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Abstract

Estimation of local average treatment effects in randomized trials typically relies upon the
exclusion restriction assumption in cases where we are unwilling to rule out the possibility

of unmeasured confounding. Under this assumption, treatment effects are mediated through

the post-randomization variable being conditioned upon, and directly attributable to neither

the randomization itself nor its latent descendants. Recently, there has been interest in mobile
health interventions to provide healthcare support. Mobile health interventions such as the Rapid
Encouragement/Education and Communications for Health (REACH), designed to support self-
management for adults with type 2 diabetes, often involve both one-way and interactive messages.
In practice, it is highly likely that any benefit from the intervention is achieved both through
receipt of the intervention content and through engagement with/response to it. Application of an
instrumental variable analysis in order to understand the role of engagement with REACH (or a
similar intervention) requires the traditional exclusion restriction assumption to be relaxed. We
propose a conceptually intuitive sensitivity analysis procedure for the REACH randomized trial
that places bounds on local average treatment effects. Simulation studies reveal this approach to
have desirable finite-sample behavior and to recover local average treatment effects under correct
specification of sensitivity parameters.
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SUPPLEMENTARY MATERIAL

REACH Data Set

We have provided the data set corresponding to the REACH study as a “.csv” file. The data are provided in wide format; each row
corresponds to a unique study patient.

Supplementary Code

We have provided a supplementary code file in .R format. A detailed description of variables is provided in this file. The file includes
the procedure to generate the imputed data sets and perform all analyses appearing in this paper.
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1. Introduction.

There has been recent interest in studies of mobile (e.g., text message-based) interventions
designed to improve health outcomes by targeting self-efficacy and self-care behaviors
such as medication adherence (Greenwood et al., 2017; Marcolino et al., 2018). Rapid
Encouragement/Education and Communications for Health (REACH), for instance, is a
text message-delivered intervention designed to support medication adherence for patients
with type 2 diabetes (Nelson et al., 2018, 2021). The REACH study was a randomized
trial that sought to evaluate the effects of this intervention on hemoglobin Alc (HbAlc)
as compared to a control condition. A key feature of the REACH study is that subjects

in the intervention arm received both one-way text messages providing information and
encouragement, and interactive (two-way) text messages requesting a response. Though
subjects in the intervention arm received the same number of messages, there was variation
in rate of response to interactive text messages across subjects within the intervention
arm. The extent to which a subject responds to interactive messages serves as an objective
measure of his or her engagement with the intervention. A natural study goal therefore
includes determining the effect of the REACH intervention on HbA1c conditional on
engagement. This goal is in some ways analogous to the goal of estimating local average
treatment effects in a randomized trial with partial compliance.

The post-randomization nature of engagement obscures our ability to achieve the stated goal
using standard regression techniques. Further, the almost certain presence of unmeasured
common causes of engagement and HbAlc violates principles put forth by certain causal
inference techniques such as inverse probability weighting and standardization (Rosenbaum
and Rubin, 1983; Robins, 1986; Robins, Hernan and Brumback, 2000; Lunceford and
Davidian, 2004; Funk et al., 2011). Defining and estimating causal effects in the setting

of partial compliance has further complications as the number of possible treatment
conditions is far beyond the number of treatment conditions prescribed by the study

design. The principal stratification framework, developed by Frangakis and Rubin (2002),
has been widely applied to estimation of local average treatment effects under treatment
noncompliance (Greevy et al., 2004; Roy, Hogan and Marcus, 2008; Frangakis, Rubin and
Zhou, 2002). One such application of this framework laid out a number of conditions under
which each study subject’s principal stratum can be inferred based on observed data in the
setting of partial treatment compliance (Jin and Rubin, 2008). Under such conditions, local
average treatment effects of interest are identifiable. While such assumptions can be justified
in certain drug trials, the major barrier to uncovering each subject’s principal stratum in the
context of the REACH study, per the assumptions of Jin and Rubin (2008), is that subjects
assigned to the control condition do not provide the necessary information to infer how they
would engage with the REACH intervention had they hypothetically been assigned to it,
specifically because they are given no intervention with which to engage.

Other applications of the principal stratification framework to settings of treatment
noncompliance rely on an assumption known as the exclusion restriction (Imbens and
Angrist, 1994; Angrist and Imbens, 1995; Angrist, Imbens and Rubin, 1996; Roy, Hogan
and Marcus, 2008), under which it is not necessary to identify each subject’s principal
stratum to identify causal effects. Stated within the context of the REACH study, the
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exclusion restriction requires any effect of the intervention on HbAlc to be mediated
through engagement with the interactive text messages, and to be derived neither directly
through randomization itself nor mediated through any of its latent descendants. Irrespective
of a subject’s choice to respond to text message content, receipt of content may motivate

or cue self-care behavior in a way that cannot be addressed through measured covariates;
therefore the validity of the exclusion restriction assumption is tenuous at best in the case of
REACH or other similar interventions.

The fact that subjects assigned to the control condition have a known engagement level of
zero allows us to index local average treatment effects on the basis of a single variable
(namely, engagement under assignment to the REACH intervention). In this work, we will
make use of this simplification to derive and justify conditions suitable for a sensitivity
analysis procedure under which local average treatment effects can be bounded. The
importance of considering violations to the exclusion restriction assumption has been
previously noted; in the setting of discrete principal strata applied to the setting of treatment
compliance, Angrist, Imbens and Rubin (1996) are able to express the bias of an estimator
based on instrumental variables in terms of the direct effect of the instrument on the
outcome and the odds of being a non-complier. Since the focus of our work will involve
continuous measures of engagement (e.g., proportion of messages receiving a response), we
will also need to address matters of specifying non-identifiable functional forms that relate
hypothetical levels of engagement to corresponding local average treatment effects.

The remainder of this manuscript is centered on the development of a sensitivity analysis
procedure for the REACH study, and is organized as follows. In Section 2, we provide a
description of our notation and assumptions, and define the local average treatment effects
of interest in terms of an intuitive sensitivity parameter. In Section 3, we characterize

the resulting bounds on such effects. In Section 4, we propose estimation and inferential
procedures, as well as a framework for evaluating treatment effect heterogeneity. In Section
5, we conduct a simulation study in order to evaluate the finite-sample performance of

our proposed procedure, and in Section 6, we apply our results to the REACH study. We
conclude in Section 7 with a discussion of our findings and possible future directions for
methodological research.

2. Definitions, assumptions, and weak identifiability.

In this section, we provide an outline of our notation, define a class of local average
treatment effects of interest, and characterize assumptions for our sensitivity analysis
procedure.

