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Abstract

Observational behavior analysis plays a key role for the discovery and evaluation of risk markers 

for many neurodevelopmental disorders. Research on autism spectrum disorder (ASD) suggests 

that behavioral risk markers can be observed at 12 months of age or earlier, with diagnosis 

possible at 18 months. To date, these studies and evaluations involving observational analysis tend 

to rely heavily on clinical practitioners and specialists who have undergone intensive training to 

be able to reliably administer carefully designed behavioural-eliciting tasks, code the resulting 

behaviors, and interpret such behaviors. These methods are therefore extremely expensive, time-
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intensive, and are not easily scalable for large population or longitudinal observational analysis. 

We developed a self-contained, closed-loop, mobile application with movie stimuli designed 

to engage the child’s attention and elicit specific behavioral and social responses, which are 

recorded with a mobile device camera and then analyzed via computer vision algorithms. Here, 

in addition to presenting this paradigm, we validate the system to measure engagement, name-call 

responses, and emotional responses of toddlers with and without ASD who were presented with 

the application. Additionally, we show examples of how the proposed framework can further risk 

marker research with fine-grained quantification of behaviors. The results suggest these objective 

and automatic methods can be considered to aid behavioral analysis, and can be suited for 

objective automatic analysis for future studies.
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1 INTRODUCTION

OBSERVATIONAL behavior analysis has played, and still plays, a key role for gaining 

insight into mechanisms and risk markers of impairing neurodevelopmental disorders such 

as autism spectrum disorder (ASD). The gold standard observational tool for ASD diagnosis, 

the Autism Diagnostic Observational Schedule (ADOS, [1]), requires several observational 

coding components, as does an assessment of early risk markers of ASD, the Autism 

Observational Scale for Infants (AOSI, [2]). Retrospective behavioral analysis of home 

videos helped discover early risk markers involving diminished social engagement and joint 

attention in children who were later diagnosed with ASD [3], [4], [5], [6], [7]. Research 

studies have documented several other early behavioral risk markers of ASD that emerge 

within the first months of life; these include atypical visual attention related tasks, such as 

difficulty responding or orienting to a name-call when engaged with an activity, difficulty 

disengaging from a stimulus when a competing one is presented, and non-smooth visual 

tracking [8], [9], [10]. Additionally, children with ASD may also exhibit atypical social 

behaviors such as, decreased expression of positive affect, decreased frequency of social/

shared smiles, decreased frequency of gaze to faces, and decreased eye contact [10], 

[11], [12]. These advancements in understanding early behavioral development aid in the 

development of tools for screening, diagnosing, and monitoring ASD.

Studies and evaluations involving behavioral analysis tend to rely heavily on medical 

practitioners and specialists who have undergone intensive training to be able to reliably 

administer the eliciting tasks and then code and interpret the observed behaviors. In 

behavioral studies, practitioners tend to code behaviors based on clinical judgment and 

thus tend to code behaviors more subjectively and at a lower granularity than is possible in 

computer analysis. In retrospective analysis, specialists can potentially go frame-by-frame 

to hand code behaviors; this is not only burdensome, but is not easily scalable for big 

data studies aimed at discovering or refining behavioral risk markers or for longitudinal 

tracking. As technology has advanced, new tools have emerged to assist in automatic and 

semi-automatic behavioral coding in infants and toddlers. Eye-tracking is a great example, 
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where technological advancements have made major impacts in the understanding of ASD 

behavioral development. Researchers are able to automatically code behavior from gaze and 

analyze it at fine-grained scales, leading to novel understandings of development of ASD, 

such as decreased preferential attention to eye and mouth regions of a face and impaired 

oculomotor control [13], [14]. However, standard eye-tracking systems for toddlers are still 

very constrained, specialized, and expensive, making the availability and reach of these 

systems limited. Research using automatic behavioral coding in less constrained settings, 

from schools to homes, have also been promising, where for example researchers explore 

tools and a dataset to develop and evaluate social and communicative behaviors relevant 

to child-adult interaction sessions [15]. In another recent work, researchers automatically 

encoded motor movements during mother-infant interactions to explore quality of interaction 

[16]. There has also been some important progress in augmenting the coding for visual 

attention tasks in infants with the use of just a single consumer grade camera [17], 

automating coding of head movement dynamics while watching movies of nonsocial and 

social stimuli [18], and monitoring facial expression imitation of a child as he/she interacts 

with a robot [19].

