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Abstract

Estimation of local average treatment effects in randomized trials typically relies upon the 

exclusion restriction assumption in cases where we are unwilling to rule out the possibility 

of unmeasured confounding. Under this assumption, treatment effects are mediated through 

the post-randomization variable being conditioned upon, and directly attributable to neither 

the randomization itself nor its latent descendants. Recently, there has been interest in mobile 

health interventions to provide healthcare support. Mobile health interventions such as the Rapid 

Encouragement/Education and Communications for Health (REACH), designed to support self-

management for adults with type 2 diabetes, often involve both one-way and interactive messages. 

In practice, it is highly likely that any benefit from the intervention is achieved both through 

receipt of the intervention content and through engagement with/response to it. Application of an 

instrumental variable analysis in order to understand the role of engagement with REACH (or a 

similar intervention) requires the traditional exclusion restriction assumption to be relaxed. We 

propose a conceptually intuitive sensitivity analysis procedure for the REACH randomized trial 

that places bounds on local average treatment effects. Simulation studies reveal this approach to 

have desirable finite-sample behavior and to recover local average treatment effects under correct 

specification of sensitivity parameters.
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1. Introduction.

There has been recent interest in studies of mobile (e.g., text message-based) interventions 

designed to improve health outcomes by targeting self-efficacy and self-care behaviors 

such as medication adherence (Greenwood et al., 2017; Marcolino et al., 2018). Rapid 

Encouragement/Education and Communications for Health (REACH), for instance, is a 

text message-delivered intervention designed to support medication adherence for patients 

with type 2 diabetes (Nelson et al., 2018, 2021). The REACH study was a randomized 

trial that sought to evaluate the effects of this intervention on hemoglobin A1c (HbA1c) 

as compared to a control condition. A key feature of the REACH study is that subjects 

in the intervention arm received both one-way text messages providing information and 

encouragement, and interactive (two-way) text messages requesting a response. Though 

subjects in the intervention arm received the same number of messages, there was variation 

in rate of response to interactive text messages across subjects within the intervention 

arm. The extent to which a subject responds to interactive messages serves as an objective 

measure of his or her engagement with the intervention. A natural study goal therefore 

includes determining the effect of the REACH intervention on HbA1c conditional on 

engagement. This goal is in some ways analogous to the goal of estimating local average 

treatment effects in a randomized trial with partial compliance.

The post-randomization nature of engagement obscures our ability to achieve the stated goal 

using standard regression techniques. Further, the almost certain presence of unmeasured 

common causes of engagement and HbA1c violates principles put forth by certain causal 

inference techniques such as inverse probability weighting and standardization (Rosenbaum 

and Rubin, 1983; Robins, 1986; Robins, Hernán and Brumback, 2000; Lunceford and 

Davidian, 2004; Funk et al., 2011). Defining and estimating causal effects in the setting 

of partial compliance has further complications as the number of possible treatment 

conditions is far beyond the number of treatment conditions prescribed by the study 

design. The principal stratification framework, developed by Frangakis and Rubin (2002), 

has been widely applied to estimation of local average treatment effects under treatment 

noncompliance (Greevy et al., 2004; Roy, Hogan and Marcus, 2008; Frangakis, Rubin and 

Zhou, 2002). One such application of this framework laid out a number of conditions under 

which each study subject’s principal stratum can be inferred based on observed data in the 

setting of partial treatment compliance (Jin and Rubin, 2008). Under such conditions, local 

average treatment effects of interest are identifiable. While such assumptions can be justified 

in certain drug trials, the major barrier to uncovering each subject’s principal stratum in the 

context of the REACH study, per the assumptions of Jin and Rubin (2008), is that subjects 

assigned to the control condition do not provide the necessary information to infer how they 

would engage with the REACH intervention had they hypothetically been assigned to it, 

specifically because they are given no intervention with which to engage.

Other applications of the principal stratification framework to settings of treatment 

noncompliance rely on an assumption known as the exclusion restriction (Imbens and 

Angrist, 1994; Angrist and Imbens, 1995; Angrist, Imbens and Rubin, 1996; Roy, Hogan 

and Marcus, 2008), under which it is not necessary to identify each subject’s principal 

stratum to identify causal effects. Stated within the context of the REACH study, the 
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exclusion restriction requires any effect of the intervention on HbA1c to be mediated 

through engagement with the interactive text messages, and to be derived neither directly 

through randomization itself nor mediated through any of its latent descendants. Irrespective 

of a subject’s choice to respond to text message content, receipt of content may motivate 

or cue self-care behavior in a way that cannot be addressed through measured covariates; 

therefore the validity of the exclusion restriction assumption is tenuous at best in the case of 

REACH or other similar interventions.

The fact that subjects assigned to the control condition have a known engagement level of 

zero allows us to index local average treatment effects on the basis of a single variable 

(namely, engagement under assignment to the REACH intervention). In this work, we will 

make use of this simplification to derive and justify conditions suitable for a sensitivity 

analysis procedure under which local average treatment effects can be bounded. The 

importance of considering violations to the exclusion restriction assumption has been 

previously noted; in the setting of discrete principal strata applied to the setting of treatment 

compliance, Angrist, Imbens and Rubin (1996) are able to express the bias of an estimator 

based on instrumental variables in terms of the direct effect of the instrument on the 

outcome and the odds of being a non-complier. Since the focus of our work will involve 

continuous measures of engagement (e.g., proportion of messages receiving a response), we 

will also need to address matters of specifying non-identifiable functional forms that relate 

hypothetical levels of engagement to corresponding local average treatment effects.

The remainder of this manuscript is centered on the development of a sensitivity analysis 

procedure for the REACH study, and is organized as follows. In Section 2, we provide a 

description of our notation and assumptions, and define the local average treatment effects 

of interest in terms of an intuitive sensitivity parameter. In Section 3, we characterize 

the resulting bounds on such effects. In Section 4, we propose estimation and inferential 

procedures, as well as a framework for evaluating treatment effect heterogeneity. In Section 

5, we conduct a simulation study in order to evaluate the finite-sample performance of 

our proposed procedure, and in Section 6, we apply our results to the REACH study. We 

conclude in Section 7 with a discussion of our findings and possible future directions for 

methodological research.

2. Definitions, assumptions, and weak identifiability.

In this section, we provide an outline of our notation, define a class of local average 

treatment effects of interest, and characterize assumptions for our sensitivity analysis 

procedure.

2.1 Notation.

Let i = 1, … ,N index independently sampled study subjects. We let (Zi, Ai, Yi) denote 

each subject’s observed binary randomization group (which serves as the instrument), 

engagement measure, and outcome, respectively. Let N0 and N1 denote the sample sizes 

in each of the respective randomization groups, with N0 + N1 = N. Without loss of 

generality, we assume higher values of Ai to signify higher levels of engagement (with 

Ai = 0 signifying no engagement). Following notation of the potential outcomes framework 
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(Rubin, 1974), let Ai
z = 0 and Ai

z = 1 denote subject i’s potential engagement levels (e.g., text 

message response rate) under randomization to treatments z = 0 and z = 1; similarly, let 

Y i
z = 0 and Y i

z = 1 denote potential outcomes (e.g., HbA1c) under each respective treatment. 

