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Abstract

Most people with low vision rely on their remaining functional vision for mobility. Our goal 

is to provide tools to help design architectural spaces in which safe and effective mobility is 

possible by those with low vision---spaces that we refer to as visually accessible. We describe 

an approach that starts with a 3D CAD model of a planned space and produces labeled images 

indicating whether or not structures that are potential mobility hazards are visible at a particular 

level of low vision. There are two main parts to the analysis. The first, previously described, 

represents low-vision status by filtering a calibrated luminance image generated from the CAD 

model and associated lighting and materials information to produce a new image with unseen 

detail removed. The second part, described in this paper, uses both these filtered images and 

information about the geometry of the space obtained from the CAD model and related lighting 

and surface material specifications to produce a quantitative estimate of the likelihood of particular 

hazards being visible. We provide examples of the workflow required, a discussion of the novelty 

and implications of the approach, and a short discussion of needed future work.
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1. Introduction

Low Vision refers to any long-term visual impairment, not correctable by glasses or 

contacts, which affects every day functioning. In more quantitative terms, low vision is 

often defined as visual acuity less than 20/40 (metric 6/12) or a visual field with a maximum 

extent of less than 20° in the better eye. Low vision refers to people with remaining 
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functional vision and does not include people who are totally blind. Prevalence statistics 

on visual impairment usually combine low vision and total blindness. Of the 441.5 million 

visually-impaired people worldwide, the vast majority have low vision [Bourne 2017]. By 

recent estimates, there are about 5.7 million Americans with impaired vision, most of whom 

have low vision [Chan 2018]. Because the prevalence is high for older people, this number is 

expected to nearly double by 2050 [Chan 2018].

There is a broad and growing interest in architectural and environmental design that 

facilitates safe and effective mobility by people with low vision [NIBS 2015]. By analogy 

to principles for enhancing physical accessibility, our research focuses on designing visually 

accessible spaces. We define the visual accessibility of an environment as the degree to 

which vision supports travel efficiently and safely through the environment, assists in the 

perception of the spatial layout of key features in the environment, and helps to keep 

track of one’s position and heading in the environment. The major factors affecting visual 

accessibility include the vision status of the pedestrian (including acuity, contrast sensitivity 

and field of view), geometrical properties of the architectural design (including landmarks, 

objects and obstacles), the nature and variation of lighting (natural and artificial), surface 

properties (including color, texture, gloss), and contextual cues (such as the visible presence 

of a railing signifying the presence of steps even if the steps themselves are not visible). 

Our goal is to provide tools to enable the design of safe environments for the mobility of 

low-vision individuals and to enhance safety for others, including older people with normal 

vision, who may need to operate in visually challenging conditions.

In this paper, we describe the development of a computer-based design tool for identifying 

potential mobility hazards in public spaces such as a hotel lobby, subway station, or eye-

clinic reception area that may be difficult or impossible to see by low vision individuals. 

This analysis can be performed at the design phase of a project, where corrections are 

often far easier than after construction has been completed. Ultimately, we hope that such 

tools can assist the architectural design professions in evaluating and improving visual 

accessibility, thereby enhancing mobility and quality of life for people with low vision.

Low vision can result from a wide range of eye and vision disorders. The functional 

consequences of low vision include reductions in acuity, contrast sensitivity, and visual-field 

loss. Acuity is the most widely used metric for visual impairment, and often the only 

measure readily available concerning an individual person with low vision or available as 

a standard of visibility. Recent quantitative models of pattern visibility in both normal and 

low vision rely on measures of contrast sensitivity across a range of spatial frequencies, as 

summarized in the human contrast sensitivity function (Campbell and Robson, 1968). In the 

computational flow described in this paper, visual deficits are represented by embedding 

contrast-sensitivity functions for low-vision observers in the computational flow. By so 

doing, we are focusing on identifying features seen or not seen by people with specified 

levels of acuity and contrast sensitivity.

Acuity refers to the ability to see fine detail. In clinical settings, it is commonly quantified 

using a Snellen fraction (e.g., normal visual acuity is 20/20 in the U.S. or 6/6 in metric 

units). Increases in the denominator of the Snellen fraction correspond to decreases in 
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acuity. 20/40 can be taken as the boundary for low vision. LogMAR values, which are a 

logarithmic scale for acuity are also used, with normal vision indicated by logMAR 0.0 

and numerically increasing logMAR numbers corresponding to decreases in acuity. For 

instance, the logMAR value corresponding to 20/40 acuity is log10(2) = 0.30. Contrast 
sensitivity refers to the ability to see small changes in luminance. One common way to 

quantify contrast sensitivity is the score obtained from the Pelli-Robson chart [Pelli, Robson, 

& Wilkins, 1988], which is a logarithmic scale in which 0.0 corresponds to an ability to see 

only the highest possible contrast and 2.0 corresponds to normal vision.

Our approach to evaluating hazard visibility for low vision, described below, makes use of 

measures of acuity and contrast sensitivity. In the Discussion section, we will consider two 

limitations of this approach. First, we do not take patterns of visual-field loss into account. 

Someone with a severely restricted field of view may miss seeing a hazard, such as a step, 

because some or all of the hazards are not in their field of view. Second, in real-world 

scenarios, lighting variations, visual light and dark adaptation, glare, and other variables may 

compromise to some extent clinical estimates of acuity and contrast sensitivity.

When considering visibility, architects and lighting designers typically use illuminance-
based design practices that focus on the intensity of illumination sources and the reflectivity 

of surface materials. Illuminance-based design evaluates the total luminous flux incident to 

a surface and does not take into account the interaction of light with the surface’s material 

properties. In particular, illuminance-based design does not consider the interaction between 

illuminance, surface reflectance, surface geometry, and viewpoint. Luminance-based design, 

on the other hand, evaluates the intensity of light emitted from a surface in a given direction 

and better represents what we see. The visibility of hazards and other features depends on 

the angular size of these features at the viewpoint in question and the luminance contrast 

between the feature and its surround. With low vision, inadequate angular size and contrast 

differences often make hazards impossible to see. Thus, luminance-based design approaches 

in which the careful positioning of light sources, surfaces, and the viewer, together with 

the specific optical properties of the surfaces, can have a profound effect on low-vision 

visibility.