In this work we concentrate on the use of ubiquitous devices, like smart phones and 

tablets, developing a self-contained solution that does not need any additional hardware 

at all. Focusing on unconstrained and low-cost setup requirements is especially important 

since many middle and low resource communities lack access to specialists in ASD, 

thus lack access to any sort of evaluation. Additionally, unconstrained setups allow for 

behavioral monitoring in more naturalistic environments, such as at home. There is a desire 

for universal and well-validated behavioral tools to further research on early risk marker 

detection in ASD. The tools have to be universal in the sense that they are consistent and 

accessible across different user groups; and have to be validated in the sense that they have 

to agree with trained specialists, potentially helping to discover new biomarkers as further 

discussed in this paper. It is worth noting that ASD diagnosis involves much more than the 

detection of risk markers, but furthering the accessibility and development of screening tools 

for identifying toddlers that might be at risk and informing caregivers, is of great value. 

Although risk behaviors can be observed as early as at 12 months of age leading to diagnosis 

at 18 months, the average age of diagnosis in [sic] the United States is around ∼4−5 years 

old [20]. Not only can intensive early intervention provide long-term improvements for the 

child, but also starting intervention before the full syndrome is present can have an even 

greater effect on outcomes [21], [22], [23].

Towards these challenges and opportunities, our interdisciplinary team developed a self-

contained mobile application with movie stimuli designed to elicit and quantify specific 

ASD-related behavioral responses in toddlers. In a long-term effort, this project aims to 

develop low-cost, automatic, and quantitative tools that can be used by researchers and 

general practitioners in general settings (such as clinics or schools, and potentially by 

caregivers at home) to identify toddlers at risk for ASD or other developmental disorders.

We have developed a novel application of displaying movie stimuli on a mobile device 

which were expertly designed to capture the toddler’s attention and elicit behaviors 

relevant to early risk markers of ASD, including orienting to name call, social referencing, 
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smiling while watching the movie stimuli, pointing, and social smiling (smiling while 

social referencing) [10], [11], [24], [25]. Using the front facing camera of the mobile 

device, we capture the toddler and automatically code these event-related behaviors with 

computer vision analysis tools. The current study presented in this paper validates our 

automatic codings of engagement, name-call responses, and emotion with hand codings 

from specialists on a diverse population including toddlers with ASD and without ASD 

(non-ASD). We also present examples of behavioral analysis extracted from the validated 

automatic methods. In a parallel publication [26], we study the feasibility of the tools and 

paradigm here introduced and described in the home environment.

It is important to stress that while the framework here introduced can be used in any 

environment, from clinics to homes, it is not a passive monitoring system but a user friendly 

and active one. In passive systems, e.g., those used to monitor heart conditions via wrist 

watches, the signal to noise ratio is very poor, in particular when aiming at capturing 

highly accurate and risk informative behaviors within a short time span. With a closed-loop 

and self-contained system like the one here proposed, where carefully designed short and 

entertaining movie stimuli elicit behaviors (as in ADOS or AOSI standard approaches, but 

without the human in the loop), we obtain a much more valuable and interpretable signal.

2 DATA COLLECTION

2.1 Setup and participants

The work here presented is an extension of the preliminary work reported in a conference 

proceedings [27]. In addition to providing more details missing in the limited-space 

conference paper, we extend the cited work in a multitude of ways, including developing an 

automatic method for name-call prompt detection (critical due to the demonstrated relevance 

of this important stimulus), developing methods for engagement and attention analysis, 

increasing and diversifying the sample populations, including an additional movie stimuli 

for analysis, validating the proposed methods at a per-video and at a frame-by-frame basis, 

and demonstrating how the developed methods can be used to analyze additional behaviors 

relevant to risk markers such as head motion. The study was carried out in a pediatric care 

clinic with the approval of the Duke Health Institutional Review Board. Caregivers and 

toddlers visiting the clinic for an 18 or 24 month well-child visit, where all toddlers in the 

clinic are screened for ASD with The Modified Checklist for Autism in Toddlers – Revised 

with Follow-up (M-CHAT-R/F) [28], were invited to participate in the study. Children with 

known hearing or vision impairments and caregivers who could not complete consenting in 