For notational convenience, we will drop the subscript index i when referring to these 

random variables unless such subscripts are necessary to distinguish between subjects. 

Figure 1 depicts a directed acyclic graph (DAG) illustrating the temporal ordering of these 

observed variables. We will let L and U denote measured and unmeasured (respectively) 

common causes of A and Y; note that identifiability of target parameters relies on neither 

L nor U under the assumptions we will put forth, although we will later describe how 

information on observed covariates, L, may improve efficiency in estimation of target 

parameters. The intention-totreat (ITT) effect is defined as ΔITT = E[Y z=1] − E[Y z=0]; 

owing to randomization of Z, this quantity can be identified and is readily expressed as ΔITT 

= E[Y |Z = 1] − E[Y |Z = 0] under assumptions presented in Section 2.3 (to be discussed).

2.2 Engagement-compliance and local average treatment effects.

Although we will ultimately allow A to denote the (continuous) proportion of two-way text 

messages receiving a response in the context of the REACH study, we first consider A to 

be binary (for instance, the indicator of a text message response rate meeting or exceeding 

80%) for simplicity of illustration. Under the principal stratification framework, we may use 

combinations of Az=0 and Az=1 to partition the population into four hypothetical engagement 

classes (Angrist, Imbens and Rubin, 1996; Frangakis and Rubin, 2002). The resulting 

classes are described in Table 1. A subject who would not engage under randomization 

to the control condition (Z = 0), but would engage under randomization to the intervention 

(Z = 1), could be referred to as engagement-compliant. In the setting of the REACH study, 

recall that it is impossible to engage with with the REACH intervention when assigned to 

control. Put another way, Z = 0 ⇒ A = 0 (or, Az=0 = 0), such that neither engagement-defiant 

subjects nor always-engagers need consideration. Jin and Rubin (2008) refer to this as 

the treatment access monotonicity assumption, and it is trivially satisfied in the REACH 

study. We may therefore define principal strata on the basis of Az=1 alone, terming those in 

the population with Az=1 = 1 as engagement-compliant, and those for whom Az=1 = 0 as 

never-engagers. Under our framework, compliance class is latent in the control group and 

observed in the intervention group, as Az=1 is observed in subjects receiving the intervention 

and uniquely characterizes compliance class. This is in contrast with the usual setting of 

compliance, in which latency of Az is not specific to z.

Now, we allow for the possibility that Az=1 is continuous, with 0 ≤ Az=1 ≤ 1. We define the 

following class of local average treatment effects, uniquely indexed by Az=1:

Δ(a) = E Y z = 1 − Y z = 0 ∣ Az = 1 = a .

In plain language, Δ(a) denotes the average causal effect of randomization on the outcome 

of interest among a subpopulation having some specified hypothetical level of engagement, 

a, under treatment z = 1. We refer specifically to Δ(0) as the never-engager causal effect 

(NECE) and Δ(1) as the engagement-compliant causal effect (ECCE).
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2.3. Assumptions.

We invoke the following assumptions in order to formulate bounds on the local average 

treatment effects characterized in Section 2.2.

1. No interference: Ai
z, Y i

z ⫫ Zj.

2. Consistency: A = AZ and Y = Y Z.

3. Positivity: 0 < P(Z = 1) < 1.

4. Ignorability of randomization: Y z ⫫ Z and Az ⫫ Z for each z = 0, 1.

5. Treatment access monotonicity: Az=1 ≥ Az=0 = 0.

6. Treatment-engagement dependence: Z ⫫ A.

In the context of the REACH study, each of these assumptions can be described as 

follows. The assumption of no interference implies that the randomized assignment of one 

individual to REACH or control influences neither the potential text message response rate 

(engagement) nor the potential HbA1c (outcome) of another individual. The assumption 

of consistency implies that the observed level of engagement and the observed HbA1c 

correspond to the potential engagement and potential HbA1c under the randomization 

actually received. In general, these first two assumptions are are often referred to as 

the stable unit treatment value assumption (SUTVA); when considered together, these 

assumptions ensure that the treatments being compared and the resulting potential outcomes 

are well defined; vaccine trials serve as a particularly well known area in which violations 

to SUTVA can pose challenges (Hudgens and Halloran, 2008). Positivity refers to a 

nonzero probability of assignment to each treatment group, and is trivially satisfied under 

randomization. Ignorability of randomization, also known as exchangeability, holds when 

the relationship between randomization group and each of the engagement and HbA1c 

measures is not subject to systematic confounding; this assumption can also be assumed 

under a valid randomization procedure. Importantly, neither measured or unmeasured 

confounding of the relationship between engagement and the outcome is precluded (Figure 

1). Assumptions 1–4 together ensure identifiability of ΔITT.

As discussed in Section 2.2, treatment access monotonicity can reasonably be assumed in 

the context of the REACH study; specifically, engagement under assignment to the control 

condition is zero. The assumption of treatment-engagement dependence is satisfied so long 

as there exists a subject with an engagement level exceeding zero (i.e., responding to at 

least one text message) when assigned to the REACH intervention. Randomization is said to 

serve the role of a stronger instrument when it is more strongly associated with engagement; 

the mean level of engagement among subjects randomized to the treatment group, μA = 

E[Az=1], serves as an identifiable quantity to characterize instrument strength. Specifically, 

μA = 0 implies no variation in A across the population (and renders randomization an invalid 

instrument); if μA = 1, then randomization is a “perfect instrument” such that A and Z are 

perfectly correlated and identically equal.

Notably absent from the list of assumptions we are willing to make in the REACH study is 

that of the exclusion restriction (namely, that Z ⫫ Y |A), under which it would follow that 
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Δ(0) = E[Y z=1 − Y z=0|Az=1 = 0] = 0. Expressed in terms of the DAG of Figure 1, the 

exclusion restriction does not permit a direct arrow from Z into Y. Although a conditional 

exclusion restriction assumption could serve as a possible solution to this challenge if 

sufficiently many variables on the pathway from Z into Y were measured, it is not feasible

—and perhaps not even possible—to evaluate all potential self-care behaviors triggered by 

the text messages prior to outcome measurement in the context of the REACH study. We 

instead seek to allow the possibility that Δ(0) = γΔ(1) for some finite γ. Although γ is not 

identifiable, it will serve as a sensitivity parameter to be varied over a range of possible 

values. Specifying a range for γ will allow us to place bounds on Δ(a) for 0 < a < 1; these 

bounds will be the subject of Section 3.

2.4. Weak identifiability of Δ(a).

To underscore the role of γ, we can express the local average treatment effects of interest as 

Δ(a) = Δ(1)[γ + (1 − γ)h(a)] for 0 ≤ a ≤ 1 under some non-identifiable γ and h(·) with h(0) = 

0 and h(1) = 1. By setting a = 0, it can be seen that γ = Δ(0)/Δ(1) possesses the conceptually 

intuitive interpretation as the ratio of the NECE to the ECCE. This parameterization relaxes 

the “through-the-origin” relationship presumed under the exclusion restriction, under which 

γ = 0. We will prove that Δ(a) can be identified if both γ and h(·) are chosen correctly.