2.1 Notation.

Let /=1, ... ,Mindex independently sampled study subjects. We let (Z;, A, Y)) denote
each subject’s observed binary randomization group (which serves as the instrument),
engagement measure, and outcome, respectively. Let Ap and Ay denote the sample sizes

in each of the respective randomization groups, with Ay + Ay = N. Without loss of
generality, we assume higher values of A;to signify higher levels of engagement (with
A;= 0 signifying no engagement). Following notation of the potential outcomes framework
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(Rubin, 1974), let A7 =% and A7 = ! denote subject 7's potential engagement levels (e.g., text
message response rate) under randomization to treatments 2= 0 and z= 1; similarly, let
Y7 =%and Y7 = ! denote potential outcomes (e.g., HbA1c) under each respective treatment.

For notational convenience, we will drop the subscript index 7when referring to these
random variables unless such subscripts are necessary to distinguish between subjects.
Figure 1 depicts a directed acyclic graph (DAG) illustrating the temporal ordering of these
observed variables. We will let L and U denote measured and unmeasured (respectively)
common causes of A and Y: note that identifiability of target parameters relies on neither

L nor U under the assumptions we will put forth, although we will later describe how
information on observed covariates, L, may improve efficiency in estimation of target
parameters. The intention-totreat (ITT) effect is defined as At = E[ Y 1] - E[ Y Z0];
owing to randomization of Z this quantity can be identified and is readily expressed as Ayt
= E[Y|Z=1] - E[ Y|Z= 0] under assumptions presented in Section 2.3 (to be discussed).

2.2 Engagement-compliance and local average treatment effects.

Although we will ultimately allow A to denote the (continuous) proportion of two-way text
messages receiving a response in the context of the REACH study, we first consider A to

be binary (for instance, the indicator of a text message response rate meeting or exceeding
80%) for simplicity of illustration. Under the principal stratification framework, we may use
combinations of A%0 and A% to partition the population into four hypothetical engagement
classes (Angrist, Imbens and Rubin, 1996; Frangakis and Rubin, 2002). The resulting
classes are described in Table 1. A subject who would not engage under randomization

to the control condition (Z= 0), but would engage under randomization to the intervention
(Z=1), could be referred to as engagement-compliant. In the setting of the REACH study,
recall that it is impossible to engage with with the REACH intervention when assigned to
control. Put another way, Z= 0= A =0 (or, A0 = 0), such that neither engagement-defiant
subjects nor always-engagers need consideration. Jin and Rubin (2008) refer to this as

the treatment access monotonicity assumption, and it is trivially satisfied in the REACH
study. We may therefore define principal strata on the basis of A%1 alone, terming those in
the population with A% = 1 as engagement-compliant, and those for whom AZ1 =0 as
never-engagers. Under our framework, compliance class is latent in the control group and
observed in the intervention group, as AZ=1 is observed in subjects receiving the intervention
and uniquely characterizes compliance class. This is in contrast with the usual setting of
compliance, in which latency of A< is not specific to z

Now, we allow for the possibility that AZ=1 is continuous, with 0 < A7 < 1. We define the
following class of local average treatment effects, uniquely indexed by A1

A(a):E[Yzzl—YzzolAz=1:a .
In plain language, A(4) denotes the average causal effect of randomization on the outcome
of interest among a subpopulation having some specified hypothetical level of engagement,

a, under treatment z= 1. We refer specifically to A(0) as the never-engager causal effect
(NECE) and A(1) as the engagement-compliant causal effect (ECCE).
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2.3. Assumptions.

We invoke the following assumptions in order to formulate bounds on the local average
treatment effects characterized in Section 2.2.

1. Nointerference: (47, Yf) L Z;.
Consistency: A= AZand Y= Y<

Positivity: 0 <P(Z=1) < 1.

Ignorability of randomization: Y41 Zand A¢ 1 Zfor each z=0, 1.

Treatment access monotonicity: AZ1 > 470 =0,

o g A w D

Treatment-engagement dependence: Z ¥ A.

In the context of the REACH study, each of these assumptions can be described as

follows. The assumption of no interference implies that the randomized assignment of one
individual to REACH or control influences neither the potential text message response rate
(engagement) nor the potential HbAlc (outcome) of another individual. The assumption

of consistency implies that the observed level of engagement and the observed HbAlc
correspond to the potential engagement and potential HbAlc under the randomization
actually received. In general, these first two assumptions are are often referred to as

the stable unit treatment value assumption (SUTVA); when considered together, these
assumptions ensure that the treatments being compared and the resulting potential outcomes
are well defined; vaccine trials serve as a particularly well known area in which violations
to SUTVA can pose challenges (Hudgens and Halloran, 2008). Positivity refers to a
nonzero probability of assignment to each treatment group, and is trivially satisfied under
randomization. Ignorability of randomization, also known as exchangeability, holds when
the relationship between randomization group and each of the engagement and HbA1lc
measures is not subject to systematic confounding; this assumption can also be assumed
under a valid randomization procedure. Importantly, neither measured or unmeasured
confounding of the relationship between engagement and the outcome is precluded (Figure
1). Assumptions 1-4 together ensure identifiability of Aj.

As discussed in Section 2.2, treatment access monotonicity can reasonably be assumed in
the context of the REACH study; specifically, engagement under assignment to the control
condition is zero. The assumption of treatment-engagement dependence is satisfied so long
as there exists a subject with an engagement level exceeding zero (i.e., responding to at
least one text message) when assigned to the REACH intervention. Randomization is said to
serve the role of a stronger instrument when it is more strongly associated with engagement;
the mean level of engagement among subjects randomized to the treatment group, p4 =
E[AZ1], serves as an identifiable quantity to characterize instrument strength. Specifically,
Ha =0 implies no variation in A across the population (and renders randomization an invalid
instrument); if 44 = 1, then randomization is a “perfect instrument” such that A and Zare
perfectly correlated and identically equal.

Notably absent from the list of assumptions we are willing to make in the REACH study is
that of the exclusion restriction (namely, that Z1 Y'|A), under which it would follow that
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A0) = E[Y &1 - v #0471 = 0] = 0. Expressed in terms of the DAG of Figure 1, the
exclusion restriction does not permit a direct arrow from Zinto Y. Although a conditional
exclusion restriction assumption could serve as a possible solution to this challenge if
sufficiently many variables on the pathway from Zinto Y'were measured, it is not feasible
—and perhaps not even possible—to evaluate all potential self-care behaviors triggered by
the text messages prior to outcome measurement in the context of the REACH study. We
instead seek to allow the possibility that A(0) = yA(1) for some finite . Although y is not
identifiable, it will serve as a sensitivity parameter to be varied over a range of possible
values. Specifying a range for y will allow us to place bounds on A(g) for 0 < a< 1; these
bounds will be the subject of Section 3.