English were excluded. During the well-child visit, caregivers were asked to hold the toddler 

on his/her lap while an iPad (4th generation) was placed on a stand at the toddler’s eye-level 

and set about 1 meter away, see Figure 1. To minimize distractions, the study was carried 

out in the doctor’s office while the caregivers and toddler were waiting for the doctor, 

and all other family members, persons, and the practitioner were asked to stand behind 

the caregivers and toddler. Reducing distractions in in general important for behavioral 

tests. Our companion at-home study, [26], shows that the algorithms here presented can 

be applied to studies carried-out in more natural environments as well. Caregivers were 

told they could interact with their toddler for the first 45 seconds of the session while a 
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‘mirror’ was presented on the screen (child can see him/herself on the screen, which is 

showing the tablet’s camera input). After this time, the caregivers were asked to remain 

quiet and not direct their child’s behavior or attention once the movie stimuli began. For 

the rest of the session, the iPad displayed different carefully designed movie stimuli on the 

screen (one stimulus at a time, with nothing else shown on the screen), while simultaneously 

recording the child’s face via the front facing camera at 1280×720 resolution and 30 frames 

per second. If a child screened positive on the M-CHAT-R/F, or a caregiver or clinician 

expressed concerns about ASD during the visit, then the child received gold standard 

diagnostic testing with the Autism Diagnostic Observational Schedule – Toddler Module 

with a child psychologist for final diagnosis [29]. As a validation set for the developed 

computational methods, we consider a total of 33 participants (18 non-ASD and 15 ASD) 

ages 16 – 31 months enrolled in our study. The selection of participants for the study was 

based on age distribution to represent the range of ages for both non-ASD and ASD groups. 

Full demographics are shown in Table 1.

2.2 Movie stimuli

A series of stimuli were presented on the iPad screen, consisting of short developmentally 

appropriate movies designed to engage the child’s attention and elicit specific behavioral 

and social responses (such as smiling at specific events during the movie, social referencing, 

and social or shared smiling). The movies incorporated a ‘name-call’ prompt where during 

the movie the practitioner, who was standing behind the child and caregiver, would call the 

child’s name loudly while the movie is still being displayed on the screen (this is of course 

easy to incorporate in an automatic fashion, e.g., via bluetooth speakers). Screenshots of the 

stimuli and the recording from the iPad are shown in Figure 1. We considered the set of 3 

movie stimuli, namely:

Bubbles.—Bubbles are presented at random and moving throughout the frame. A ‘name-

call’ is presented once during the movie. The total duration is 30 seconds.

Bunny.—A mechanical toy bunny is presented on one side of the screen and hops 

horizontally towards the other side, which contains a group of toy vegetables. As the bunny 

reaches the midpoint of its path, an animal puppet is introduced and temporarily disrupts 

the bunny’s path. A ‘name-call’ is presented once during the movie. The total duration is 66 

seconds.

Puppets.—Two animal puppets interact while building a block tower together and then 

knock it down. The tower is built three times and knocked down twice. A ‘name-call’ is 

presented once during the movie. The total duration is 68 seconds.

3 METHODS

We developed automatic video and audio analysis methods to study behaviors and child 

responses related to attention and facial expression. During the movie stimuli, the text 

‘Name’ appeared in the upper left corner to prompt the practitioner to call the child’s name 

once loudly (see previous section). Although it is known when the text appeared on the 

screen in relation to the movie, there is a need for automatic detection of the exact time the 
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practitioner said the child’s name. To this end, we also developed an automatic name-call 

detection based on the recorded audio. To validate the automatic methods, expert human 

raters coded emotion, name-call prompts, and name-call responses. While the computer 

vision and machine learning communities have now very advanced ground-truth data, 

including for human emotions, this is restricted to mostly healthy adults. It is therefore 

imperative to validate results with the population of interest, since it is well documented 

that children, and also children with developmental disorders, exhibit very different facial 

expressions when compared with such standard database populations.

3.1 Automatic coding

3.1.1 Name-call prompt detection—Since we know when in the movie stimuli the 

practitioner is prompted to say the child’s name for a name-call, a 4 second window of the 

recorded audio data is extracted around each of the known name-call text prompts starting 

1 second before the time when the text prompt occurred. Focusing on the power spectrum 

density (psd) of the extracted audio signal in the 300 – 1,200 Hz frequency range, we 

estimate when the adult practitioner said the child’s name by finding the time corresponding 

to maximum speech energy, see Figure 2.

3.1.2 Face pre-processing—A facial landmark detector and tracker was deployed to 

track 49 facial landmark points [30]. While other algorithms could be used without affecting 

the proposed paradigm, this one was found to be very efficient for the desired tasks. Using a 

subset of the landmark points, namely the inner and outer eye points and the nose spline (see 

Figure 1), faces were aligned and normalized to a frontal canonical face model by finding 

the affine transformation between them. In turn, this transformation also represents the head 

pose estimation. The facial landmark detector requires both eyes to be present in the frame, 

thus the range of estimated yaw pose θyaw is {−45°, +45°} (left-right head orientation). 