Theorem 2.1.—Under Assumptions 1–6 of Section 2.3, Δ(a) is weakly identifiable in the 

sense that it can be identified under correct specification of γ and h(·).

Proof.—It is most straightforward to first derive an expression for Δ(1). Therefore, note the 

following:

ΔITT = E Y z = 1 − Y z = 0 (by definition)

= EAz = 1, Az = 0 E Y z = 1 − Y z = 0 ∣ Az = 1, Az = 0 (by iterated expectation)

= EAz = 1 E Y z = 1 − Y z = 0 ∣ Az = 1 (by treatment access monotonicity)

= EAz = 1 Δ Az = 1 (by definition)

= EAz = 1 Δ(1) γ + (1 − γ)ℎ Az = 1 (by parameterization)

= Δ(1) γ + (1 − γ)E ℎ Az = 1 (by linearity of expectation).

Together, treatment access monotonicity and treatment-engagement dependence imply that 

μh = E[h(Az=1)] > 0; hence, rearranging the expression allows us to derive a well-defined 

expression for Δ(1) for all γ:

Δ(1) =
ΔITT

γ + (1 − γ)μℎ
.

Now, we may re-express Δ(a) based on its parameterization in terms of Δ(1):

Δ(a) = ΔITT × γ + (1 − γ)ℎ(a)
γ + (1 − γ)μℎ

= ΔITT × cγ; ℎ(a),
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Under Assumptions 1–4 in Section 2.3, ΔITT is identifiable and can be expressed, for 

instance, as E[Y |Z = 1] − E[Y |Z = 0]; similarly, μh is identifiable and can be expressed as 

E[h(A)|Z = 1]. □

2.5. Considerations regarding parameterizations of Δ(a).

While the exclusion restriction has been well described in many applications of traditional 

IV approaches, correct specification of h(·) is a key assumption that merits discussion and 

is therefore a focus if this work. Commonly, this assumption is implicitly expressed through 

dichotomization of a continuous A in order to characterize target parameters based on 

discrete principal strata. In the framework of Section 2.4, this is achieved by defining h(a) = 

1(a > ζ) for some ζ, implying minimal treatment benefit to be derived among all for whom 

Az=1 ≤ ζ, and maximal treatment benefit to be derived among all for whom Az=1 > ζ.

Angrist and Imbens (1995) show that discretization of an A having a continuous 

doseresponse relationship tends to bias estimates of Δ(1) away from the null. At the 

same time, identification of h(·) under continuous A is not possible absent a continuous 

instrument, Z. In such settings, they propose characterizing local average treatment effects 

linearly across values of a continuous post-randomization variable A (in their work, via 

two-stage leastsquares). We will develop theory for general choices of h(·). Due to non-

identifiability of h(·), however, it is still of interest to learn how different the most common 

choices of h(·) compare in this setting; therefore, in our simulation and application, we will 

compare both the linear case, in which h(a) = a is chosen to be the identity function, and the 

dichotomized case in which h(a) = 1(a > ζ). In practice, it is typically defensible to consider 

only monotone choices for h(·), for reasons we will discuss in Section 3.

3. Bounding local average treatment effects.

For ease of discussion, we assume without loss of generality that ΔITT is non-negative. 

Until now, we have placed quite minimal restrictions on the sensitivity parameter, γ and 

the function h(·). In any sensitivity analysis, however, the sensitivity parameter must be 

bounded in order to construct a range of resulting estimates for the target parameter. In the 

context of many mobile health interventions, it is reasonable to assume that γ = 0 is the 

smallest reasonable lower bound in the sense that receiving text messages should not provide 

a harmful effect relative to control among those who choose not to respond to any two-way 

text messages. The particular setting of γ = 0 is essentially equivalent to removing the direct 

arrow from Z into Y from the DAG of Figure 1, and corresponds to the classic instrumental 

variables technique under which the exclusion restriction is assumed true. Further, it is 

reasonable to assume that γ = 1 is the greatest reasonable upper bound in the sense that 

those choosing not to respond to any text messages should not receive greater benefit relative 

to control as compared to those who are fully engaged with the intervention. The particular 

setting of γ = 1 can be interpreted as implying that the ITT effect applies uniformly to the 

target population, irrespective of their level of engagement with the intervention. Along a 

similar line, for a fixed choice of γ between zero and one, it is sensible to consider only 

monotone choices for h(·) such that the intervention’s effect is greater in a subgroup with 

higher levels of engagement as compared to a subgroup with a lower level of engagement.
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Note that although it may be reasonable to tighten the bounds on γ in the context of a 

particular study (e.g., REACH), we focus in this section on the geometry and the underlying 

theory for general choices of γ between 0 and 1. Note that these bounds are heuristic in 

nature, as sensitivity parameter bounds typically are; in Section 7, we will provide a further 

discussion of cases in which alternative bounds for γ may be more appropriate.

From Section 2.4, it follows that Δ(a) possesses a stationary property: Δ(μh) = ΔITT for all γ. 

Under a monotone choice for h(·), Δ(a) achieves global extrema at γ = 0 and γ = 1 for fixed 

values of a; these extrema are further unique if and only if ΔITT ≠ 0. Assuming without loss 

of generality that ΔITT is non-negative, the bounds for Δ(a) can be characterized as follows:

ΔITT × ℎ(a)
μℎ

≤ Δ(a) ≤ ΔITT for a ≤ μℎ
Δ(a) = ΔITT for a = μℎ
ΔITT ≤ Δ(a) ≤ ΔITT × ℎ(a)

μℎ
for a > μℎ .

In the specific case of a = 0, the NECE is bounded by zero (below) and ΔITT (above); when a 
= 1, the ECCE is bounded by ΔITT (below) and the Wald formula (above):

0 ≤ Δ(0) ≤ ΔITT ≤ Δ(1) ≤
ΔITT
μℎ

.

If ΔITT is non-positive, the directionality of each of these inequalities is reversed. These 

treatment effect bounds are illustrated in Figure 2 in the case where h(a) = a.

Also of interest is to understand the behavior of local average treatment effects across γ for 

different instrument strengths (as defined by μh in this case). This behavior is illustrated in 

Figure 3, again considering the case where h(·) is the identity function. Linearity of Δ(a) in 

h(a) for fixed values of γ does not imply general linearity of Δ(a) in γ for fixed values of 

h(a). In fact, the latter condition only holds in the presence of a perfect instrument, which 

occurs if and only if μh = 1. This suggests that under a weak instrument (low engagement), 

a sensitivity analysis of Δ(0) and Δ(1) can be expected to produce greater fluctuations when 

varying values of γ closer to zero as compared to values closer to one; under a stronger 

instrument (higher engagement), sensitivity will be closer to constant across γ.

4. Estimation and inference.

The problem of estimating Δ(a) can be decomposed into the following steps: (1) 

specification of a value for γ, (2) specification of a form for h(·), (3) estimation of ΔITT and 

μh, and (4) plugging in estimates from the previous step into Equation (2) of Section 2.4. We 

must distinguish between the form of h(·) and value of γ that correspond to the unknowable 

data generating mechanism, and the values that are specified by the user. We will let h0(·) 

and γ0 correspond to the true underlying mechanism, and use the notation Δℎ; γ(a) to denote 

an estimator of Δ(a) under the user-specified sensitivity parameter, γ, and transformation, h. 