Figure 1, produced using the Radiance Rendering System [Ward & Shakespeare, 1998], 

illustrates the importance of luminance-based design. On the left is a box with the materials 

on each side having the indicated reflectivity. In the center image, rendered with a 2’ x 4’ 

lensed down light, the structure of the box is clearly visible. In the right image, the light 

source has been moved 2’ horizontally closer to the box. Now, there is no visible boundary 

between the top and right surfaces at the surface joint marked by the arrow, despite the 

large difference in reflectivity. A design process that fails to note the poor visibility of two 

adjacent surfaces differing by a factor of four in reflectivity is going to be hard pressed to 

expose potential problems with hazard visibility, particularly for low vision viewers.

As pointed out in a report by the National Institute of Building Sciences [NIBS 2015], 

“luminance-based design is not well understood by designers, partly because there are few 

computer programs that model luminance in a way that is practical for use as a design tool.” 

Low vision involving loss of acuity adds additional problems for the designer. For example, 
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a feature representing a potential trip hazard may present a challenge for someone with low 

vision if it subtends too small a visual angle from viewpoints on the approach path, even if 

it is well lit and has a luminance contrast distinct from its immediate surround. In this paper, 

we describe a system that addresses these limitations. Our novel approach, unavailable in 

current design systems, integrates the quantitative photometry of luminance-based design 

with empirical investigations of low vision to predict the visibility of mobility hazards 

during the design process.

The difficulty of quantifying the relationship between visibility and lighting has long 

been recognized (e.g., [Rea 1986, Rea & Oulette 1991; Zaikina et al. 2015]), but few 

effective approaches have been developed. See [Van Den Wymelenberg 2016] for one 

exception, in which luminance-based metrics were found to better predict visual preference 

compared to illuminance measures. The IES has produced many recommendations for 

lighting in architectural environments, and more recently, recommendations for luminance 

and surface reflectance ranges for particular tasks and environments. Additionally there 

are NFPA (National Fire Protection Association), OSHA (Occupational Safety and Health 

Administration), and FDA (Food and Drug Administration) codes related to emergency 

egress, safety, and food preparation illumination, yet there is no method to predict the 

visibility outcome of applying these recommendations and code requirements during the 

design phase of an architectural project and to evaluate the resulting implementation. 

We have recently described an acuity-calibrated filter model which predicts how target 

visibility depends on reduced visual acuity and contrast sensitivity [Thompson 2017]. In the 

present paper, we describe an architectural workflow in which this model is combined with 

luminance-based design to predict the visibility of architectural features.

The usefulness of a visibility prediction toolset is magnified when a designer with normal 

vision is attempting to design accessible environments to accommodate people with low 

vision. In this situation, currently the designer must conform to recommended practices 

[ANSI/IES 2016] and hope that the resulting design choices enable the environment to be 

safely navigated. The luminance patterns of the environment, through which a person with 

reduced acuity and contrast sensitivity perceives and navigates a space, are typically not in 

the designer’s experience. With no low vision scene analysis tools in their workflow, their 

capacity to evaluate design choices is limited to guidelines which do not take into account 

the luminance characteristics of the specific design in question.

The remainder of this paper describes a prototype we have built for visibility prediction. 

We start by generating photometrically accurate renderings of the space under design. These 

renderings are capable of reproducing accurate luminance and contrast values, which are 

necessary for predicting the visibility of low-vision hazards. This luminance and contrast 

information is then processed in a way that eliminates visual structures with contrasts below 

the detectability threshold specified by clinical measures of acuity and contrast sensitivity. In 

parallel, information about the geometric structure of mobility relevant features is extracted 

from the design model. Visibility and geometric information are then matched in a way that 

predicts what would be seen or not seen from a particular viewpoint by an observer with low 

vision. A numeric Hazard Visibility Score is introduced which is particularly useful when 
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comparing design options. We conclude with an empirical assessment of the validity of this 

Hazard Visibility Score.

2. Basic Approach

We define a mobility hazard to be any physical structure in the environment that poses an 

impediment to safe travel along a plausible path of travel. This includes both barriers to 

travel (e.g., walls, benches) and ground plane hazards (e.g., stairwells, single steps, and trip 

hazards). The nature of mobility hazards sometimes depends on the mode of locomotion 

(e.g., walking vs. wheelchair travel). A visibility hazard is a mobility hazard that is difficult 

for a person with low vision to detect. Visibility hazards are viewpoint specific. This requires 

that a check for visibility hazards be done over a representative set of potential travel paths. 

The nature of visibility hazards depends on the kind and severity of the visual deficit of the 

viewer. The multiplicity of visual deficits complicates the process of identifying potential 

visibility hazards. In the work described here, we allow the designer to specify a level 

of low vision to drive the analysis through the common clinical measures of acuity and 

contrast sensitivity. For convenience, we also allow the use of generic categories of low 

vision (e.g., mild, moderate, severe, profound, see Table 1). It is important to note that 

these characterizations of visual proficiency are imperfect measures of the ability to perform 

complex visual tasks. On average, they can provide predictions about the performance of a 

population, but they are less useful for making such predictions about an individual.

We start with the assumption that visibility hazards exist any time a geometric feature 

representing a physical hazard or obstruction is not associated with a corresponding 

luminance feature that can be seen by someone with low vision. While it might be 

desirable to analyze geometric and visible features at a semantic level (e.g., step, wall, 
protrusion, etc.), the state-of-the art in computer vision does not support this functionality 

with sufficient generality. Instead, we presume that the presence of mobility hazards is 

spatially correlated with the presence of localized geometric discontinuities. While not all 

localized geometric discontinuities constitute mobility hazards, almost all mobility hazards 

involve such localized discontinuities. The same approach is used for visible features, where 

we presume that the presence of semantic visual features is usually spatially correlated with 

localized luminance discontinuities. Again, while not all localized luminance discontinuities 

are part of hazard relevant semantic level visual features, almost all semantic level visual 

features involve such localized discontinuities. We tie in low vision to the analysis by 

basing judgments of the detectability of localized luminance discontinuities on the output 

of our filter model for low vision. In our approach, we select a region of interest around 

a potential mobility hazard within the view and analyze the geometry boundaries and their 

relationship to luminance boundaries. Geometry boundaries without co-located visually 

detectable luminance boundaries are potential hazards to a person with low vision.

Figure 2 shows the major components of the analysis. Boxes show processing steps. 

Unboxed text indicates data that is input to and output from these processing steps. 