2.4. Weak identifiability of A(a).

To underscore the role of y, we can express the local average treatment effects of interest as
A& = AQ)[y + (1 — y)Ma)] for 0 < a< 1 under some non-identifiable y and A(-) with #(0) =
0 and A(1) = 1. By setting a= 0, it can be seen that y = A(0)/A(1) possesses the conceptually
intuitive interpretation as the ratio of the NECE to the ECCE. This parameterization relaxes
the “through-the-origin” relationship presumed under the exclusion restriction, under which
¥ = 0. We will prove that A(&) can be identified if both y and /() are chosen correctly.

Theorem 2.1.—Under Assumptions 1-6 of Section 2.3, A(4) is weakly identifiable in the
sense that it can be identified under correct specification of y and A(:).

Proof.—It is most straightforward to first derive an expression for A(1). Therefore, note the
following:

ATT = E[YZ =l_yz= O] (by definition)
=Epz=1 2= 0fg[yZ = 1oy =0 4221 42=0]] (by iterated expectation)
=Ej%= I[E[Yz =1_yz2=0)42= 1” (by treatment access monotonicity)
=EyZ= 1[A(AZ = 1)] (by definition)
=Ea2 = 1[4y + 1 -pn(a7=1)}] (by parameterization)
= 4y + (1 = pE[a(a*= 1]} (by linearity of expectation).

Together, treatment access monotonicity and treatment-engagement dependence imply that
Up = E[M(AF1)] > 0; hence, rearranging the expression allows us to derive a well-defined
expression for A(1) for all ¥

ATT

) = v+ =nup’

Now, we may re-express A(4) based on its parameterization in terms of A(1):

v+ = phla)

Ala) =4 X
@ = AT T Vo

= AITT X ¢y; pla),
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Under Assumptions 1-4 in Section 2.3, Ajrr is identifiable and can be expressed, for
instance, as E[ Y'|Z= 1] - E[ Y|Z= 0]; similarly, up is identifiable and can be expressed as
E[nA)|z=1].0

2.5. Considerations regarding parameterizations of A(a).

While the exclusion restriction has been well described in many applications of traditional
IV approaches, correct specification of /(-) is a key assumption that merits discussion and
is therefore a focus if this work. Commonly, this assumption is implicitly expressed through
dichotomization of a continuous A in order to characterize target parameters based on
discrete principal strata. In the framework of Section 2.4, this is achieved by defining #(a) =
1(a> ¢) for some ¢, implying minimal treatment benefit to be derived among all for whom
AZ1 < ¢ and maximal treatment benefit to be derived among all for whom AZ1 > ¢

Angrist and Imbens (1995) show that discretization of an A having a continuous
doseresponse relationship tends to bias estimates of A(1) away from the null. At the

same time, identification of /() under continuous A is not possible absent a continuous
instrument, Z In such settings, they propose characterizing local average treatment effects
linearly across values of a continuous post-randomization variable A (in their work, via
two-stage leastsquares). We will develop theory for general choices of /4(:). Due to non-
identifiability of /('), however, it is still of interest to learn how different the most common
choices of /(-) compare in this setting; therefore, in our simulation and application, we will
compare both the linear case, in which A(&) = ais chosen to be the identity function, and the
dichotomized case in which A(a) = 1(a> ¢). In practice, it is typically defensible to consider
only monotone choices for A(-), for reasons we will discuss in Section 3.

3. Bounding local average treatment effects.

For ease of discussion, we assume without loss of generality that At is non-negative.

Until now, we have placed quite minimal restrictions on the sensitivity parameter, y and

the function /(:). In any sensitivity analysis, however, the sensitivity parameter must be
bounded in order to construct a range of resulting estimates for the target parameter. In the
context of many mobile health interventions, it is reasonable to assume that = 0 is the
smallest reasonable lower bound in the sense that receiving text messages should not provide
a harmful effect relative to control among those who choose not to respond to any two-way
text messages. The particular setting of » = 0 is essentially equivalent to removing the direct
arrow from Zinto Y from the DAG of Figure 1, and corresponds to the classic instrumental
variables technique under which the exclusion restriction is assumed true. Further, it is
reasonable to assume that y = 1 is the greatest reasonable upper bound in the sense that
those choosing not to respond to any text messages should not receive greater benefit relative
to control as compared to those who are fully engaged with the intervention. The particular
setting of = 1 can be interpreted as implying that the ITT effect applies uniformly to the
target population, irrespective of their level of engagement with the intervention. Along a
similar line, for a fixed choice of ) between zero and one, it is sensible to consider only
monotone choices for A(-) such that the intervention’s effect is greater in a subgroup with
higher levels of engagement as compared to a subgroup with a lower level of engagement.

Ann Appl Stat. Author manuscript; available in PMC 2022 April 08.
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Note that although it may be reasonable to tighten the bounds on ¥ in the context of a
particular study (e.g., REACH), we focus in this section on the geometry and the underlying
theory for general choices of y between 0 and 1. Note that these bounds are heuristic in
nature, as sensitivity parameter bounds typically are; in Section 7, we will provide a further
discussion of cases in which alternative bounds for  may be more appropriate.

From Section 2.4, it follows that A(&) possesses a stationary property: A(uy) = Ay for all .
Under a monotone choice for /(-), A(&) achieves global extrema at = 0 and » = 1 for fixed
values of &, these extrema are further unique if and only if Ajr # 0. Assuming without loss
of generality that AT is non-negative, the bounds for A(4) can be characterized as follows:
AITT X % < A(a) L A7 fora < py
A(a) = AT fora = py

AITT < A(a) < A[TT X h,u(iz) fora > pp,.

In the specific case of a= 0, the NECE is bounded by zero (below) and At (above); when a
=1, the ECCE is bounded by Ajrt (below) and the Wald formula (above):

A
0 < AQ) < A1TT < A(1) < %T

If Ajr7 is non-positive, the directionality of each of these inequalities is reversed. These
treatment effect bounds are illustrated in Figure 2 in the case where A(a) = a.

Also of interest is to understand the behavior of local average treatment effects across y for
different instrument strengths (as defined by y, in this case). This behavior is illustrated in
Figure 3, again considering the case where /(:) is the identity function. Linearity of A(4) in
H(a) for fixed values of  does not imply general linearity of A(&) in y for fixed values of
Ma). In fact, the latter condition only holds in the presence of a perfect instrument, which
occurs if and only if 4, = 1. This suggests that under a weak instrument (low engagement),
a sensitivity analysis of A(0) and A(1) can be expected to produce greater fluctuations when
varying values of y closer to zero as compared to values closer to one; under a stronger
instrument (higher engagement), sensitivity will be closer to constant across y.