We will let Δh;γ(a) denote the value for which Δℎ; γ(a) is consistent—which may or may not 
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be equal to Δ(a) = Δh0,γ0(a), depending on correctness of choices for h(·) and γ. A simple 

estimator utilizes the corresponding sample means in the obvious way:

Δℎ; γ(a) = ΔITT × cγ; ℎ(a) = Y Z = 1 − Y Z = 0 × γ + (1 − γ)ℎ(a)
γ + (1 − γ)ℎ(A)Z = 1

.

Owing to maximal efficiency associated with ℎ(A)Z = 1 as an estimator of μh, there is no 

obvious incentive to consider alternative estimators. On the other hand, greater efficiency for 

estimation of ΔITT intuitively corresponds to greater efficiency for estimation of Δh;γ(a). For 

instance, this could be achieved through adjustment for baseline covariates, L, in a linear 

regression model): E[Y |Z = z, L = ℓ] = β0 + β1z + fθ(ℓ), where, fθ(·) denotes a function of 

baseline covariates indexed by θ. Importantly, consistency of β1 for ΔITT does not depend 

upon correct specification of fθ (Tsiatis et al., 2008). Because ΔITT can be estimated in 

multiple ways, we discuss asymptotic theory generally rather than under a specific estimator.

Lemma 4.1.

Under treatment-engagement dependence (Assumption 6 of Section 2.3), cγ; ℎ(a) achieves 

N1-consistency and asymptotic normality for (γ, a) ≠ (0, 0).

Proof.

If the treatment-engagement dependence assumption is violated, then μA follows a 

degenerate distribution with a point mass at zero. In all other cases, this is a straightforward 

application of the Law of Large Numbers, the Lévy Central Limit Theorem, and δ-method 

with gγ;a(μh) = cγ;h(a), and so we do not provide this proof in detail. Letting σℎ
2 denote 

Var N1 μℎ − μℎ , the asymptotic variance associated with N1 cγ; ℎ(a) − cγ; ℎ(a)  is given 

by:

σcγ; ℎ
2 (a) = (1 − γ)2(γ + (1 − γ)ℎ(a))2

γ + (1 − γ)μℎ
4 σℎ

2 .

We do not require asymptotic theory under the condition that γ = a = 0, as Δ0(0) = 0
identically by convention. □

Theorem 4.2.

Under both N-consistency and asymptotic normality of ΔITT , we have that 

N Δγ; ℎ(a) − Δγ; ℎ(a) d N 0, τγ; ℎ
2 (a)  for some τγ; ℎ

2 (a) > 0.

Proof.

Let r denote the randomization fraction r ≡ lim N/N1, and let σITT
2  denote the asymptotic 

variance of N ΔITT − ΔITT . Invoking Slutsky’s theorem, we have that
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N Δγ; ℎ(a) − Δγ; ℎ(a) = N ΔITT × cγ; ℎ(a) − ΔITT × cγ; ℎ(a)
= cγ; ℎ(a) N ΔITT − ΔITT + ΔITT N cγ; ℎ(a) − cγ; ℎ(a)
≈ cγ; ℎ(a) N ΔITT − ΔITT + ΔITT rN1 cγ; ℎ(a) − cγ; ℎ(a) .

For which the variance can be expressed in the following general form:

cγ; ℎ(a) 2σITT
2 + r ΔITT 2σc; ℎ

2 (a) + 2Ncγ; ℎ(a)ΔITTCov cγ; ℎ(a), ΔITT .

□

The covariance term of Theorem 4.2 is estimator-specific. In the appendix, we provide an 

approximation in the special case in which ΔITT = Y Z = 1 − Y Z = 0. For settings in which 

the a specific form for the asymptotic covariance cannot be neither analytically derived in 

closed-form nor approximated, we propose utilizing the nonparametric bootstrap procedure 

to estimate standard errors and forming either symmetric Wald-based or percentile-based 

confidence intervals (Efron and Tibshirani, 1986).

Note the following important corollaries; proofs of the first two are trivial and are hence not 

provided.

Corollary 1.

If the user-specified sensitivity parameter, γ, and transformation h(·) are each 

“chosen correctly” in the sense that γ = γ0 = Δ(0)/Δ(1) and h(·) = h0(·), then 

Δγ; ℎ(a) p Δ(a) ≡ Δγ0; ℎ0(a) for 0 ≤ a ≤ 1.

Corollary 2.

If ΔITT and ΔITT′  are consistent estimators of ΔITT, each having the same asymptotic 

correlation with cγ, ℎ(a), and with σITT
2 < σITT′ 2, then the estimator Δγ; ℎ(a) based on ΔITT

achieves greater asymptotic efficiency as compared to that based on ΔITT′ .

Corollary 3.

For all (γ, a) ≠ (0, 0), (1), τγ; ℎ
2 (a) is decreasing in a, and (2) a Wald test of the null hypothesis 

H0 : Δγ;h(a) = 0 is asymptotically equivalent to a Wald test of the null hypothesis H0 : ΔITT = 

0. That is, for sufficiently large N,

W N
γ; ℎ = N

Δγ; ℎ(a)
τγ; ℎ(a)

2
≈ W N

ITT = N
ΔITT
σITT

2
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Proof.

The first statement is trivial; the second follows by noting that Δγ;h(a) = 0 ⇔ ΔITT = 0 when 

(γ, a) ≠ (0, 0); and then invoking Slutsky’s theorem to note the asymptotic distribution of 

Δγ; ℎ(a) under the null:

N Δγ; ℎ(a) − Δγ; ℎ(a) ≈
H0 cγ; ℎ(a) N ΔITT − ΔITT ,

with asymptotic variance τγ; ℎ
2 (a) ≈ cγ; ℎ

2 (a)σITT
2 . Therefore, Wald-based confidence intervals 

for both ΔITT and Δγ;h(a) will possess the same coverage properties, asymptotically. Note 

that W N
γ; ℎ, W N

ITT
d χ1

2. □

5. Simulation studies.

In this section, we conduct a set of simulation studies in order to evaluate the finite-sample 

performance of the sensitivity analysis procedure. In each simulation scenario considered, 

we use K = 5,000 Monte Carlo iterations. We vary the sample size across two levels (N = 

50 and N = 200); the true value of γ0 = Δ(0)/Δ(1), across five different levels, evenly spaced 

between zero and one (inclusive); and the instrument strength (low, moderate, and high), 

as characterized by mean level of engagement. Treatment randomization was generated as 

Z ~ Bernoulli(0.5). A measured (L) and an unmeasured (U) confounder of engagement 

(A) and the outcome (Y ) were each generated as marginally independent standard normal 

covariates. Engagement under randomization to Z = 1 (i.e., Az=1) was generated as a 

semi-continuous variable with inflation at zero and one as follows:

P Az = 1 = 1 ∣ U = u, L = l = expit α01 + α11u + α21l ,
P Az = 1 = 0 ∣ U = u, L = l, Az = 1 ≠ 1 = expit α00 + α10u + α20l ,
logit Az = 1 N μ = α0 + α1U + α2L, σ2 = σA

2 ; Az = 1 ∉ 0, 1 .