The inputs are from 1) a building information modeling system specifying the original 

architectural design (most of the examples presented here use Revit), 2) additional 

information about materials and lighting, 3) a task analysis specifying the location and 
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nature of physical mobility hazards and the regions of the architectural space from 

which they are likely to be viewed, and 4) a low vision specification in terms of either 

broad categories of visual impairment or specific levels of acuity and contrast sensitivity. 

System outputs are 1) predicted visual contrast and 2) an indication of predicted visual 
hazards. A visualization is produced from predicted visual contrast which shows only those 

environmental features predicted to be visible by an individual with the specified level of 

visual impairment. The predicted visual hazards can be overlaid on rendered views of the 

CAD model to warn of physical features that may be difficult or impossible to see under the 

specified levels of low vision.

Figure 3 shows an example of the intermediate and final results of the process depicted in 

Figure 2. The upper left image shows a Radiance rendering of a model of a Washington, 

DC, subway station. Radiance is one of the few systems available for producing accurate 

luminance reconstructions of this type. The upper right image shows a version of the upper 

left image that has been stripped of contrast changes that are predicted to be undetectable by 

someone with severe low vision. The middle left image marks all of the detected geometry 

boundaries in the original CAD models with green lines. The middle right image marks 

all of the predicted luminance boundaries in the low vision image. The bottom image 

is produced by performing a matching operation on the two middle images. Geometry 

boundaries are colored using a visualization transfer function with a spectrum ranging from 

green for boundaries likely to be visible under the specified viewer and environmental 

conditions, to shades of red for geometric boundaries unlikely to be visible under those 

conditions. These are the potential visual mobility hazards in the scene.

The processing consists of two main parts. The first converts the original architectural 

specification into a model suitable for use by the Radiance system for the analysis and 

visualization of lighting in the design, and then extracts needed information from that model. 

It involves the gray boxes in Figure 2 and the Rendering, Filtering, and Geometric edges 

steps in Figure 3. Radiance is used to produce rendered views from the desired viewpoint(s). 

Importantly, the renderings provide physically correct, photometrically calibrated luminance 

in a high dynamic range (HDR) format [Grynberg 1989; Ward 1994; Ward & Shakespeare 

1998], features not available from most other rendering packages. Radiance is also used to 

produce viewpoint specific information about model geometry, including position, distance 

from the viewpoint, and surface orientation over the same grid of pixel points as used 

for luminance. The second part of the analysis process, shown by the white boxes in 

Figure 2 and the remainder of Figure 3, starts by applying a computational model of 

visibility under reduced acuity and contrast sensitivity to the rendered luminance to predict 

which contrast boundaries will be visible in the view under a particular level of visual 

impairment [Thompson 2017] and by applying a local discontinuity detection process to the 

rendered geometry to identify potential mobility hazards. The predicted visibility can then 

be visualized in two ways: (1) providing the designer with a sense of what the when-built 

structure would look like under low vision (upper right in Figure 3), or (2) the predicted 

visibility can be combined with the information about geometric discontinuities, yielding a 

labeled output showing the presence of potentially hazardous geometric structure unlikely to 

be visible (reddish lines in lower image in Figure 3).
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3. Our System in Action

In our first example, we describe a workflow involving a staircase in the Orlando 

Lighthouse, a facility dedicated to employing low vision and blind workers, and where 

many employees have severe low vision. The architect’s REVIT model and specifications 

were provided and HDR photographs of the stairwell were taken during a site visit after 

completion. The description is a possible reconstruction of the design process, since our 

involvement in the project did not start until construction was complete. The building was 

renovated to add additional workspace for low vision employees and to increase visual 

accessibility to existing office space by changing lighting and materials. The staircase used 

in this example is adjacent to the entrance lobby and has considerable use.

One of the limitations in doing research in this area is that it is often difficult to get access 

to real models. Fortunately, Lighthouse Central Florida and their architects provided access 

to the remodelled building and models, but after the design was implemented. We looked 

at the design (specifically the stairway) and reconstructed the kinds of issues that would 

have occurred during the design process, including materials, lighting, etc. Our goal here 

is to outline the process as a skilled designer might have approached the project from the 

beginning.

Figure 4a is a rendered view looking down a stairway that is clearly a mobility hazard. 

Figure 4b is the output of our filtering process applied to this image, with the filter set to 

represent moderate low vision. The filtered image provides a rough indication of the overall 

visibility, but such interpretations are subjective and difficult to make in a consistent manner. 

What is needed is a way to quantify the visibility of specific mobility hazards. To do this, we 

use an automated analysis to determine an estimate of the visibility. The calculation arises 

from the assumption that the visibility of a real-world structure is related to how well the 

visible contours of the object predict the location of actual geometric discontinuities on or 

bounding the object (Figure 4c), where red lines indicate that the geometry is predicted to 

be not visible and green lines are predictions of visible geometry. This visualization avoids 

the need to interpret subtle, localized image changes as to whether or not they correspond 

to actual scene structure that might pose a mobility hazard. It is, however still hard to 

interpret because it lacks a holistic characterization of the hazard due to substantial clutter 

that is not related to mobility impairments. In this particular case a visibility score computed 

over the whole image has little relevance, since it would include the upper wall edges and 

features distant from the identified hazard, diluting the score’s relevance. What is needed 

is a way to quantify the visibility of specific mobility hazards. Our solution involves the 

designer selecting a Region of Interest (ROI) containing the hazard (Figure 4d), creating an 

associated mask (Figure 4e) after which the automatic analysis determines an estimate of the 

visibility of geometrical structure within the ROI (Figure 4f).

Figures 4g and 4h show the results of extending the analysis to produce a quantitative 

Hazard Visibility Score (HVS) characterizing the predicted visibility of mobility hazards 

for a particular level of low vision. (Details are provided in the Implementation section). 

An HVS of 1.0 indicates a prediction of high visibility, lower values are associated with 

prediction of lower visibility, and an HVS of close to 0.0 indicates that little or no geometric 
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structure is visible. The HVS of 0.45 predicts the staircase hazard as slightly visible at a 

moderate low vision setting. The HVS of 0.35 for the edge of the first step (Figure 4h) 

is even lower, an indication of a potentially dangerous hazard. As we will demonstrate, 

the HVS provides a valuable metric to compare the success of design solutions to improve 

hazard visibility.