4. Estimation and inference.

The problem of estimating A(4) can be decomposed into the following steps: (1)
specification of a value for y, (2) specification of a form for /(:), (3) estimation of Ayt and
Up, and (4) plugging in estimates from the previous step into Equation (2) of Section 2.4. We
must distinguish between the form of /(-) and value of y that correspond to the unknowable
data generating mechanism, and the values that are specified by the user. We will let /(")
and yq correspond to the true underlying mechanism, and use the notation AAh;y(a) to denote

an estimator of A(4) under the user-specified sensitivity parameter, ¥, and transformation, /.
We will let A4, (a) denote the value for which jh;y(a) is consistent—which may or may not
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be equal to A(d) = A, 0(4), depending on correctness of choices for /() and . A simple
estimator utilizes the corresponding sample means in the obvious way:

r+d-phta)
r+(=ph(A)z =1

AAh;y(a) = AAITT X Ey; nla) = (}72 =1- YZ — 0) X
Owing to maximal efficiency associated with a(A), — | as an estimator of y, there is no

obvious incentive to consider alternative estimators. On the other hand, greater efficiency for
estimation of A intuitively corresponds to greater efficiency for estimation of Az, (4). For
instance, this could be achieved through adjustment for baseline covariates, L, in a linear
regression model): E[Y'|Z=z L =& = By + Brz+ (¥, where, fy") denotes a function of
baseline covariates indexed by 6. Importantly, consistency of #; for Ayt does not depend
upon correct specification of 7y (Tsiatis et al., 2008). Because At can be estimated in
multiple ways, we discuss asymptotic theory generally rather than under a specific estimator.

Under treatment-engagement dependence (Assumption 6 of Section 2.3), ¢,. 5(a) achieves
J/N1-consistency and asymptotic normality for (y, &) # (0, 0).

If the treatment-engagement dependence assumption is violated, then x4 follows a
degenerate distribution with a point mass at zero. In all other cases, this is a straightforward
application of the Law of Large Numbers, the Lévy Central Limit Theorem, and &method

with g, 4p) = ¢,./(d), and so we do not provide this proof in detail. Letting a,zl denote
Var(,/N1(in — up)), the asymptotic variance associated with \/N (¢, p(a) - ¢, p(a)) is given
by:

(=9’ + (1= ph@)® 2
4 h-
(r + (1 = Vup)

o8, @) =

We do not require asymptotic theory under the condition that = a= 0, as 4¢(0) = 0
identically by convention. O

Theorem 4.2.

Proof.

Under both /N-consistency and asymptotic normality of 477, we have that

VN(4y; p(@) = 4y y(@) =4 H(0, 72 (@) for some 2. j(a) > 0.

Let rdenote the randomization fraction 7= lim A/A4, and let ofpr denote the asymptotic

variance of y/N(4yrr — 4rrr). Invoking Slutsky’s theorem, we have that

Ann Appl Stat. Author manuscript; available in PMC 2022 April 08.
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N(Ay; 5@ = 4y p(@) = YN(AITT X E; 5@ = AT X €7 (@)
= ¢y W@|VN(ArrT = 47T | + ArTT|VN () 10) = €4 ()]
~ ¢, n(@|VN(ArTT - A7) | + ATT|y PN TG 1@ = ¢ (@)

For which the variance can be expressed in the following general form:

2 2 ~ ~
[cy; h(a)] O'IZTT + r(ArTT) crg; nl@+ 2Ncy; h(a)AITTCov(cy; nla), AITT)-

O

The covariance term of Theorem 4.2 is estimator-specific. In the appendix, we provide an
approximation in the special case in which Ay =Yz = | — Yz — . For settings in which
the a specific form for the asymptotic covariance cannot be neither analytically derived in
closed-form nor approximated, we propose utilizing the nonparametric bootstrap procedure
to estimate standard errors and forming either symmetric Wald-based or percentile-based
confidence intervals (Efron and Tibshirani, 1986).

Note the following important corollaries; proofs of the first two are trivial and are hence not
provided.

Corollary 1.

If the user-specified sensitivity parameter, y, and transformation /(:) are each
“chosen correctly” in the sense that = yo = A(0)/A(1) and A(-) = fp(:), then
Ay, n(@) —>p A@) = Ay (@) for 0 a< 1.

Corollary 2.
If Arpr and Appp are consistent estimators of Ajr, each having the same asymptotic
correlation with ¢, (a), and with oty < [GI’TT]Z, then the estimator Zy; n(a) based on Appr

achieves greater asymptotic efficiency as compared to that based on Ajpr.

Corollary 3.

For all (y, & # (0, 0), (1), T%;h(a) is decreasing in &, and (2) a Wald test of the null hypothesis

Ho : A, /(d) = 0 is asymptotically equivalent to a Wald test of the null hypothesis Hp : At =
0. That is, for sufficiently large N,

IR
A1TT
OITT

AAy; h(a)

2
4 U
Ty; (@)

~

vih _
Wy =

Ann Appl Stat. Author manuscript; available in PMC 2022 April 08.
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The first statement is trivial; the second follows by noting that A, (@) = 0 < Ajrr =0 when
(7, @ # (0, 0); and then invoking Slutsky’s theorem to note the asymptotic distribution of
Ay p(a) under the null:

~ H ~
VN(4y, p(a) - 4y, p(a)) ~ ey h@|VN(4rrT - 4177)):

with asymptotic variance <z ,(a) ~ c;. p(a)ofrr- Therefore, Wald-based confidence intervals
for both Ajrr and A, 4(a) will possess the same coverage properties, asymptotically. Note
that wi" wiiT -, 2.0

5. Simulation studies.

In this section, we conduct a set of simulation studies in order to evaluate the finite-sample
performance of the sensitivity analysis procedure. In each simulation scenario considered,
we use K'=5,000 Monte Carlo iterations. We vary the sample size across two levels (V=
50 and N = 200); the true value of yy = A(0)/A(1), across five different levels, evenly spaced
between zero and one (inclusive); and the instrument strength (low, moderate, and high),

as characterized by mean level of engagement. Treatment randomization was generated as
Z~ Bernoulli(0.5). A measured (L) and an unmeasured () confounder of engagement

(A) and the outcome (Y') were each generated as marginally independent standard normal
covariates. Engagement under randomization to Z= 1 (i.e., AZ1) was generated as a
semi-continuous variable with inflation at zero and one as follows:

P(AZ =1_, |U=uL= l) = expit(ag] + a1 1u + a21l),
P(AZ =l_o |U=u,L=1A*% ! # 1) = expit(agQ + a1ou + a2pl),
logit(AZ = 1)~./V(;4 =ap+a U+ apL, 0'2 = 0124;AZ =1 & {O, l}.