In generating the engagement variable, we fixed certain parameters as follows, setting α01 = 

α00 = −2, α10 = α20 = −1, α11 = α21 = 1, α1 = α2 = 0.8, and σA = 0.2. Instrument strength, 

characterized by μA, is controlled by variations in the parameter α0, which we set as α0 = 

−2.50 for low instrument strength (μA ≈ 0.25), α0 = −0.05 for moderate instrument strength 

(μA ≈ 0.50), and α0 = 2.30 for high instrument strength (μA ≈ 0.75).

The outcome was generated as Y N μ = β0 + β1Z + β2A + β3U + β4L, σ2 = σY
2 . Note that for 

the purposes of these simulations, h(·) is chosen to be the identity function in the data 

generation, although we will consider violations to this in Section 5.3. We fixed β0 = 9, β3 = 

0.2, β4 = 0.3, and σY = 0.8. The true (non-identifiable) value of γ0, is governed by the pair 

(β1, β2), and is specifically given by γ0 = β1/(β2 + β2). We therefore select (β1, β2) under 

five cases in order to vary γ0 between zero and one; the ith case utilizes β1 = (1 − i)/5 and 

β2 = −(4/5+β1) for i = 1, … ,5. Many aspects of this simulation is designed to approximately 

mirror our subsequent application to the REACH study in Section 6.
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5.1. Operating characteristics under correct specification.

Our first goal was to evaluate performance of the methodology under correct specification of 

both γ and h(·) under the data generation mechanism described. For the purposes of these 

simulations, Δ(1) will be the target estimand, and is given by Δ(1) = β1 + β2 = −0.8.

We estimated the ITT effect in two ways: one based on a simple outcome mean difference 

(such that the asymptotic approximation to the variance appearing in the appendix would 

apply), and another based on a linear regression, adjusting linearly for the observed 

covariate, L (such that the bootstrap standard errors would be required). In either case, Δ(1) 

was estimated using the approach described in Section 4 under correct specification of γ and 

h(·), employing B = 500 bootstrap replicates for the regression-based estimation method. We 

extract the average point estimates and Monte Carlo empirical standard errors (ESE), along 

both the average standard error (large-sample theory based approximation for the first case, 

and the bootstrap standard error for the second case), coverage based on symmetric 95% 

Wald-based confidence intervals, and estimated power.

Key results from the first simulation case are summarized in Table 2. When the value of γ 
is correctly specified, the sensitivity analysis approach is able to correctly capture the ECCE, 

with low bias and with standard errors based on the large-sample approximation closely 

reflecting the true repeat-sample variability (as represented by the empirical Monte Carlo 

standard error). The level of bias associated with smaller sample sizes is consistent with 

prior insights regarding bias of the Wald estimator (Buse, 1992). Coverage appears to be 

adequate even in smaller sample sizes. Unsurprisingly, power increases with higher sample 

size, with higher instrument strength, and with larger magnitude of the ITT effect.

Analogous results from the second simulation case are summarized in Table 3. Overall 

patterns are similar to those shown in Table 2; we note the general improvement in 

efficiency associated with including the pre-treatment covariate in the model; further, the 

small-sample bias associated with the weaker instrument strength (μA = 0.25) appears to be 

uniformly reduced as compared to the unadjusted model.

5.2. Incorrect specification of γ.

In this set of simulations, we utilize the same data generating mechanism as described in 

the prior simulations, using the adjusted regression model for estimation of ΔITT as per the 

second case of Section 5.1, but this time varying the user-specified sensitivity parameter, γ. 

Note that the linearity of h(·) is still correctly specified in this case. Figure 4 demonstrates 

the properties of our estimation procedure under various specified levels of γ for the cases of 

both low and high instrument strength. Of note, specifying γ = γ0 results in nearly unbiased 

estimation, as expected (and as demonstrated in Tables 2 and 3). Further, selections of γ that 

are closer to the correct value (γ0) result in less bias than selections of γ that are further 

from γ0. The curvilinear relationship between γ and Δγ(a) for fixed values of a is reflected 

in these figures, and is more pronounced for the lower engagement scenarios. Moreover, the 

figures also reflect the stationary property discussed in Section 3, whereby Δγ(μA) = ΔITT.
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5.3. Incorrect specification of h(·).

In this set of simulations, we again utilize the same data generating mechanism as described 

in prior simulations, using the adjusted regression model for estimation of ΔITT as per the 

second case of Section 5.1, but this time utilizing a step function to model the relationship 

between A and Y (namely, h(a) = 1(a > ζ) for varying values of ζ around the mean level of 

continuous engagement). We depict this result for three choices of γ0 (0.25, 0.50, and 0.75), 

all of which are correctly specified in this simulation; and for both the moderate and high 

instrument strength setup. Figure 5 demonstrates the properties of our estimation procedure 

under varying specified levels of ζ. Focusing on estimation of the ECCE, choosing ζ 
close to the average level of engagement results in comparably lower bias. Further, when 

γ is higher, results of dichotomization are understandably less sensitive to choices of ζ. 

Importantly, this result augments the findings of Angrist and Imbens (1995), in which 

dichotomization tended to bias estimates of Δ(1) away from the null. Here, that seems only 

to be the case when ζ is chosen to be higher than the mean level of engagement; notably, 

however, the levels of bias introduced by lower choices of ζ do not as severely attenuate the 

estimate of Δ(1).

6. Local average treatment effects in the REACH study.

6.1. Description of data.

We now apply our developed approach to the REACH study. The intervention, Z, is 

characterized by randomization to either a control condition (N0 = 106), or to the REACH 

intervention (N1 = 109). Subjects considered for this analysis all had uncontrolled HbA1c at 

baseline, characterized as either meeting or exceeding 8.5%. Subjects in the intervention arm 

received daily text messages over a period of six months including one-way messages that 

provided self-care information and encouragement and two-way messages that asked about 

medication adherence. At the end of each week, subjects in the intervention arm received 

adherence feedback based on his or her responses that week. Subject-specific engagement 

(A) was defined as the proportion of two-way text messages receiving a response.

Measured baseline covariates, L, were as follows: demographic and socioeconomic factors 

included age, gender, race/ethnicity (defined as non-Hispanic White, non-Hispanic Black, 

Hispanic, and other), and years of education. Clinical factors included duration of diabetes 

mellitus, insulin status, and baseline HbA1c. Measures of adherence, self-care, and self-

efficacy included the Perceived Diabetes Self-Management scale (PDSMS-4), the Diabetes 

Adherence to Medications and Refills scale (ARMS-D), the Summary of Diabetes Self-Care 

Activities measure (SDSCA), and the Personal Diabetes Questionnaire (PDQ).

