamide[17]. While AR mutations can confer resistance to enzalutamide, the low 
observed prevalence of this mutation in ER-CRPC patients does not support a significant clinical role for 
this mutation in enzalutamide resistance. 

AR VARIANTS
There are a large number of known AR splice variants (AR-Vs)[20-24]. AR variants primarily appear after the 
selection pressure of castration and more frequently after enzalutamide and abiraterone treatment[20-22,24-31]. 
The most common AR-V is AR-V7 (AR3), which contains exons 1, 2, 3, and a cryptic exon 3b but lacks 
the LBD[21,26,27]. AR-Vs can be constitutively active, and detection of AR-Vs in CRPC correlate with poor 
survival, progression, and therapy resistance[20-22,24-31]. Assays to detect AR-Vs in circulating tumor cells 
are commercially available and predict therapy response to enzalutamide and abiraterone[25]. AR-Vs can 
substitute for the full-length AR (AR-FL) and can bind to canonical androgen responsive elements (AREs) 
on the chromatin, heterodimerize with AR-FL, and drive transcription from AREs[31-34]. AR-Vs have been 
shown to be capable of independently driving transcription, cell proliferation, and DNA repair in CRPC[35]. 
However, AR-Vs are rarely seen without significant amplification of AR-FL, and its activity may be dependent 
on full-length AR[31,32,36]. 

Importantly, the ability of AR-Vs to independently drive ER-CRPC has not been proven. In vitro studies with 
knockdown of variants in CRPC cell lines that express both AR-FL and AR-Vs indicate that AR-V expression 
confers a distinct growth advantage, when treated with antiandrogens[31-34,37]. Treatment with niclosamide 
inhibits AR-V7 recruitment to AR target genes, reduces AR-V7 protein levels in a proteasome-dependent 
manner, and re-sensitizes ER-CRPC cells to enzalutamide[38]. Induction of AR-Vs through NF-κB2/p52 can 
also enhance enzalutamide resistance[39-41]. While these data suggest that AR-Vs can contribute to ER-CRPC 
growth and can mediate resistance to enzalutamide, they do not definitively establish that AR-Vs drive 
resistance to enzalutamide. 

The true contribution of AR-Vs in driving resistance can only be clearly established from drugs that specifically 
target AR-Vs and not AR-FL; however, no such agent has been developed. Since AR-FL and AR-Vs share a 
common N-terminal domain (NTD), compounds designed to target the NTD will target both AR-FL and 
AR-Vs. For example, ESSA Pharma’s EPI-506, which was designed to target the AR NTD, could target both 
AR-Vs and AR-FL, but demonstrated no activity against enzalutamide- and abiraterone-resistant CRPC 
patients in Phase I clinical trials[42]. Ongoing clinical trials with AR degraders will also likely target AR-FL 
and AR-Vs, and are unlikely to establish AR-Vs as independent molecular drivers of ER-CRPC. 

AR CO-REGULATORS
Upon binding androgens and activation, AR alters its protein interactome, translocates to the nucleus, and 
regulates a pro-proliferative transcriptional program. AR interacts with a number of co-activators to enhance 
transcription, like members of the p160 steroid receptor coactivator (SRC) family, histone acetyltransferase 
CBP/p300, and pioneer factor forkhead box A1 (FOXA1), and co-repressors to inhibit transcription, such as 
zinc finger and BTB domain containing 16 (ZBTB16)[43-48]. Modulating the expression of these cofactors can 
enhance or attenuate AR transcriptional activity. For example, alterations in expression of coactivators SRC-1, 
SRC-2, SRC-3, CBP/p300, and FOXA1 and co-repressor ZBTB16 are frequently seen CRPC and ER-CRPC 
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patients and are associated with worse prognosis[10,11,49-53]. Since enzalutamide can modulate the recruitment 
of AR cofactors, altering the expression of co-activators or co-repressors in CPRC can potentially bypass the 
inhibitory effects of enzalutamide and confer resistance[48,54,55]. 