Figures 5a–d present the computed HVS of the same visible portion of the stairway for 

four low vision settings: mild, moderate, severe, and profound. Note that the analysis for 

profound (the right-most column in 5a) shows that the hazard is not visible at that level 

of visual performance. In Figure 5b, the upper and lower floor surfaces were made darker 

than in Figure 5a. Note the increased visibility of the top and bottom step edges, caused 

by the increase of contrast between floor and step. The HVS has improved considerably in 

the mild filtering condition but the other HVSs remain relatively low. Figure 5c shows the 

effects on visibility of adding baseboards on either side of the stairs. The addition of a white 

tread grip strip results in the hazard predicted to be visible through severe low vision (Figure 

5d). The white strips appear to bloom together under profound low vision, decreasing the 

HVS. Nevertheless the profound low vision leading edge step has a HVS of 0.74 (Figure 

6), significantly more visible than the overall hazard. When comparing the HVS of the 

designer’s iterative modifications to the original default surface materials, it is clear that 

the overall visibility of the hazard has been significantly improved. The same model, with 

overhead lighting turned off, and the addition of carpet and low-level step lighting located 

on each side of the stairwell, prove to be visually accessible up to severe low vision (Figure 

7). Note that the black strips appear to have a slight visibility advantage over the white strips 

under this lighting condition.

It is possible to apply the low-vision filtering to HDR photographic images in field studies. 

The resulting images can provide subjective information about the visibility of hazards in a 

near to completed project. However, while the locations of luminance boundaries could be 

computed from photographs taken in the field, one would need the corresponding 3D models 

of the geometry in order to compare the luminance and geometric boundaries. Thus from 

photographs alone, the automated labeling of low-visibility hazards and the computation of 

a hazard visibility score (HVS) are not possible. Figure 8 compares an HDR photo of an 

actual constructed stairwell with severe low vision filtered versions of the real and modeled 

stairs. Though the realized stairwell was wider than in the REVIT model, the filtered images 

of the stair treads are highly similar.

As another example, a complex model of a Washington DC subway station was created from 

data collected on-site, with the permission of the Washington Metropolitan Area Transit 

Authority. The model was constructed using Radiance. The low contrast environment was 

rendered “as is” with the lighting, geometry, and material properties used in the actual 

station (Figure 9) and then with the addition of virtual area lighting, a reduction in indirect 

lighting, and a change of bench materials from a low value gray concrete to a whiter granite 

(Figure 10). HVS values were computed for the region surrounding the bench. Orange is 

used to mark regions with a luminance below 1 cd/m2. We exclude these regions from 

the analysis, other than flagging their location, since very low luminance requires special 

review not yet included in our visibility prediction model. These virtual modifications and 
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the resulting high HVS illustrate the usefulness of automated visibility analysis in exploring 

and demonstrating an improved design for safe passage for low vision travelers.

4. An Experiment with Low-Vision Subjects to Test Validity

We conducted an experiment with low-vision subjects to assess the validity of the 

predictions made by the Hazard Visibility Score (HVS).

Ten low-vision subjects participated. A prior experiment with seven normally sighted 

subjects with acuity artificially reduced with blur foils to 1.2 logMAR (within the range 

of our low-vision subjects) demonstrated a significant correlation between performance on 

our identification task (see below) and the HVS score, providing us with guidance on the 

size of our participant group. The mean age of our low-vision participants was 46.9 years, 

range 21 to 66, and there were six males and four females. We recruited the subjects from 

the roster of University of Minnesota Laboratory for Low-Vision Research. Our primary 

selection criterion was to recruit subjects with acuities ranging from moderate to profound 

low vision in the range 0.8 to 1.8 logMAR. We did not impose restrictions based on 

diagnosis because our computational analysis is not diagnosis specific. We will return to this 

limitation in the discussion. The resulting sample of subjects had Snellen acuities ranging 

from 20/126 to 20/914 (0.8 to 1.66 logMAR) measured with the Lighthouse Distance Visual 

Acuity chart, and contrast sensitivities from 0.2 to 1.65 measured with the Pelli-Robson 

chart. Primary ocular diagnoses included: three with aniridia, two with retinitis pigmentosa, 

two with congenital cataract, and one each with glaucoma, optic nerve atrophy, and macular 

hole. The protocol was approved by the University of Minnesota IRB and each subject 

signed an IRB-approved consent form.

Testing was conducted in a windowless laboratory room with overhead fluorescent lighting. 

The seated low-vision subjects viewed a computer display (NEC E243WMi-BK 16:9, 24” 

widescreen monitor). At the viewing distance of 32 inches, the monitor subtended 34 

degrees horizontally and 20 degrees vertically, and was calibrated to produce luminance 

and contrast values matching those in the simulated test space. The Radiance-generated test 

images showed a walkway simulating a viewpoint 3.05 m (10 feet) from the architectural 

feature to be identified. Elsewhere, we have shown good correspondence between the 

patterns of errors made by observers viewing a real visual environment compared with 

viewing the same scene on a display matched for local luminance, visual angle, and acuity 

levels [Carpenter 2018]. While there are advantages to testing viewers in a real-world 

environment, use of computer-generated images made it feasible to conduct many more test 

trials and to conveniently vary viewpoint, lighting arrangement and target type.

In each test trial, the computer screen displayed an image containing one of five geometries 

at the critical location—a large step up 17.8 cm (7 inch) height, a small “tripper” step up 

2.54 cm (1 inch), a large step down 17.8 cm (7 inch), a small “tripper” step down 2.54 cm (1 

inch) or a flat, uninterrupted continuation of the walkway.

To vary the viewing conditions and the underlying HVS score, the geometries were 

illuminated by five different lighting arrangements, and by five slightly different viewpoints. 
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In order to ensure that the set of test images would be likely to produce a range of 

performance above chance guessing and below near-perfect accuracy for the low-vision 

subjects the images were first tested on normally sighted subjects who wore blurring 

goggles with Bangerter foils that artificially reduced acuity to average values of 20/316 

(1.2 logMAR) and 20/796 (1.6 logMAR) [Odell 2008].

Figure 11 shows 5 examples from the stimuli, sampling five variations in target type, 

lighting, and viewpoints. Boxes in the figure outline the Regions of Interest (ROIs) used in 

computing the HVS scores. In total, there were 125 test images (5 geometries x 5 lighting 

arrangements x 5 viewpoints).

Each subject was tested twice on each image in randomized order for a total of 250 trials.

Each test image was presented for two seconds. Pilot testing revealed that this duration 

was long enough for subjects to inspect the display but short enough to permit the entire 

250-trial sequence within a two-hour session. Following each image presentation, the low-

vision subject indicated verbally which of the five geometries they believed was present. 