The outcome, Y, is given by HbA1c six-months post randomization; we consider an average 

causal effect of REACH on HbA1c of 0.50% to be clinically meaningful. Subject-specific 

engagement, A, was measured as the proportion of text messages responded to (applicable 

only to subjects assigned to the intervention arm). The engagement values for subjects 

withdrawing prior to the six-month period were considered pragmatically; such subjects 

were considered as having zero-engagement for the remainder of the six-month period 

post-withdrawal.
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6.2. Addressing missing data.

Missingness rates were very low for baseline covariates (three subjects were missing 

information on education, two were missing information on diabetes mellitus duration, one 

was missing their PDSMS-4 score, and three were missing their SDSCA score). Twenty 

subjects (9.3%) were missing values on six-month HbA1c. Data on randomization group, 

age, gender, race/ethnicity, ARMS-D, PDQ, insulin status, response rate, and baseline 

HbA1c were complete.

Missing data were addressed using multiple imputation via chained equations and included 

all variables described thus far in Section 6 (Van Buuren et al., 2006). To formally 

characterize the assumptions made in addressing missing data in this fashion, let RL 

denote the vector of missingness indicators for baseline covariates, and RY the indicator of 

missingness for six-month HbA1c. Further partition the data into the missing and observed 

components: (Lmissing, Ymissing) and (Lobserved, Yobserved). We presume the missing data 

mechanism to be at random, in the sense that (RL, RY) ⫫ (Lmissing, Ymissing)|Lobserved, 

Yobserved, A, Z (Rubin, 1987). We believe this assumption to be reasonable based on the 

breadth of baseline variables collected.

6.3. Description of sensitivity analysis.

The multiple imputation procedure was aggregated with the bootstrap using the pooled-

sample nested approach recommended by Schomaker and Heumann (2018). We report 95% 

confidence intervals based on the 0.025 and 0.975 quantiles of B = 500 nonparametric 

bootstrap replicates and M = 500 multiple-imputation iterations. We estimate the ITT using 

linear regression, adjusting for baseline HbA1c using a natural cubic spline with knots at the 

three inner quartiles (8.90%, 9.70%, and 11.1%), as recommended by Harrell (2001). We 

believe a range of γ spanning between 0.25 and 0.75 is reasonable for the context of the 

REACH study. This range reflects the belief that the total effect of the intervention can be 

explained by a combination of both effects mediated and not mediated by engagement with 

it, and also underscores our uncertainty regarding the relative proportions of each.

We model Δγ(a) in two ways: (1) linearly, with h(a) = a chosen as the identity function, and 

(2) dichotomously, with h(a) = 1(a ≥ 0.80). All analyses were performed using R, version 

4.0.2 (R Core Team, 2020). The analytic data set is available as supplementary material, 

along with all documented code used for analysis (Spieker et al., 2021).

6.4. Results.

Figure 6 presents a histogram of the distribution of engagement across patients in the 

intervention arm. The mean subject-specific text message response rate was 81.4% (SD: 

23.1%). The median response rate was 91.5%, with interquartiles given by 74.0% and 

91.5%. Approximately 11% of subjects had a response rate no higher than 50%. The ITT 

was estimated to be −0.761% (95% CI: [−1.30%, −0.24%]; p = 0.0049).

The results of the sensitivity analysis under different sensitivity parameters are shown in 

Table 4. Of note, the estimates of the NECE are comparable across γ between each of 

the linear and dichotomous parameterizations; for low values of γ, the dichotomization 
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approach produces estimates of the ECCE that are further from the null as compared to the 

linear approach. These results are consistent with the results of the simulation study. If the 

linear parameterization is more closely satisfied, we would expect the estimates produced by 

the dichotomization approach to be biased.

We focus now on interpreting results from the linear parameterization, in which there is an 

embedded range of local average treatment effects for each γ. We display these results in 

Figure 7, specifically emphasizing the choices of a = 0, 0.5, 0.814, and 1. The choice of a 
= 0.814 is designed to illustrate the stationary property described in Section 3. A number 

of insights can be gained based from this analysis. One can fix γ to learn about effects 

among subgroups defined by their engagement level. For instance, if γ = 0.50, engagement 

levels meeting or exceeding 19.2% are associated with treatment effect estimates exceeding 

the clinically meaningful threshold of 0.50%. On the other hand, if γ = 0.75, all levels of 

engagement are associated with treatment effect estimates exceeding that threshold. One can 

further derive insights regarding local average treatment effects on the basis of confidence 

interval endpoints instead of point estimates. For instance, if γ = 0.25, engagement levels 

under 10.8% rule out both a null effect and a clinically meaningful effect.

In addition to characterizing information regarding local average treatment effects at fixed 

levels of γ, one can also search for the values of γ that meet a particular criteria. For 

instance, only for γ > 0.609 does the estimated effect of REACH among never-engagers 

exceed the clinically relevant threshold of 0.5%. This would imply that we estimate REACH 

to be uniformly effective across levels of engagement if we believe that the effect among 

never-engagers is at least 60.9% that of the engagement-compliant.

7. Discussion.

In this paper, we have derived and presented a sensitivity analysis approach to accommodate 

departures from the exclusion restriction when estimating local average treatment effects, 

with specific applications to engagement in mobile health interventions. In this setting, 

the principal stratification framework is simplified by the impossibility of engaging with 

an intervention not received. Hence, local average treatment effects can be characterized 

conditional on a single (partially latent, and possibly transformed) variable. Placing 

reasonable bounds on the sensitivity parameter in turn results in conceptually intuitive 

bounds on the average causal effect.

Our proposed approach is designed to aid insights regarding average causal effects of 

the intervention at various levels of engagement with the intervention, particularly when 

violations to the exclusion restriction assumption cannot be ruled out. We presented 

asymptotic theory that holds for invertible transformations of the post-randomization 

variable; our simulations and application focused on linear and dichotomous treatment of 

engagement, under which our sensitivity procedure appeared to have desirable finite-sample 

properties. Angrist and Imbens (1995) suggest the linear parameterization when further 

information can not be assumed. We acknowledge that there may be settings in which 

alternative continuous parameterizations may be defensible. Further study of different 

transformations and their possible advantages could be of interest for future studies; 
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moreover, continuous randomization to different text message frequencies may allow the 

nature of the transformation to be uncovered using observed data rather than simply assumed 

by the researcher.

Our illustrative example demonstrates various ways that this approach can be used to 

glean insights regarding treatment effect heterogeneity across levels of engagement. As γ 
functions as a sensitivity parameter, bounds must be heuristically justified based on the 

study context. Naturally, the tighter the bounds on γ that can reasonably be considered in 

practice, the more robust and precise the conclusions that can be derived. Consideration of 

γ smaller than zero may be appropriate, for instance, in a study involving a psychological 

outcome, in which receipt of content with which to engage could be relatively harmful on 

a psychological outcome among the subgroup of subjects who would never engage with 

that intervention. In the context of REACH, this is not a concern. For similar interventions 

featuring mostly two-way content, it stands to reason that lower values of γ may be more 

reasonable as compared to interventions comprising mostly one-way content. We note that 

engagement with an intervention is more of an abstract concept than response to two-way 

text messages. For instance, a subject’s true engagement in the abstract sense is partially 

reflected by his or particular level of attention to text messages (length of time read). 