GLUCOCORTICOID RECEPTOR
Like AR, the glucocorticoid receptor (GR) is a steroid hormone nuclear receptor, which binds DNA as a 
homodimer in an inverted repeat fashion[56,57]. Upon binding its ligand, GR transcriptionally activates a 
stress response program, which enhances the expression of anti-inflammatory genes and suppresses 
pro-inflammatory genes[58-60]. Overexpression of GR was noted in ER-CRPC and mediates enzalutamide 
resistance, where it may bypass the need for AR signaling[61]. Primary GR-dependent enzalutamide resistance 
may be observed in a subset of CRPC tumors that have increased basal expression of GR. Acquired GR-
dependent enzalutamide resistance entails a de-repression mechanism, whereby AR normally inhibits GR 
expression, and enzalutamide enables enhanced GR expression by blocking AR signaling[61]. Interestingly, 
chromatin immunoprecipitation-sequencing (ChIP-seq) studies in enzalutamide-resistant cells identified 
GR binding over 50% of AR binding sites on the chromatin, with the strongest AR-regulated genes also 
being regulated by GR[61]. Thus, overexpressed GR functionally substitutes for AR. Therapeutic targeting 
of GR in ER-CRPC has been proposed, with at least two companies, ORIC Pharmaceuticals and Corcept 
Therapeutics, developing GR antagonists. 

EPITHELIAL-MESENCHYMAL TRANSITION
The epithelial-mesenchymal transition (EMT) is a process by which epithelial cells become more mesenchymal, 
a state characterized by increased invasive capacity, apoptotic resistance, and enhanced motility and 
metastatic potential[62-65]. Acute enzalutamide treatment induces EMT through a number of mechanisms, 
including increasing TGF-β1 expression and STAT3 activation, as well as Snail induction[66-68]. Metformin 
blocks enzalutamide-induced EMT and improves PCa sensitivity to enzalutamide[66]. In addition, autocrine 
IL-6 can facilitate CRPC growth and confers enzalutamide resistance mediated by STAT3 activation[38]. 
Furthermore, AR directly represses Snail transcription, and acute enzalutamide treatment enhances Snail 
expression and EMT[67]. Importantly, in models of chronic enzalutamide treatment, enzalutamide resistance 
can be mediated by Snail induction of both AR and AR-V7 expression, leading to increased AR signaling[69,70]. 
Whether in an AR-dependent or -independent manner, programs that enable cell transitions in response to 
selective pressures are important mechanisms of resistance to enzalutamide. 

METABOLIC ALTERATIONS
Most molecular mechanisms identified in ER-CRPC have focused on AR transcriptional regulation and 
maintenance of AR signaling, despite AR inhibition. Evaluations of the downstream programs that confer 
enzalutamide resistance often culminate in metabolic alterations, as the metabolic state governs whether 
cells will resist stress and proliferate.

Intracrine androgen synthesis
Increased androgen synthesis can overwhelm the ability of enzalutamide to block AR signaling[12]. Intracrine 
androgen synthesis has recently been shown to confer enzalutamide resistance through upregulation of 
steroid synthesis genes, such as aldo-keto reductase family 1 member C3 (AKR1C3)[12,30,71-75]. AKR1C3 
catalyzes the conversion of androstenedione and 5 α-androstanedione to testosterone and DHT, respectively, 
and is enriched in acquired and de novo ER-CRPC[12,76,77]. Increased AKR1C3 levels results in upregulated 
intracrine androgen synthesis and confers resistance to enzalutamide[12]. 
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Hypoxia
An AR-independent mechanism of enzalutamide resistance involves hypoxia and the metabolic 
consequences of hypoxia-induced programs driven by hypoxia-inducible factor (HIF)[78]. PCa cells that are 
capable of stimulating hypoxia-induced survival programs through the upregulation of hypoxia response 
genes, such as glucose-6-phosphate isomerase (GPI), are clonally selected to become AR-independent and 
resistant to enzalutamide[78]. Under normoxic and normal androgenic conditions, AR enhances glycolysis 
and the pentose phosphate pathway (PPP)[79,80]. Under hypoxic and normal androgenic conditions, the PPP 
is slightly upregulated, AR inhibits GPI, and glycolysis is inhibited. However, under hypoxic and castrate 
conditions, the PPP is inhibited, GPI is upregulated, and glycolysis is stimulated[78]. PCa cells that are thus 
able to redirect glucose away from the PPP and toward glycolysis are able to evade stress and proliferate 
normally[78]. Glycolytic inhibitors, such as 2-deoxyglucose, may be useful in this context; however, toxicity is 
a concern due to lack of selectivity. Selective glycolytic inhibitors in development may be efficacious against 
some forms of ER-CRPC. Of note, GPI is preferentially overexpressed in neuroendocrine prostate cancer 
(NEPC) tumors, attesting to the importance of metabolic rewiring in driving neuroendocrine disease[78]. 