We assume that the toddler’s head orientation is directly correlated to if he/she is watching 

towards the stimuli. This assumption is supported by the ‘center bias’ property that is well 

established in gaze estimation literature [31], [32]. Engagement when the toddler is watching 

towards the movie stimuli is defined by frames when the toddler exhibits yaw poses with 

magnitudes less than 20°.

3.1.3 Head movement and turn detection—We estimate the child’s head movement 

by tracking the distances and pixel-wise displacements of central facial landmarks. We 

record the frame-by-frame displacements of landmarks around the nose, namely the two 

outer eye landmarks and the lowest nose landmark shown in Figure 1. The magnitudes 

of these displacements are heavily dependent on the distance the child is away from the 

camera. Thus these displacements need to be normalized with respect to the child’s distance 

from the camera. If depth information were available, this would be a trivial task; however, 

since it is not, we normalize the displacements with respect to the distance between the 

child’s eyes, keeping in line with the use of only available and ubiquitous hardware. At any 

given time point, the displacements from the nose landmark are normalized by a ±1 second 

windowed-average Euclidean distance between the eyes.
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Since the practitioner and caregiver are located behind the child, the child must transition 

his/her face from looking at the screen to looking behind him/her in order to perform a head 

turn (in response to name calling or social referencing for example). To detect head turns 

and distinguish between a head turn and just an occlusion of the face, we tracked yaw pose 

changes and defined two rules: to initiate a head turn the pose had to go from a frontal to 

one extreme head pose position (left or right); to complete a head turn the pose then had to 

come back from the same extreme position to a frontal position. More formally, to initiate 

a head turn the yaw pose had to change from a frontal position θyaw ∈ {−20°, +20°} to an 

extreme |θyaw| > 35° within a half-second window. Then to complete a head turn, the yaw 

pose had to change from the same extreme position back to a frontal position, |θyaw| ≤ 20°, 

within a half-second window. These time intervals represent a child performing a quick head 

turn (for example responding to a name-call prompt or social referencing). An example of 

this procedure is shown in Figure 3.

3.1.4 Pose-invariant emotion classification—To analyze children’s behavior in 

such an unconstrained setting, there is a need for an emotion classification method that 

can handle faces across varying poses. We employ a modified version of the robust pose-

invariant method described in [33], where we first learn a cross-modality and pose-invariant 

dictionary. This learned dictionary creates a mapping between facial information from both 

2D and 3D modalities and is then able to infer discriminative facial information even 

when only 2D facial information is available at testing time (see [33] for details). For 

training we use data from Binghamton University 3D Facial Expression database [34], 

synthesize face images with varying poses, and extract local binary patterns (LBP, [35]) and 

the distances between a subset of facial landmarks as features to learn the cross-modality 

and pose-invariant dictionary. Using the inferred discriminative 3D and frontal 2D facial 

features, we train a multi-class support vector machine [36] to classify four different facial 

expressions (angry, sad, happy, and neutral) provided by the standard Cohn-Kanade database 

(CK+, [37]). This method focuses on pose-invariant facial expression recognition in images, 

and outperformed previous state-of-the-art methods.

3.2 Human coding

Expert human raters coded facial expressions of emotion, head turns, and instances when 

a name-call prompt occurred. To code emotion, expert human raters were trained to detect 

facial action units (AUs) from the baby Facial Action Coding system (Baby - FACs, [38]). 

Since the movie stimuli were designed to elicit positive emotion and smiling responses, the 

expert human raters focused on coding ‘Happy’ emotion and coded it when activation of 

the zygomaticus major (AU12) occurred and coded ‘Other’ otherwise. Expert human raters 

coded ‘Not Visible’ when the childs face was covered, out of the field of view, or when more 

than half of the face was not visible due to head turning away from the camera. Head turning 

was also coded when a child turned his/her head to look at the practitioner or caregiver 

(since they were located behind the child). Raters were not blind to diagnostic group, but 

were blind to stimuli and videos were muted during coding to prevent the influence of 

vocalizations on the coding of emotions.
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Additionally, all name-call prompts were coded separately by a practitioner who marked the 

frames in the video when the child’s name was called. Coding by the expert human raters 

and practitioner were performed using the Nodlus Observe XT software Version 11.0 [39].