Proportion of text messages receiving a response is one of many possible objective measures 

of engagement, but does not necessarily serve as a perfect surrogate for intrinsic engagement 

in the most abstract sense. The results of a sensitivity analysis are driven in large part by the 

average level of the engagement metric in the study. In the particular case of the REACH 

study, text message response rates tended to be high, such that the ECCE was less sensitive 

to fluctuations in the sensitivity parameter as compared to the NECE. Had the average 

engagement rate been lower, the ECCE would have been more sensitive to fluctuations in γ.

Challenges associated with and methods to address missing data have been described 

in settings of noncompliance (Jo, 2002, 2007). In our unique setting, the identifying 

assumptions allow us to express local average treatment effects as specific multiples 

of ITT effects. Therefore, the challenges associated specifically with partial compliance 

have minimal impact on the approach used to address missing data. Fully conditional 

specification (i.e., multiple imputation by chained equations) is generally regarded as a gold-

standard approach to address missing data in a way that allows us to assume missingness at 

random rather than the stronger assumption of missingness completely at random.

Specific procedures for sensitivity analyses have long been an area of interest in 

methodological causal inference research, many times in the context of violations to 

the assumption of ignorability/no unmeasured confounding (Lin, Psaty and Kronmal, 

1998; Imai, Keele and Yamamoto, 2010; Jo and Vinokur, 2011; Stuart and Jo, 2015; 

Dorie et al., 2016). Prior work has investigated the sensitivity of non-IV based causal 

inference approaches when the exclusion restriction is not satisfied (Millimet and Tchernis, 

2013). Many of the sensitivity analysis procedures developed for departures from the IV 

assumptions are applicable only to the case of four discrete principal strata (e.g, in the 

example of treatment compliance) such as the approach of Angrist, Imbens and Rubin 

(1996) as described in Section 1. Again in the case of four discrete principal strata, Baiocchi, 

Cheng and Small (2014) propose a number of sensitivity analysis procedures for departures 
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to IV assumptions, and Stuart and Jo (2015) demonstrate how the exclusion restriction can 

be replaced with an alternative assumption referred to principal ignorability when predictors 

of stratum membership are thought to be well understood. The corresponding approach 

is analogous to propensity score methods in order to predict subgroup-specific stratum 

membership. Such approaches are best suited for settings in which predictors of principal 

stratum are known and measured, and not when substantive unmeasured confounding is 

suspected as in the case of continuous measures of engagement with an intervention (e.g., 

REACH). Generalizing the methodology of Stuart et al. to the setting in which strata 

are defined by a single continuous post-randomization variable, however, may serve as a 

potential topic of interest for future research.

In terms of other possible implementations of this framework, consider settings in which 

treatment is not randomized. In such a circumstance, it is possible—likely, even—that 

pre-intervention covariates would play a role beyond those described in the context 

of the REACH study. If such covariates are associated with the intervention received, 

the ignorability assumption would need to be updated to reflect possible confounding; 

adjustment for such variables would be necessary to identify local average treatment effects 

rather than simply desirable as a method to gain precision.
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Appendix.

Here, we elaborate on an asymptotic approximation for the variance of N ΔITT − ΔITT  in 

the special case where ΔITT = Y Z = 1 − Y Z = 0. Specifically, the task is to devise a form for 

Cov cγ; ℎ(a), ΔITT . Since the randomization groups (Z = 0 and Z = 1) are independent, this 

reduces as follows:

Cov Y Z = 1 − Y Z = 0, γ + (1 − γ)ℎ(a)
γ + (1 − γ)ℎ(A)Z = 1

= Cov Y Z = 1, γ + (1 − γ)ℎ(a)
γ + (1 − γ)ℎ(A)Z = 1

.

Now, we note the following general approximation to the following covariance based on the 

second-order Taylor expansion about (μX, μY) for general random variables X and Y :

Cov X, Y −1 ≡ E XY −1 − E[X]E Y −1

≈ − Cov(X, Y )
E[Y ]2

.
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Applying second-order approximation, we have that

Cov Y Z = 1, γ + (1 − γ)ℎ(a)
γ + (1 − γ)ℎ(A)Z = 1

≈
Cov Y Z = 1,

γ + (1 − γ)ℎ(A)Z = 1
γ + (1 − γ)ℎ(a)

E
γ + (1 − γ)ℎ(A)Z = 1

γ + (1 − γ)ℎ(a)
2

= (γ + (1 − γ)ℎ(a))Cov Y Z = 1, γ + (1 − γ)ℎ(A)Z = 1
= (1 − γ)(γ + (1 − γ)ℎ(a))Cov Y Z = 1, ℎ(A)Z = 1
= N1

−1(1 − γ)(γ + (1 − γ)ℎ(a))Cov Y1, ℎ A1 .

This expression takes a form that can be readily estimated based on the observed data. In this 

setting, the total asymptotic variance τγ;h(a) can be approximated as:

cγ; ℎ(a) 2σITT
2 + r ΔITT 2σc; ℎ

2 (a) + 2rcγ; ℎ(a)ΔITT(1 − γ)(γ + (1 − γ)ℎ(a))Cov Y1, ℎ A1 .
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Fig 1. 
Directed acyclic graph depicting the temporal ordering and causal pathways between 

measured variables. Note that U (gray), is a collection of unobserved confounders impacting 

engagement and the outcome. Note that the direct path from Z to Y cannot reasonably be 

ruled out in the setting of a mobile health intervention such as REACH, and serves as a 

violation of the exclusion restriction assumption.
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Fig 2. 
Illustration of treatment effect bounds in a simple setting. On the left, we highlight how 

the treatment effect would be characterized across different levels of engagement by a 

traditional IV analysis (γ =0). The presumed NECE, ECCE, and ITT are all shown in this 

case. On the right, we show how the treatment effect is characterized across different levels 

of engagement under various sensitivity parameters. Note at each level of engagement, the 

treatment is bounded by the ITT and a specified multiple thereof (solid lines); also depicted 

are the results for nontrivial values of γ (dotted lines).
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Fig 3. 
Illustration of treatment effect bounds in a simple setting. On the left, we highlight how 

the NECE, Δ(0), varies across the levels of γ for different values of μA, and on the right 

we similarly depict the ECCE, Δ(1). Note that μA characterizes instrument strength; weaker 

instruments are associated with higher curvature.
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Fig 4. 
Simulation study results across different values of γ (possibly misspecified) under γ0 =0 

(left), γ0 =0.50 (center), and γ0 = 1 (right). Plotted are the average point estimates across 

different levels of a for various selections of γ. The upper panels depict the situation in 

which the mean level of engagement is lower; the upper panels depict the situation in which 

the mean level of engagement is higher
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Fig 5. 
Simulation study results under incorrect dichotomization of A, shown for γ0 =0.25 (left), γ0 

=0.50 (center), and γ0 =0.75 (right). Plotted are the average point estimates across different 

levels of a for various selections of γ. The upper panels depict the situation in which the 

mean level of engagement is moderate; the upper panels depict the situation in which the 

mean level of engagement is higher.
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Fig 6. 
Histogram of subject-specific engagement within the REACH intervention group, defined as 

proportion of text messages responded to over the six-month period.
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Fig 7. 
Local average treatment effects and corresponding confidence intervals across levels of Az=1 

= a for three different values of the sensitivity parameter, γ. Also depicted in each plot 

are the estimated NECE and ECCE (dark gray points) and ITT (light gray point), and 

quantile-based bootstrap 95% confidence intervals for local average treatment effects at 

specified levels of a.
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Table 1

Characterization of engagement-compliance classes (principal strata) in the simple setting considering 

engagement as a binary variable. Note that only two such classes are applicable in our particular setting, 

uniquely defined by Az=1.