In generating the engagement variable, we fixed certain parameters as follows, setting ap1 =
agg=-2,a1p=ay =-1, a;1 = ap;1 =1, a1 = a» = 0.8, and o4 = 0.2. Instrument strength,
characterized by (4, is controlled by variations in the parameter ag, which we set as ag =
—2.50 for low instrument strength (4 ~ 0.25), ag = —0.05 for moderate instrument strength
(1a ~ 0.50), and ag = 2.30 for high instrument strength (14 ~ 0.75).

The outcome was generated as Y~/V(;4 =Bo+P1Z + PoA + B3U + P4, 62 = 0'2). Note that for

the purposes of these simulations, /(-) is chosen to be the identity function in the data
generation, although we will consider violations to this in Section 5.3. We fixed Sy =9, B3 =
0.2, B4 = 0.3, and oy = 0.8. The true (non-identifiable) value of »y, is governed by the pair
(B1, B2), and is specifically given by yg = S1AB + o). We therefore select (51, B») under
five cases in order to vary y, between zero and one; the A case utilizes 81 = (1 - #/5 and

Bo =—(4/5+p,) for /=1, ... ,5. Many aspects of this simulation is designed to approximately
mirror our subsequent application to the REACH study in Section 6.
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5.1. Operating characteristics under correct specification.

Our first goal was to evaluate performance of the methodology under correct specification of
both y and /() under the data generation mechanism described. For the purposes of these
simulations, A(1) will be the target estimand, and is given by A(1) = 8, + 8, = —0.8.

We estimated the ITT effect in two ways: one based on a simple outcome mean difference
(such that the asymptotic approximation to the variance appearing in the appendix would
apply), and another based on a linear regression, adjusting linearly for the observed
covariate, L (such that the bootstrap standard errors would be required). In either case, A(1)
was estimated using the approach described in Section 4 under correct specification of 5 and
(), employing B = 500 bootstrap replicates for the regression-based estimation method. We
extract the average point estimates and Monte Carlo empirical standard errors (ESE), along
both the average standard error (large-sample theory based approximation for the first case,
and the bootstrap standard error for the second case), coverage based on symmetric 95%
Wald-based confidence intervals, and estimated power.

Key results from the first simulation case are summarized in Table 2. When the value of ¥

is correctly specified, the sensitivity analysis approach is able to correctly capture the ECCE,
with low bias and with standard errors based on the large-sample approximation closely
reflecting the true repeat-sample variability (as represented by the empirical Monte Carlo
standard error). The level of bias associated with smaller sample sizes is consistent with
prior insights regarding bias of the Wald estimator (Buse, 1992). Coverage appears to be
adequate even in smaller sample sizes. Unsurprisingly, power increases with higher sample
size, with higher instrument strength, and with larger magnitude of the ITT effect.

Analogous results from the second simulation case are summarized in Table 3. Overall
patterns are similar to those shown in Table 2; we note the general improvement in
efficiency associated with including the pre-treatment covariate in the model; further, the
small-sample bias associated with the weaker instrument strength (4 = 0.25) appears to be
uniformly reduced as compared to the unadjusted model.

5.2. Incorrect specification of y.

In this set of simulations, we utilize the same data generating mechanism as described in

the prior simulations, using the adjusted regression model for estimation of At as per the
second case of Section 5.1, but this time varying the user-specified sensitivity parameter, y.
Note that the linearity of /(') is still correctly specified in this case. Figure 4 demonstrates
the properties of our estimation procedure under various specified levels of y for the cases of
both low and high instrument strength. Of note, specifying ) = ¥ results in nearly unbiased
estimation, as expected (and as demonstrated in Tables 2 and 3). Further, selections of y that
are closer to the correct value () result in less bias than selections of ) that are further
from yo. The curvilinear relationship between y and A,(4) for fixed values of ais reflected
in these figures, and is more pronounced for the lower engagement scenarios. Moreover, the
figures also reflect the stationary property discussed in Section 3, whereby A, (14) = A7
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5.3. Incorrect specification of h(:).

In this set of simulations, we again utilize the same data generating mechanism as described
in prior simulations, using the adjusted regression model for estimation of At as per the
second case of Section 5.1, but this time utilizing a step function to model the relationship
between Aand Y (namely, /(&) = 1(a> ¢) for varying values of ¢ around the mean level of
continuous engagement). We depict this result for three choices of 4 (0.25, 0.50, and 0.75),
all of which are correctly specified in this simulation; and for both the moderate and high
instrument strength setup. Figure 5 demonstrates the properties of our estimation procedure
under varying specified levels of ¢. Focusing on estimation of the ECCE, choosing ¢

close to the average level of engagement results in comparably lower bias. Further, when

y is higher, results of dichotomization are understandably less sensitive to choices of (.
Importantly, this result augments the findings of Angrist and Imbens (1995), in which
dichotomization tended to bias estimates of A(1) away from the null. Here, that seems only
to be the case when ¢ is chosen to be higher than the mean level of engagement; notably,
however, the levels of bias introduced by lower choices of ¢ do not as severely attenuate the
estimate of A(1).

6. Local average treatment effects in the REACH study.

6.1. Description of data.

We now apply our developed approach to the REACH study. The intervention, Z, is
characterized by randomization to either a control condition (Ap = 106), or to the REACH
intervention (A4 = 109). Subjects considered for this analysis all had uncontrolled HbA1c at
baseline, characterized as either meeting or exceeding 8.5%. Subjects in the intervention arm
received daily text messages over a period of six months including one-way messages that
provided self-care information and encouragement and two-way messages that asked about
medication adherence. At the end of each week, subjects in the intervention arm received
adherence feedback based on his or her responses that week. Subject-specific engagement
(A) was defined as the proportion of two-way text messages receiving a response.

Measured baseline covariates, L, were as follows: demographic and socioeconomic factors
included age, gender, race/ethnicity (defined as non-Hispanic White, non-Hispanic Black,
Hispanic, and other), and years of education. Clinical factors included duration of diabetes
mellitus, insulin status, and baseline HbAlc. Measures of adherence, self-care, and self-
efficacy included the Perceived Diabetes Self-Management scale (PDSMS-4), the Diabetes
Adherence to Medications and Refills scale (ARMS-D), the Summary of Diabetes Self-Care
Activities measure (SDSCA), and the Personal Diabetes Questionnaire (PDQ).