The experimenter recorded the response. The response was scored as correct if the subject 

accurately reported the geometry in the test image, and incorrect otherwise.

Each of the 125 images was analysed by our hazard visibility software within a region of 

interest containing the critical geometry. Taking the subject’s acuity and contrast sensitivity 

into account, an HVS score was computed for each image and each subject. If the HVS 

score is a valid predictor of feature visibility, we expected to find an association between 

the probability of our subjects giving the correct response and the HVS scores of the test 

images. Since the independent variable, HVS, is continuous, and the dependent variable, the 

subject’s correct or incorrect trial response is binary, we analyzed the data using logistic 

regression (R software version 3.6.0, function glmer in package lme4, version 1.1–23). The 

logistic regression tested the relationship between the HVS score and the natural log of the 

odds by the following formula:

Ln P/ 1 − P = A * HVS + B

where P is the empirical probability of a correct response, HVS is the Hazard Visibility 

Score generated by our software, and A and B are slope and intercept parameters of the 

regression fit.

Each subject performed the 250 trials, and HVS scores were computed on a subject-by-

subject basis, yielding 2500 trials each with a correct or incorrect outcome and associated 

HVS value. Figure 12 shows the results of a logistic regression for data aggregated across 

the 10 subjects. The vertical axis is the logarithm of the odds (Ln(P/(1-P)) and the horizontal 

axis shows the HVS scores. The fitted logistic regression model is Ln(P/(1-P)) = 3.46*HVS 

- 0.62 (see Figure 12).

The model shows a significant positive correlation between the odds and HVS. The 

95% confidence interval of the slope is (3.07, 3.85), p<.001, indicating that the slope is 
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significantly larger than 0.0. The intercept has a 95% confidence interval of (−1.23, −0.01), 

p<.05. See Table 2.

The effect size of a logistic regression model can be represented by its odds ratio (OR), 

computed as exp(A) where A is the slope. The OR of our fitted logistic regression model is 

exp(3.46) = 31.8.

When the data were analysed separately for the ten low-vision subjects, all ten individually 

fitted logistic regression models had slopes significantly greater than zero (p < .05), 

demonstrating a significant relationship between each subject’s performance and the HVS 

score.

These empirical results indicate that the HVS score has predictive value in determining 

the performance of visually impaired subjects in a task involving recognition of 3-D 

architectural geometry. This finding is a preliminary first step in validating our software. The 

experiment used only one type of hazard and had a limited sample of low-vision subjects. 

Future work will be required to validate our software’s prediction of visibility across a wider 

range of subjects and architectural configurations.

5. Implementation

Architects typically use CAD systems with graphical interfaces, such as REVIT, to construct 

virtual 3D models. Most of these modeling systems lack the precise photometric simulation 

capabilities provided by Radiance. Radiance also supports the ability to export local 

geometric properties such as surface position and surface normal that are registered at the 

pixel level with luminance. The availability of registered luminance and local geometry 

is a requirement of our automated visibility analysis workflow. To facilitate integration 

of our low vision visibility analysis into the typical architect’s work flow, we start by 

converting REVIT models into a Radiance format using SketchUp Pro with the Open 

Source Groundhog extension [Groundhog 2017]. (For some of our initial studies, CAD 

Models of scenes were created directly in Radiance, using a text based, command line 

interface.) To assure material surfaces are reasonably represented, reflectances are calibrated 

to closely approximate the characteristics of physical samples of finishes provided by the 

interior designer and related specifications. Luminaire locations and orientation are similarly 

checked, adjusted or inserted as indicated on the related Lighting Plan and Luminaire 

Schedule. Finally, manufacturer supplied luminaire photometric files are referenced to the 

luminaire locations. This process is similar to the workflow necessary to accurately use 

many commercial lighting design analysis tools, most of which only generate illumination 

data, not the photometrically accurate surface luminance calculated by Radiance. The 

completed Radiance model (geometry, materials, photometry) is then oriented correctly 

to North in order to integrate accurate daylighting in conjunction with electric lighting. 

Views, often referred to as virtual camera locations, are located within the model where the 

scene contains features of potential navigational or hazard interest, such as stairs, ramps, 

doorways, permanent furnishings and other related architectural features. View heights range 

from wheelchair eye level to standing eye level 101.6 to 177.8 cm (40” to 70”). The 

lighting conditions, which might include daylight sequences and day/night time electric light 
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settings, are then determined. The Radiance rendering procedure begins with compiling the 

scene’s geometry, materials and photometry which is then processed for a viewpoint to 

render an HDR image. The HDR image, vantage point and metrics required for the visibility 

analysis phase are extracted.

We have previously reported on a computational model for simulating visibility under 

varying amounts of reduced acuity and reduced contrast sensitivity [Thompson 2017]. 

The model uses a non-linear filtering approach adapted from [Peli 1990] to transform a 

photometrically calibrated input image into a new image in which only image structure 

above specified acuity and contrast limits is preserved. The goal is not to simulate the 

subjective experience of viewing the scene under low vision conditions, but rather to 

produce an image for viewing by those with normal vision in which the only visible 

features are also visible to those with the specified level of low vision. Low acuity is 

often simulated by simple blurring. More control over the nature and amount of acuity loss 

can come from convolving the original image with the desired contrast sensitivity function 

(CSF). This approach still depends on the visual sensitivity of the user and, even more 

importantly, is limited in simulating loss of contrast sensitivity. Peli [1990] used a band-pass 

filtering approach that computes calibrated Michelson contrast for each frequency band. 

Meaningful thresholding can be applied locally to these bands to remove variability below 

the visibility limits and then the bands can be reassembled into a single image. [Thompson 

2017] extended this approach by making it controllable using the standard measures of 

acuity and contrast sensitivity. For low vision, this task is complicated by the fact that the 

clinical measure of acuity references a different portion of the CSF than do the common 

measures of contrast sensitivity. (See [Peli 1990; Thompson 2017] for more details.) This 

transformed image can serve as a quick look tool for a designer—if a mobility hazard cannot 

be seen in the processed image, it is likely a risk to low vision individuals.

Automatic analysis involves comparing the spatial locations of luminance and geometric 

boundaries. This calculation arises from the assumption that the visibility of a real-world 

structure is related to how well the visible contours of the object predict the location of 

actual geometric discontinuities on or bounding the object. We do this by looking over a 

user specified region of interest covering the actual location of the potential hazard and 

computing the distance in visual angle between each geometric boundary point and the 

nearest visible luminance boundary point. Visual acuity is closely related to visual angle. 