A z=0 A z=1 Characterization Applicable?

0 0 Never-engager Yes

0 1 Engagement-compliant Yes

1 0 Engagement-defiant No

1 1 Always-engager No
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Table 2

Results of the simulation study under correct selection of γ and h. Each simulation scenario is described by 

μA (instrument strength, given by average level of engagement) and γ0 (extent of departure from exclusion 

restriction); further, results are shown under two different sample sizes (N =50 and N =200). Provided in 

the table for reference is the implied intention-to-treat effect, ΔITT. Depicted are the average point estimates, 

empirical standard error (ESE), the average large-sample-theory (LST) standard error for Δγ(1), the coverage 

probability, and power. Note that in all cases, Δγ (1) = −0.80.

N = 50 N = 200

μ A γ 0 ΔITT Est. ESE SE CP Power Est. ESE SE CP Power

0.25 0.00 −0.20 −0.858 1.223 1.155 0.968 0.063 −0.803 0.513 0.518 0.961 0.342

0.25 0.25 −0.35 −0.819 0.589 0.573 0.944 0.300 −0.803 0.286 0.285 0.946 0.815

0.25 0.50 −0.50 −0.803 0.411 0.390 0.933 0.536 −0.803 0.200 0.197 0.943 0.982

0.25 0.75 −0.65 −0.796 0.316 0.298 0.931 0.745 −0.798 0.154 0.151 0.945 1.000

0.25 1.00 −0.80 −0.806 0.252 0.245 0.939 0.900 −0.802 0.125 0.124 0.944 1.000

0.50 0.00 −0.40 −0.818 0.523 0.506 0.948 0.371 −0.802 0.252 0.249 0.95 0.899

0.50 0.25 −0.50 −0.808 0.397 0.390 0.944 0.545 −0.799 0.199 0.196 0.947 0.983

0.50 0.50 −0.60 −0.802 0.343 0.320 0.931 0.694 −0.801 0.167 0.162 0.943 0.998

0.50 0.75 −0.70 −0.803 0.288 0.275 0.937 0.817 −0.798 0.143 0.139 0.941 1.000

0.50 1.00 −0.80 −0.798 0.252 0.245 0.937 0.894 −0.801 0.124 0.124 0.948 1.000

0.75 0.00 −0.60 −0.800 0.344 0.338 0.943 0.663 −0.800 0.167 0.169 0.953 0.999

0.75 0.25 −0.65 −0.801 0.312 0.303 0.940 0.754 −0.801 0.154 0.153 0.95 1.000

0.75 0.50 −0.70 −0.804 0.288 0.276 0.936 0.822 −0.798 0.142 0.140 0.948 1.000

0.75 0.75 −0.75 −0.801 0.270 0.257 0.930 0.864 −0.796 0.132 0.130 0.949 1.000

0.75 1.00 −0.80 −0.800 0.252 0.244 0.941 0.898 −0.799 0.126 0.124 0.942 1.000
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Table 3

Results of the simulation study under correct selection of γ and h. Each simulation scenario is described by 

μA (instrument strength, given by average level of engagement) and γ0 (extent of departure from exclusion 

restriction); further, results are shown under two different sample sizes (N =50 and N =200). Provided in 

the table for reference is the implied intention-to-treat effect, ΔITT. Depicted are the average point estimates, 

empirical standard error (ESE), the average bootstrap standard error for Δγ(1), the coverage probability, and 

power. Note that in all cases, Δγ(1)=−0.80.

N = 50 N = 200

μ A γ 0 ΔITT Est. ESE SE CP Power Est. ESE SE CP Power

0.25 0.00 −0.20 −0.810 1.137 1.378 0.987 0.040 −0.794 0.486 0.503 0.966 0.370

0.25 0.25 −0.35 −0.794 0.556 0.563 0.956 0.293 −0.794 0.265 0.270 0.947 0.850

0.25 0.50 −0.50 −0.799 0.384 0.379 0.943 0.563 −0.798 0.187 0.187 0.951 0.990

0.25 0.75 −0.65 −0.809 0.293 0.290 0.946 0.796 −0.801 0.143 0.144 0.949 1.000

0.25 1.00 −0.80 −0.808 0.239 0.235 0.943 0.921 −0.801 0.120 0.117 0.942 1.000

0.50 0.00 −0.40 −0.806 0.494 0.507 0.958 0.371 −0.802 0.237 0.238 0.951 0.927

0.50 0.25 −0.50 −0.804 0.387 0.386 0.950 0.552 −0.800 0.187 0.188 0.954 0.989

0.50 0.50 −0.60 −0.802 0.320 0.317 0.942 0.717 −0.798 0.159 0.156 0.944 0.999

0.50 0.75 −0.70 −0.797 0.276 0.269 0.937 0.836 −0.798 0.134 0.134 0.951 1.000

0.50 1.00 −0.80 −0.799 0.240 0.235 0.938 0.917 −0.801 0.116 0.117 0.949 1.000

0.75 0.00 −0.60 −0.801 0.323 0.325 0.950 0.703 −0.803 0.158 0.157 0.948 0.999

0.75 0.25 −0.65 −0.801 0.295 0.295 0.948 0.770 −0.803 0.145 0.145 0.948 1.000

0.75 0.50 −0.70 −0.801 0.277 0.271 0.940 0.837 −0.801 0.135 0.134 0.947 1.000

0.75 0.75 −0.75 −0.804 0.253 0.250 0.943 0.891 −0.804 0.124 0.125 0.950 1.000

0.75 1.00 −0.80 −0.798 0.236 0.235 0.945 0.917 −0.800 0.117 0.117 0.951 1.000
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Table 4

Results from the REACH study. Presented are the estimated local average treatment effects and respective 

quantile-based bootstrap 95% confidence intervals for the NECE and the ECCE across different values of γ, 

each each characterization of engagement (linear and dichotomous).

Linear: h(a) = a Dichotomous: h(a) = 1 (a ≥ 0.80)

Δγ(0) Δγ(1) Δγ(0) Δγ(1)

γ Est. (95% CI) Est. (95% CI) Est. (95% CI) Est. (95% CI)

0.25 −0.22 [−0.38, −0.07] −0.88 [−1.51, −0.27] −0.25 [−0.42, −0.08] −0.99 [−1.69, −0.30]

0.50 −0.42 [−0.72, −0.13] −0.84 [−1.43, −0.26] −0.45 [−0.77, −0.14] −0.90 [−1.53, −0.28]

0.75 −0.60 [−1.02, −0.18] −0.80 [−1.36, −0.25] −0.62 [−1.05, −0.19] −0.82 [−1.40, −0.25]
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