The outcome, Y, is given by HbAlc six-months post randomization; we consider an average
causal effect of REACH on HbA1c of 0.50% to be clinically meaningful. Subject-specific
engagement, A, was measured as the proportion of text messages responded to (applicable
only to subjects assigned to the intervention arm). The engagement values for subjects
withdrawing prior to the six-month period were considered pragmatically; such subjects
were considered as having zero-engagement for the remainder of the six-month period
post-withdrawal.
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6.2. Addressing missing data.

Missingness rates were very low for baseline covariates (three subjects were missing
information on education, two were missing information on diabetes mellitus duration, one
was missing their PDSMS-4 score, and three were missing their SDSCA score). Twenty
subjects (9.3%) were missing values on six-month HbA1c. Data on randomization group,
age, gender, race/ethnicity, ARMS-D, PDQ, insulin status, response rate, and baseline
HbA1c were complete.

Missing data were addressed using multiple imputation via chained equations and included
all variables described thus far in Section 6 (Van Buuren et al., 2006). To formally
characterize the assumptions made in addressing missing data in this fashion, let R
denote the vector of missingness indicators for baseline covariates, and /Ry the indicator of
missingness for six-month HbA1c. Further partition the data into the missing and observed
components: (Lmissing: Ymissing) @d (Lobserved: Yobserved)- VWe presume the missing data
mechanism to be at random, in the sense that (Ri, /y) I (Lmissing: Y missing)|Lobserved:

Y observed: A, Z (Rubin, 1987). We believe this assumption to be reasonable based on the
breadth of baseline variables collected.

6.3. Description of sensitivity analysis.

The multiple imputation procedure was aggregated with the bootstrap using the pooled-
sample nested approach recommended by Schomaker and Heumann (2018). We report 95%
confidence intervals based on the 0.025 and 0.975 quantiles of B =500 nonparametric
bootstrap replicates and M= 500 multiple-imputation iterations. We estimate the ITT using
linear regression, adjusting for baseline HbAlc using a natural cubic spline with knots at the
three inner quartiles (8.90%, 9.70%, and 11.1%), as recommended by Harrell (2001). We
believe a range of ) spanning between 0.25 and 0.75 is reasonable for the context of the
REACH study. This range reflects the belief that the total effect of the intervention can be
explained by a combination of both effects mediated and not mediated by engagement with
it, and also underscores our uncertainty regarding the relative proportions of each.

We model A,(&) in two ways: (1) linearly, with /(&) = a chosen as the identity function, and
(2) dichotomously, with (&) = 1(a= 0.80). All analyses were performed using R, version
4.0.2 (R Core Team, 2020). The analytic data set is available as supplementary material,
along with all documented code used for analysis (Spieker et al., 2021).

6.4. Results.

Figure 6 presents a histogram of the distribution of engagement across patients in the
intervention arm. The mean subject-specific text message response rate was 81.4% (SD:
23.1%). The median response rate was 91.5%, with interquartiles given by 74.0% and
91.5%. Approximately 11% of subjects had a response rate no higher than 50%. The ITT
was estimated to be —0.761% (95% CI: [-1.30%, —0.24%]; p = 0.0049).

The results of the sensitivity analysis under different sensitivity parameters are shown in
Table 4. Of note, the estimates of the NECE are comparable across y between each of
the linear and dichotomous parameterizations; for low values of ¥, the dichotomization
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approach produces estimates of the ECCE that are further from the null as compared to the
linear approach. These results are consistent with the results of the simulation study. If the
linear parameterization is more closely satisfied, we would expect the estimates produced by
the dichotomization approach to be biased.

We focus now on interpreting results from the linear parameterization, in which there is an
embedded range of local average treatment effects for each . We display these results in
Figure 7, specifically emphasizing the choices of 2= 0, 0.5, 0.814, and 1. The choice of a
= 0.814 is designed to illustrate the stationary property described in Section 3. A number
of insights can be gained based from this analysis. One can fix y to learn about effects
among subgroups defined by their engagement level. For instance, if y = 0.50, engagement
levels meeting or exceeding 19.2% are associated with treatment effect estimates exceeding
the clinically meaningful threshold of 0.50%. On the other hand, if = 0.75, all levels of
engagement are associated with treatment effect estimates exceeding that threshold. One can
further derive insights regarding local average treatment effects on the basis of confidence
interval endpoints instead of point estimates. For instance, if = 0.25, engagement levels
under 10.8% rule out both a null effect and a clinically meaningful effect.

In addition to characterizing information regarding local average treatment effects at fixed
levels of y, one can also search for the values of y that meet a particular criteria. For
instance, only for > 0.609 does the estimated effect of REACH among never-engagers
exceed the clinically relevant threshold of 0.5%. This would imply that we estimate REACH
to be uniformly effective across levels of engagement if we believe that the effect among
never-engagers is at least 60.9% that of the engagement-compliant.

7. Discussion.

In this paper, we have derived and presented a sensitivity analysis approach to accommodate
departures from the exclusion restriction when estimating local average treatment effects,
with specific applications to engagement in mobile health interventions. In this setting,

the principal stratification framework is simplified by the impossibility of engaging with

an intervention not received. Hence, local average treatment effects can be characterized
conditional on a single (partially latent, and possibly transformed) variable. Placing
reasonable bounds on the sensitivity parameter in turn results in conceptually intuitive
bounds on the average causal effect.

Our proposed approach is designed to aid insights regarding average causal effects of

the intervention at various levels of engagement with the intervention, particularly when
violations to the exclusion restriction assumption cannot be ruled out. We presented
asymptotic theory that holds for invertible transformations of the post-randomization
variable; our simulations and application focused on linear and dichotomous treatment of
engagement, under which our sensitivity procedure appeared to have desirable finite-sample
properties. Angrist and Imbens (1995) suggest the linear parameterization when further
information can not be assumed. We acknowledge that there may be settings in which
alternative continuous parameterizations may be defensible. Further study of different
transformations and their possible advantages could be of interest for future studies;

Ann Appl Stat. Author manuscript; available in PMC 2022 April 08.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Spieker et al.

Page 16

moreover, continuous randomization to different text message frequencies may allow the
nature of the transformation to be uncovered using observed data rather than simply assumed
by the researcher.