Someone with “normal vision” should be just able to read a high contrast printed character 

that subtends about 5 arc minutes—move the printed character twice as far from the viewer 

and it will have to be twice as big to be legible. Since we are evaluating visibility based on 

acuity, we need to work with angular units.

Luminance boundaries are found by applying the [Canny 1986] edge detector, as modified 

by [Fleck 1992], to the images generated by the [Thompson 2017] process. Hysteresis 

thresholding is used, with the high threshold set to include the top 40% of the gradient 

magnitude values at directional local maxima and the low threshold set to be 0.6 times the 

high threshold. Gaussian blur pre-smoothing is done using σ = 2 pixels. Because invisible 

contours are largely removed in our filtered images, edge detection thresholding is less 

sensitive to parameter setting than is often the case in image processing, but some care 
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is still required. There are no standard methods for estimating the location of geometric 

boundaries given the information available to us in our models and registered with the 

luminance data. We have developed two complementary methods that seem to work well 

(see Appendix), but many other approaches are possible.

Exact co-location of contrast and geometric discontinuities is not required, since the spatial 

localization of contrast boundaries is typically inexact. However, the amount of fine-scale 

image structure coincident with localized geometric structure is correlated with a local 

visibility measure which depends on the distance (measured as a visual angle) to the closest 

luminance edge from each localized geometric discontinuity. As a result, we compute the 

distance in visual angle between each point on a geometric boundary and the closest point 

on any luminance boundary. This closest-point distance, which can be efficiently computed 

using distance transforms such as described in [Barrow 1977; Felzenszwalb 2012], are 

used as a measure of the visibility of a geometric feature. Higher value of this measure 

is an indication that the feature is less likely to be detected under low vision conditions. 

For visualization purposes, a visualization transfer function is specified by mapping the 

angular distance to a hazard estimation using magnitude normalization and then a Gaussian 

weighting function:

h(i, j) = 1 – e–
dangle

2σℎ

2
(1)

where:  h   =   magnitude of hazard

 dangle   =   closest distance in units of visual angle

 σh   =   scaling parameter (0.75 for all examples presented here)

Many functions could be used, but the key is that they be smooth, monotonically decreasing, 

and approach 0.0 for angular distances beyond which a valid correspondence is likely to 

occur. Currently, the parameters of the transform are set empirically, based on an analysis 

of test cases marked up with actual geometry features, automatically computed contrast 

boundaries, and hand drawn locations of feature boundaries. This is fine when the tool is 

being used by a designer to explore the general visual accessibility of a space and to make 

choices about materials and illumination. However, substantial calibration will be required 

before the hazard visibility score can be used as part of a quantitative standard applicable to 

a wide range of environments.

Since knowing the likelihood of being able to see one point on a potential hazard is of 

limited value, we average the hazard value over all such points in each analysed image, 

producing the HVS. Since this equally weights each geometry point in the image, this is 

most often combined with a region of interest (ROI) specification that limits the computation 

to the specific areas with mobility hazards of questionable visibility.

All code written for this project is open source and accessible from (https://github.com/

visualaccessibility/DeVAS-filter).
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6. Discussion

The visibility tool described in this paper provides a proof-of-concept for a design process 

that uses (1) viewpoint-specific luminance-based analysis and (2) simulations of low vision, 

to aid in the creation of architectural spaces that are accessible to those with vision 

impairment. The goals are to provide designers with a tool for enhancing visual accessibility 

as a part of universal design, and to provide a starting point for luminance-based design 

standards.

Photometrically accurate renderings of an architectural model have at least a three-decade 

history, offering the potential for luminance based design, yet with the exception of perhaps 

the daylighting Roadway and Tunnel Lighting communities [Wienold 2006; Rockcastle 

2014; ANSI-IES 2018] luminance studies leading to design choices have not evolved into 

the architectural design workflow. Current lighting design practice has an essential reliance 

on metrics which could be reasonably calculated using emerging computing resources 

available in the 1980’s. Today computing speeds are exponentially faster enabling the 

viability of luminance based design. A practical approach to predicting what can and what 

cannot be seen, as part of a design process, has proven elusive, particularly when designing 

to include visual accessibility for people with low vision.

The design workflow examples we present illustrate a functional step towards designing 

directly by what should be seen, based on luminance and empirical investigations of 

low vision. The Lighthouse stairwell sequence, built from an architect’s REVIT model, 

demonstrates an iterative design process exploring material properties and their shape, 

resulting in safe visual passage for all but the most severely visually impaired. The stairwell 

night lighting comparison illustrates a collaborative visibility study between interior design 

and lighting design. The subway examples focus primarily on the effect of lighting to 

improve visual accessibility. The key factor used to compare the effectiveness of design 

choices in each of these examples is the Hazard Visibility Score, which delivers a single 

metric, a step towards compliance with possible future visibility standards and design 

practices.

Validating luminance-based design systems is intrinsically more complicated than evaluating 

illuminance based designs because viewpoint needs to be considered. Adding in 

considerations of low vision further complicate the effort because of the multiplicity of 

visual deficits that can occur. However, designers and those formulating safety standards 

need to accept this extra effort if they want the design to function as intended in the real 

world. We have provided examples of the sorts of studies needed to calibrate design systems 

to reflect the needs of people with low vision navigating through potentially hazardous 

spaces.

Our approach focuses on estimating the visibility of localized hazards, such as steps or 

benches. Factors in addition to visibility play roles in determining whether a person with 

low vision can recognize a hazard. For example, a person with severe peripheral field loss 

may not locate the target within their remaining small field of view (tunnel vision). Eye 

movements and head orientation will play important roles in determining whether the hazard 
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is seen. In other situations, prior expectations about upcoming hazards and visible cues 

such as hand rails or barrier posts may alert low-vision pedestrians about an impending 

hazard, even if the hazard itself is not visible. While recognizing the importance of these 

additional factors, we have adopted the view that feature visibility is usually a necessary, if 

not sufficient condition, for safely negotiating hazards.

Our software represents low-vision status in terms of acuity and contrast sensitivity. Acuity 

is the most widely used metric for vision status. It is used in demographic studies, as 

an outcome measure in clinical trials, and for statutory purposes. If measures of contrast 

sensitivity are also available, the performance of the software may be improved. Otherwise, 

empirically-based estimates of the covariation of contrast sensitivity with acuity are used. 