One-carbon metabolism
Increased reliance on serine and one-carbon (1C) metabolism promotes enzalutamide resistance in NEPC[81]. 
In CRPC cells, loss of protein kinase C (PKC) λ/ι allows cells to transition from a luminal, AR-dependent 
phenotype to a basal, AR-independent phenotype through enhanced one-carbon metabolism and resulting 
epigenetic changes[81]. This upregulation in one-carbon metabolism is dependent on mammalian target of 
rapamycin 1 (mTORC1) and cyclic AMP-dependent transcription factor 4 (ATF4) and culminates in an 
increase in S-adenosylmethionine (SAM), which supports epigenetic reprogramming (DNA methylation)
[81]. Enhancer of zeste homolog 2 (EZH2) inhibition has been shown to reverse NEPC to a more AR-
dependent state sensitive to antiandrogens, which demonstrates the potential efficacy of this strategy and 
further indicates the importance of epigenetic changes for the development of NEPC[11,82]. Additionally, DNA 
methylation inhibitors, such as decitabine, may be efficacious in targeting neuroendocrine disease. mTORC1 
inhibitors, such as everolimus, may also show benefits in NEPC patients with a PKCλ/ι deficiency. 

LINEAGE PLASTICITY
Lineage plasticity is a mechanism through which cells can acquire characteristics of a lineage that no longer 
requires a certain drug target[83]. With enzalutamide treatment, cells become AR-independent and therefore 
enzalutamide-resistant. In PCa, lineage plasticity is a state characterized by significant epigenetic changes, 
decreased AR signaling, and an increased expression of neuroendocrine and stem cell markers[82-84].

p53 and retinoblastoma 1 loss
Enzalutamide resistance can develop from loss of tumor suppressors tumor protein p53 (TP53) and 
retinoblastoma 1 (Rb1) and a downstream SRY-box 2 (SOX2)-driven shift[83] .The proposed mechanism involves 
increasing cell plasticity, which confers resistance through lineage switching to an AR-independent, basal-
like cell[83]. Similarly, loss of p53 and Rb1 creates a stem cell-like epigenetic environment due to derepression 
of EZH2 (and SOX2), which allows for adaptation to selective pressures, such as enzalutamide[82]. 

BRN2
Regulators of Sox2, like POU-domain transcription factor BRN2 (POU3F2), drive the emergence of NEPC 
and enzalutamide resistance[84]. BRN2 expression is inhibited by AR, is required for the expression of 
neuroendocrine markers, and expressed in NEPC. Enzalutamide derepresses AR inhibition of BRN2 in 
CRPC and enables BRN2-driven transdifferentiation into enzalutamide-resistant NEPC[84]. Furthermore, 
BRN2 regulates SOX2, and these proteins directly interact at the enhancers of neuronal genes and cooperate 
to drive a neuroendocrine phenotype[84]. Targeting BRN2 remains an attractive option for preventing lineage 
plasticity and the development of AR-independent PCa. 
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N-Myc and EZH2
N-Myc overexpression is found in 5% of primary PCa patients, 20% of CRPC patients, and roughly 40% of 
NEPC patients[85-87]. N-Myc and EZH2 cooperate to drive transdifferentiation into NEPC and enzalutamide 
resistance[86]. N-Myc differentially regulates the DNA damage response in a context-dependent manner. 
Upregulation of N-Myc inhibits ataxia-telangiesctasia mutated (ATM), which allows PCa to become CRPC. 
In CRPC, overexpression of N-Myc with EZH2 blocks ATM inhibition, leading to ATM upregulation[88] 
and the development of enzalutamide-resistant NEPC. Given the dependence of NEPC on epigenetic 
reprogramming and EZH2 in particular, targeting EZH2 may be an effective therapeutic option. While 
some EZH2 inhibitors have failed clinical trials [NCT01897571], other agents, such as Constellation 
Pharmaceuticals’ CPI-1205 and Daiichi-Sankyo’s DS-3201b, may offer hope for selected patients with NEPC 
[NCT03480646, NCT03110354].   

CONCLUSION
Discovering the molecular underpinnings of enzalutamide resistance has led to a greater understanding of 
the factors that drive progression and the heterogeneity that belies ER-CRPC. Ongoing studies will enable 
the identification of biomarkers predictive of therapy resistance and the development of targeted therapies 
to overcome therapeutic resistance. 
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