Our illustrative example demonstrates various ways that this approach can be used to

glean insights regarding treatment effect heterogeneity across levels of engagement. As ¥
functions as a sensitivity parameter, bounds must be heuristically justified based on the
study context. Naturally, the tighter the bounds on y that can reasonably be considered in
practice, the more robust and precise the conclusions that can be derived. Consideration of
¥ smaller than zero may be appropriate, for instance, in a study involving a psychological
outcome, in which receipt of content with which to engage could be relatively harmful on

a psychological outcome among the subgroup of subjects who would never engage with
that intervention. In the context of REACH, this is not a concern. For similar interventions
featuring mostly two-way content, it stands to reason that lower values of y may be more
reasonable as compared to interventions comprising mostly one-way content. We note that
engagement with an intervention is more of an abstract concept than response to two-way
text messages. For instance, a subject’s true engagement in the abstract sense is partially
reflected by his or particular level of attention to text messages (length of time read).
Proportion of text messages receiving a response is one of many possible objective measures
of engagement, but does not necessarily serve as a perfect surrogate for intrinsic engagement
in the most abstract sense. The results of a sensitivity analysis are driven in large part by the
average level of the engagement metric in the study. In the particular case of the REACH
study, text message response rates tended to be high, such that the ECCE was less sensitive
to fluctuations in the sensitivity parameter as compared to the NECE. Had the average
engagement rate been lower, the ECCE would have been more sensitive to fluctuations in y.

Challenges associated with and methods to address missing data have been described

in settings of noncompliance (Jo, 2002, 2007). In our unique setting, the identifying
assumptions allow us to express local average treatment effects as specific multiples

of ITT effects. Therefore, the challenges associated specifically with partial compliance
have minimal impact on the approach used to address missing data. Fully conditional
specification (i.e., multiple imputation by chained equations) is generally regarded as a gold-
standard approach to address missing data in a way that allows us to assume missingness at
random rather than the stronger assumption of missingness completely at random.

Specific procedures for sensitivity analyses have long been an area of interest in
methodological causal inference research, many times in the context of violations to

the assumption of ignorability/no unmeasured confounding (Lin, Psaty and Kronmal,

1998; Imai, Keele and Yamamoto, 2010; Jo and Vinokur, 2011; Stuart and Jo, 2015;

Dorie et al., 2016). Prior work has investigated the sensitivity of non-1V based causal
inference approaches when the exclusion restriction is not satisfied (Millimet and Tchernis,
2013). Many of the sensitivity analysis procedures developed for departures from the IV
assumptions are applicable only to the case of four discrete principal strata (e.g, in the
example of treatment compliance) such as the approach of Angrist, Imbens and Rubin
(1996) as described in Section 1. Again in the case of four discrete principal strata, Baiocchi,
Cheng and Small (2014) propose a number of sensitivity analysis procedures for departures
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to IV assumptions, and Stuart and Jo (2015) demonstrate how the exclusion restriction can
be replaced with an alternative assumption referred to principal ignorability when predictors
of stratum membership are thought to be well understood. The corresponding approach

is analogous to propensity score methods in order to predict subgroup-specific stratum
membership. Such approaches are best suited for settings in which predictors of principal
stratum are known and measured, and not when substantive unmeasured confounding is
suspected as in the case of continuous measures of engagement with an intervention (e.g.,
REACH). Generalizing the methodology of Stuart et al. to the setting in which strata

are defined by a single continuous post-randomization variable, however, may serve as a
potential topic of interest for future research.

In terms of other possible implementations of this framework, consider settings in which
treatment is not randomized. In such a circumstance, it is possible—likely, even—that
pre-intervention covariates would play a role beyond those described in the context

of the REACH study. If such covariates are associated with the intervention received,

the ignorability assumption would need to be updated to reflect possible confounding;
adjustment for such variables would be necessary to identify local average treatment effects
rather than simply desirable as a method to gain precision.
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Refer to Web version on PubMed Central for supplementary material.
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Here, we elaborate on an asymptotic approximation for the variance of W(ZITT - AITT) in
the special case where Ajpr = Yz — 1 — Yz — o. Specifically, the task is to devise a form for
Cov(¢y; n(a), Arrr)- Since the randomization groups (Z= 0 and Z= 1) are independent, this
reduces as follows:

r+ (1 - ph@ )
y+(-nh(Az =1

v+ - pha)
y+U=nh(d)z =1

COV(YZZI_YZ:O’ ):COV(YZZI,

Now, we note the following general approximation to the following covariance based on the
second-order Taylor expansion about (i, y) for general random variables Xand Y:
Cov(x,y™!) = E[xy~ 1] - E[X]E[Y‘l]

. _ Cov(X,Y)
E[Y]?
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Applying second-order approximation, we have that

O Ut L0 A3
Z=1" 3T = pha
r+(-phthiz =

y+ {1 =ph(a)

=+ =ph@)Cov(Yz = 1.y +(1 =nh(A) z = 1)

==y +A=h@)Cov(Yz = 1.h(A) 7z = 1)

= N7 = ) + (1 = DhtapCov(Y1, h(AY)).

Cov

O S 2 G 1) )z

r+(—ph(A)z =1

This expression takes a form that can be readily estimated based on the observed data. In this
setting, the total asymptotic variance z,,/(a) can be approximated as:

2
[ey; n(@)] ofrr + r(AITT)Zaf; 7@ + 2rey; p(@ATT(L = 7)(7 + (1 = P)h(@)Cov(Y 1, h(A1)) .
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Fig 1.

Digrected acyclic graph depicting the temporal ordering and causal pathways between
measured variables. Note that U (gray), is a collection of unobserved confounders impacting
engagement and the outcome. Note that the direct path from Z to Y cannot reasonably be
ruled out in the setting of a mobile health intervention such as REACH, and serves as a
violation of the exclusion restriction assumption.
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Fig 2.

INustration of treatment effect bounds in a simple setting. On the left, we highlight how

the treatment effect would be characterized across different levels of engagement by a
traditional 1V analysis (y =0). The presumed NECE, ECCE, and ITT are all shown in this
case. On the right, we show how the treatment effect is characterized across different levels
of engagement under various sensitivity parameters. Note at each level of engagement, the
treatment is bounded by the ITT and a specified multiple thereof (solid lines); also depicted
are the results for nontrivial values of -y (dotted lines).
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Fig 3.

Illistration of treatment effect bounds in a simple setting. On the left, we highlight how

the NECE, A(0), varies across the levels of -y for different values of ua, and on the right

we similarly depict the ECCE, A(1). Note that pa characterizes instrument strength; weaker
instruments are associated with higher curvature.
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Fig 4.