Many variables, in addition to acuity and contrast sensitivity, have an impact on low-vision 

mobility, including color vision, binocular depth cues, light and dark adaptation, and glare 

susceptibility. We acknowledge that our software does not account for the wide diversity 

of low-vision conditions encompassed by variations in these variables. We do believe that 

a measure of visibility based on acuity and contrast sensitivity, mediated by the human 

contrast sensitivity function, will provide a useful guide for assessing visual accessibility. 

Future elaboration of the software can build on the same principles.

We have briefly described a preliminary study with human subjects showing that recognition 

performance for stepping hazards is correlated with our software’s Hazard Visibility Score. 

Future validation studies and field evaluations need to be done to expand the range of 

architectural features, viewing conditions and low-vision subjects to fully determine the 

utility of our software. A major goal of future research will be to fine-tune the software 

parameters to maximize the validity of the visibility predictions. The parameter settings in 

the current implementation can undoubtedly be optimized with a broader range of testing 

but already demonstrate a measure of validity, enhancing our confidence in the general 

approach. The methods presented here can be used in conjunction with design software 

to estimate the visibility of key architectural features for people with impaired vision. If 

more extensive testing with this approach proves to be successful, its measures could be 

incorporated into design standards to enhance visual accessibility.

Future work includes considerations of glare and field loss. This will be challenging because 

relatively little is known about how the interactions between low vision and glare or field 

loss affect the ability to recognize hazards. The method for detecting geometric boundaries 

needs to be smarter in its analysis of the size and shape of potential hazards. Substantially 

more human subject data needs to be collected over a broader range of physical structures. 

Finally, it should be clear that this design approach requires close collaboration between 

the major design professions that contribute to a successful visual environment and with the 

specifications of low vision from the vision science community.

Acknowledgments

Lighthouse Central Florida provided site access to photograph the new stairwell and facilitated the assistance of 
Pete Hall, Associate AIA, WELL AP, the project architect who created the REVIT model. Greg Ward provided help 
with Radiance issues. Yichen Liu and Rachel Gage provided assistance with testing of human subjects.

Source of Funding

Thompson et al. Page 15

Leukos. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This work was supported by U.S. Department of Health and Human Services, National Institutes of Health, 
National Eye Institute BRP grant 2 R01 EY017835-06A1. All of the authors received support from this grant.

Biography

William Thompson is a Professor Emeritus in the University of Utah’s School of 

Computing. Previously, he was on the Computer Science faculty of the University of 

Minnesota. He holds degrees degree in physics from Brown University and in Computer 

Science from the University of Southern California. Dr. Thompson’s research lies at the 

intersection of computer graphics and visual perception, with the dual aims of making 

computer graphics more effective at conveying information and using computer graphics as 

an aid in investigating human perception. This is a multi-disciplinary effort involving aspects 

of computer science, perceptual psychology, and computational vision.

Rob Shakespeare is a lighting designer/consult specializing in dramatic lighting. With 

expertise in photometrically accurate lighting simulation, he co-authored, Rendering With 

Radiance: The Art and Science of Lighting Simulation, with Greg Ward. With a rich 

background in lighting for theatre, his projects, both national and international, include 

Retail, Commercial, Houses of Worship, Art Galleries, Historic Renovations, Residential, 

and Public Art Installations. He is Principal Designer for Shakespeare Lighting Design LLC 

and headed the MFA in Lighting Design at Indiana university. He has been a member of the 

DeVAS research team for 11 years.

Siyun Liu is a Ph.D. student in the Cognitive and Brain Sciences program of the Psychology 

department at the University of Minnesota. She has been working in the Minnesota 

Laboratory for Low-Vision Research since 2017. Her research interests lie in low-vision 

and navigation. She mainly uses behavioral testing to approach this issue.

Sarah Creem-Regehr is a Professor of Psychology at the University of Utah. She also 

holds faculty appointments in the School of Computing and the Neuroscience program at 

the University of Utah. Her research examines how humans perceive, learn, and navigate 

spaces in natural, virtual, and visually impoverished environments. Her research takes an 

interdisciplinary approach, combining the study of space perception and spatial cognition 

with applications in visualization and virtual environments. Her work in computer graphics 

and virtual environments has contributed to solutions to improve the utility of virtual 

environment applications by studying human perception and performance.

Daniel Kersten is Professor of Psychology and a member of the graduate faculties in 

Neuroscience, and Computer Science and Engineering at the University of Minnesota. His 

research combines computational, behavioral, and brain imaging techniques to understand 

human visual perception. He is a recipient of the Koffka Medal and is widely recognized for 

his contributions to Bayesian theories of object perception. Dr. Kersten has published over 

100 papers and book chapters, many of which cross traditional disciplinary boundaries. He 

is currently working on neural mechanisms underlying the perception of human bodies and 

methods to predict scene visibility in the design of public spaces.

Thompson et al. Page 16

Leukos. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gordon Legge is a Distinguished McKnight University Professor of Psychology an 

Neuroscience at the University of Minnesota. He is the director of the Minnesota Laboratory 

for Low-Vision Research, and a founding member and scientific co-director of the Center 

for Applied and Translational Sensory Science (CATSS). Legge’s research concerns visual 

perception with primary emphasis on low vision. Ongoing projects in his lab focus on 

the roles of vision in reading and mobility, and the impact of impaired vision on visual 

centers in the brain. He addresses these issues with empirical studies with human volunteers, 

computational modeling, and brain-imaging (fMRI) methods.

7.: Appendix

Finding Geometric Discontinuities

Geometric discontinuities are found using two tests applied to geometric information about 

the location and orientation of surface points derived from the Radiance model describing 

the design space. Each test is evaluated over a n by n image patch centered on a pixel of 

interest, where n is an odd integer ≥ 3. (n = 3 for all examples presented here.) The first 

test is designed to detect geometric difference associated with occlusion, which often occurs 

due to surface boundaries of features such as steps and walls that can impede mobility. 