Simulation study results across different values of y (possibly misspecified) under yg =0
(left), yo =0.50 (center), and yo = 1 (right). Plotted are the average point estimates across
different levels of a for various selections of y. The upper panels depict the situation in
which the mean level of engagement is lower; the upper panels depict the situation in which

the mean level of engagement is higher
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Y0=0.75
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Simulation study results under incorrect dichotomization of A, shown for -yg =0.25 (left), yo
=0.50 (center), and yo =0.75 (right). Plotted are the average point estimates across different
levels of a for various selections of . The upper panels depict the situation in which the
mean level of engagement is moderate; the upper panels depict the situation in which the

mean level of engagement is higher.
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Fig 6.
Histogram of subject-specific engagement within the REACH intervention group, defined as
proportion of text messages responded to over the six-month period.
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Fig 7.

Lc?cal average treatment effects and corresponding confidence intervals across levels of AZ=1
= a for three different values of the sensitivity parameter, y. Also depicted in each plot

are the estimated NECE and ECCE (dark gray points) and ITT (light gray point), and
quantile-based bootstrap 95% confidence intervals for local average treatment effects at
specified levels of a.
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Characterization of engagement-compliance classes (principal strata) in the simple setting considering
engagement as a binary variable. Note that only two such classes are applicable in our particular setting,

Table 1

uniquely defined by AZ=1,

AZ0 Azl Characterization Applicable?
0 0 Never-engager Yes
0 1 Engagement-compliant Yes
1 0 Engagement-defiant No
1 1 Always-engager No
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Table 2

Page 28

Results of the simulation study under correct selection of y and /. Each simulation scenario is described by
Ua (instrument strength, given by average level of engagement) and g (extent of departure from exclusion

restriction); further, results are shown under two different sample sizes (/=50 and A/=200). Provided in

the table for reference is the implied intention-to-treat effect, A,;77. Depicted are the average point estimates,

empirical standard error (ESE), the average large-sample-theory (LST) standard error for Zy(l), the coverage

probability, and power. Note that in all cases, Ay (1) = —0.80.

N =50 N = 200
Ha %o Ot Est ESE SE CP Power FEst ESE SE CP  Power
025 000 -020 -0858 1223 1155 0968 0063 -0.803 0513 0518 0961 0342
025 025 -035 -0819 0589 0573 0944 0300 -0.803 0286 0285 0946 0.815
025 050 -050 -0.803 0411 0390 0933 0536 -0.803 0200 0197 0943 0.982
025 075 -065 -0.796 0316 0298 0931 0745 -0798 0154 0151 0945 1.000
025 1.00 -0.80 -0.806 0252 0245 0939 0900 -0.802 0125 0124 0944 1.000
050 000 -040 -0.818 0523 0506 0948 0371 -0.802 0252 0249 095  0.899
050 025 -050 -0.808 0397 0390 0944 0545 -0799 0199 0196 0947 0983
050 050 -0.60 -0.802 0343 0320 0931 0694 -0.801 0167 0162 0943 0.998
050 075 -070 -0.803 0288 0275 0937 0817 -0798 0143 0139 0941 1.000
050 1.00 -0.80 -0.798 0252 0245 0937 0894 -0.801 0124 0124 0948 1.000
075 000 -0.60 -0.800 0344 0338 0943 0663 -0.800 0167 0169 0953 0.999
075 025 -0.65 -0.801 0312 0303 0940 0754 -0.801 0154 0153 095  1.000
075 050 -070 -0.804 0288 0276 0936 0822 -0798 0142 0140 0948 1.000
075 075 -075 -0.801 0270 0257 0930 0864 -0796 0132 0130 0949 1.000
075 1.00 -0.80 -0.800 0252 0244 0941 0898 -0799 0126 0124 0942 1.000
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Table 3

Page 29

Results of the simulation study under correct selection of y and /. Each simulation scenario is described by
Ua (instrument strength, given by average level of engagement) and g (extent of departure from exclusion

restriction); further, results are shown under two different sample sizes (/=50 and A/=200). Provided in

the table for reference is the implied intention-to-treat effect, A,;77. Depicted are the average point estimates,

empirical standard error (ESE), the average bootstrap standard error for 2,,(1), the coverage probability, and
power. Note that in all cases, A(1)=—0.80.

N =50 N = 200
Ha %o Ot Est ESE SE CP Power FEst ESE SE CP  Power
025 000 -020 -0.810 1137 1378 0987 0040 -0794 0486 0503 0966 0.370
025 025 -035 -0794 0556 0563 0956 0293 -0.794 0265 0270 0947 0.850
025 050 -050 -0.799 0.384 0379 0943 0563 -0798 0187 0187 0951 0.990
025 075 -065 -0.809 0293 0290 0946 0796 -0.801 0143 0144 0949 1.000
025 1.00 -0.80 -0.808 0239 0235 0943 0921 -0.801 0120 0117 0942 1.000
050 000 -040 -0.806 0494 0507 0958 0371 -0.802 0237 0238 0951 0.927
050 025 -050 -0.804 0387 038 0950 0552 ~-0.800 0187 0188 0954 0.989
050 050 -0.60 -0.802 0320 0317 0942 0717 -0.798 0159 0156 0944 0.999
050 075 -070 -0797 0276 0269 0937 0836 -0798 0134 0134 0951 1.000
050 1.00 -0.80 -0.799 0240 0235 0938 0917 -0.801 0116 0117 0949 1.000
075 000 -060 -0.801 0323 0325 0950 0703 -0.803 0158 0157 0948 0.999
075 025 -0.65 -0.801 0295 0295 0948 0770 -0.803 0.145 0145 0948 1.000
075 050 -070 -0.801 0277 0271 0940 0837 -0.801 0135 0134 0947 1.000
075 075 -075 -0.804 0253 0250 0943 0891 -0.804 0124 0125 0950 1.000
075 100 -0.80 -0.798 0236 0235 0945 0917 -0.800 0117 0117 0951 1.000
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Table 4

Page 30

Results from the REACH study. Presented are the estimated local average treatment effects and respective
quantile-based bootstrap 95% confidence intervals for the NECE and the ECCE across different values of ,
each each characterization of engagement (linear and dichotomous).

Linear: h(a) =a Dichotomous: h(a) =1 (a = 0.80)
4,(0) A1) 4,(0) A1)

% Est. (95% CI) Est. (95% CI) Est. (95% CI) Est. (95% CI)
0.25 -0.22[-0.38,-0.07] -0.88[-151,-0.27] —-0.25[-0.42, -0.08] -0.99 [-1.69, —0.30]
050 -0.42[-0.72,-0.13] -0.84[-1.43,-0.26] —-0.45[-0.77,-0.14] -0.90 [-1.53, -0.28]
075 -0.60[-1.02,-0.18] -0.80[-1.36,-0.25] -0.62 [-1.05,-0.19] —0.82 [-1.40, -0.25]
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