The presence of occlusion is in part dependent on viewing position. One of the low-level 

geometric features we have available to the analysis is the length of the line-of-sight ray 

from the viewing position to every visible surface point in the rendered image. This suggests 

that occlusion boundaries could be detected by applying an edge detector algorithm to this 

distance data. However, this does not work well when the lines of sight intersect the surface 

at a small glancing angle, since the difference in the line of sight distance to adjacent pixels 

can be large, even in the absence of occlusion boundaries. This problem is address by using 

a technique less affected by the relationship between the line-of-sight and the orientation 

of surfaces in the patch. The approach involves determining the average distance between 

surface points in the patch and a plane passing through the center point of the patch and with 

an orientation matching the orientation of the modeled surface at the center of the patch:

docclusion(i, j) = max( – 1
m ∑

k, l
(P(i + k, j + l) – P(i, j)) ⋅ N(i, j ), 0) (2)

where:   docclusion  =   geometric difference associated with occlusion at a particular image location

  m  =   n ( (n − 1)/2 )

  P  =   three-dimensional model location associated with the line-of-sight corresponding to a 
particular image location

  N  =   three-dimensional surface normal corresponding to a particular image location

and k and l range from – (n – 1)/2 to (n – 1 /2. The value of m is based on the average 

number of patch points on the occluded surface when the center of the patch is in fact on 

a surface boundary. Negating the sum and bounding it below by 0 has the effect of making 

docclusion positive only when the average deviation of position point in the patch and a plane 
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passing through the center point of the patch with an orientation matching the orientation 

of the modeled surface as the center of the patch is behind the center point location from 

the perspective of the viewing location. This is based on the fact that surface normals of 

visible surface points always point towards rather than away from the viewing location. An 

occlusion discontinuity is presumed to be located anywhere the directional local maxima of 

docclusion is greater than tocclusion, where tocclusion is an appropriately chosen threshold value 

(tocclusion = 2 cm for all examples presented here).

The second test is designed to detect surface creases, which often correspond to steps and 

other orientation change of walking surface, floor-wall boundaries, sharp bends in wall 

orientation, and the like. This is done by computing the average over the patch of the 

difference of surface orientations at equal but opposite distances from the patch center:

dorientation(i, j) = 1
m ∑

k, l
cos–1 N(i + k, j + l) ⋅ N(i – k, j – l) (3)

where:  dorientation   =   geometric difference associated with orientation discontinuities at a particular image 
location

 m   =   (n + 1)((n − 1)/2)

 N   =   three-dimensional surface normal corresponding to a particular image location

and k and l are such that the summation ranges over all distinct pairs of pixel locations 

in the patch that are at equal but opposite distances from the center pixel. An orientation 

discontinuity is presumed to be located anywhere a directional local maxima of dorientation is 

greater than torientation where torientation is an appropriately chosen threshold value (torientation 

= 20° for all examples presented here).

These thresholds were determined empirically, based on 6 test models. The results were 

quite stable, suggesting that a more accurate and precise set of thresholds should be easily 

established.
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Figure 1. 
Illumination and reflectivity alone are not enough to predict visibility. Two surfaces under 

the same illumination but differing in reflectance by a factor of 4X can look the same.
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Figure 2. 
Components of the analysis process. The discovery of hazards to low vision mobility 

requires many disparate processing steps.
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Figure 3. 
A graphical representation of the processing steps.
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Figure 4. 
Analysing low-vision visibility from a design model

(a) An HDR computer graphics image of a stairway in the Lighthouse building, modelled 

with REVIT and rendered with RADIANCE. (b) The original image, filtered to simulate 

the visibility under moderate low vision. (c) The results of an automated visibility analysis, 

with red lines indicate geometric structure predicted to not be visible and the green lines 

indicate geometry predicted to be perceivable. (d) The designer can indicate the boundaries 

of a portion of the image of particular concern (a region-of-interest (ROI)), which limits 
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where the analysis is performed. (e) Confirmation of the image pixels making up the 

ROI. (f) Finally, a visualized analysis of the location of mobility hazards, which might be 

missed if only reviewing the specified conditions of acuity and contrast sensitivity shown in 

figure b. We show below how to compute a numerical Hazard Visibility Score (HVS) that 

significantly aids in using this process to choose the optimal design option for the staircase 

and first step edge (g and h).
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Figure 5. 
The computed HVS of the same portion of the stairway for four low vision settings.

(a) Base level (same model as Figure 4).

(b) Upper and lower floor surfaces made darker than (a).

(c) Adding dark baseboards along the sides.

(d) Adding a white tread grip strip.
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Figure 6. 
Limiting HVS computation to the leading edge of the step.
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Figure 7. 
Adding night-time lighting and carpet flooring.
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Figure 8. 
Real stairway (left), photograph of real stairway filtered to simulate severe low vision 

(center), rendered image of stairway filtered to simulate severe low vision (right).
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Figure 9. 
“As is” rendering of subway station with visibility analysis.
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Figure 10. 
Subway station with exploratory lighting and material changes.
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Figure 11. 
Five sample images from the stimulus set representing five variations in each design 

attribute: geometry (flat, large step down, small step down, small step up, large step up), 

lighting (overhead, far panel, near panel, spotlight 1 and 2), and viewpoint (default, pivot 

left, pivot right, raised, lowered). The ROI, outlined by a box in each panel, extended 0.5 

degrees in visual angle around the step vertices. In the figure, the lines of the box marking 

ROI boundaries were thickened for clarity.
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Figure 12. 
Visualization of logistic regression model fitted with aggregated data from ten low-vision 

subjects. The figure plots odds (Ln(P/(1-P)) against HVS. The central line is the fitted 

regression line, while the gray area marks the confidence interval.
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Table 1.

Generic categories of low vision severity, specified in terms of acuity and contrast sensitivity. Allowing the 

use of such categorizations simplifies the use of a tools such as ours, at the cost of being able to clearly 

differentiate between the effects of acuity or contrast sensitivity. These categories are somewhat arbitrary 

and other authors often use other terms or other levels of low vision. (See [Colenbrander 2003] for more on 

categories of low vision and Section 5 of this paper for more on acuity and contrast sensitivity.)

Mild Snellen 20/45 (logMAR 0.35), Pelli-Robson score 1.48

Moderate Snellen 20/115 (logMAR 0.75), Pelli-Robson score 1.20

Severe Snellen 20/285 (logMAR 1.15), Pelli-Robson score 0.9

Profound Snellen 20/710 (logMAR 1.55), Pelli-Robson score 0.6
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Table 2.

The coefficient table for logistic regression model fitted with low-vision subject behavioral testing data.

Coefficients Estimate Standard Error Z value P value

Intercept (B) −0.6194 0.3093 −2.002 0.0452

Slope (A) 3.4595 0.1971 17.548 0.2e-16
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