4 VALIDATION RESULTS AND ANALYSIS

We now present validation results on the automatic coding of engagement, name-calls 

including detecting the timing of the prompt and the children’s responses, and children’s 

emotions. We also present examples of uses of the validated methods for general behavioral 

analysis. For this work we use two-way, random, consistency intra-class correlation 

coefficient (ICC) scores and 95% confidence intervals (CI) to report inter-rater reliability 

performance; where ICC scores were classified as weak (ICC < 0.4), moderate (0.4 ≤ 

ICC≤ 0.75), and excellent (ICC > 0.75) [40], [41]. Precision, recall, and F1 scores are also 

employed for validation of emotion classification. While precision considers the accuracy 

of the decisions made by the automated methods, recall considers the fraction of correct 

decisions made by the automated methods out of all the decisions made by the expert human 

raters, and F1 is the harmonic mean of precision and recall [42]. The F1 score conveys 

the balance between precision and recall scores, and is useful when dealing with uneven 

distributions and to report a single performance measure. Statistical analysis for agreements 

were conducted in R Version 3.4.3 [43], using the irr package [44] to compute ICC scores 

and the ROCR package [45] for precision, recall, and F1 computations.

Across all participants, 99 video recordings were considered (Table 2). Two expert human 

raters were first trained on a reliability dataset (separate from analyzed participants) until 

they reached excellent agreement, ICC > 0.75. Then, a single expert human rater coded 

all 99 video recordings, while the second rater coded ∼20% of them to verify ongoing inter-

rater reliability. Overall agreement between the human raters for coding of engagement, 

facial expression, and social referencing achieved an ICC score of 0.84 with 95% CI of 

0.76–0.95. For the validation here reported, we compare codings between the automated 

methods and the expert human rater who coded all of the video recordings.

4.1 Validation results

4.1.1 Engagement detection

Inter-rater reliability performance of detecting the total time the child was engaged was 

assessed on a per-video basis, Table 3. Reliability between the automatic methods and the 

expert human rater was excellent, achieving an ICC score of 0.85; while the reliability for 

the sub groups of participants with and without ASD was also excellent, achieving ICC 

scores of 0.81 and 0.89 respectively. Since our automatic methods code per-frame, we also 

analyzed accuracy on a per-frame basis. Across the 161,296 coded frames for engagement 

(∼89 minutes), our methods matched with the expert human rater on 90% of them (with 

most of the differences located at the start or end of a new behavior). Accuracy of coded 

frames from the sub groups of participants with and without ASD exhibited similar results. 

Across 74,670 coded frames from videos of participants with ASD, the agreement accuracy 

was 85%; where across the 86,626 coded frames from videos of participants without ASD, 

agreement accuracy was 94%.
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4.1.2 Name-call prompt and response detection—To fully assess a child’s 

behavior to a name-call, we first detect the time a name-call happened and then detect 

whether or not the child turned his/her head to orient to the name-call. The practitioner 

manually marked every name-call prompt across all participants by marking the frame in the 

video when the child’s name was called. For all 99 name-call prompts that were marked, the 

automatic name-call prompt detection was able to detect every name-call by the practitioner. 

Fitting an exponential model to the data, we saw a mean absolute time difference of just 0.21 

seconds (Figure 4a).

Child responses after name-call prompts were also coded, where a head turn response 

was coded if the child performed a head turn within 5 seconds of the name being called. 

Compared to the expert human rater, the automatic head turn detection method correctly 

identified 84% of the child responses (46 of the 60 head turn responses, see Section 5.1 

for a discussion on this, and 37 of the 39 non head turn responses). Overall it achieved an 

excellent reliability with an ICC of 0.84 (Table 3), while the reliability of the sub groups of 

participants with and without ASD was also excellent, achieving 0.80 and 0.86 ICC scores 

respectively. By fitting an exponential model to the 46 correctly detected head turns, the 

mean absolute time difference between the automatic method and the expert human rater 

was 0.22 seconds (Figure 4b).

4.1.3 Emotion classification—The automatic emotion classification method outputs ℓ1 

normalized probability weights across emotions. To compare it to the expert human rater, 

we grouped the emotions into the categories coded by the rater. Namely, ‘Happy’ considers 

automatic coding of happy (the key emotion the designed movies is expected to elicit) 

while ‘Other’ considers angry, sad, and neutral. Automatic coding of emotion was done 

at a much finer scale than that of the expert human rater, where the automatic coding 

estimated probability scores for each emotion and treated each frame independently, whereas 

the human rater assigned each frame only one emotion and marked time points when the 

given emotion started and ended. To accommodate these differences, half-second filtering 

of probability scores and max-voting in ± half-second windows were performed on the 

automatic coding to determine which emotion was dominantly expressed when the face was 

detected.

Inter-rater reliability performance of quantifying the total time the child was exhibiting 

Happy was assessed on a per-video basis, where the inter-rater reliability between the 

automatic methods and the expert human rater was excellent, achieving an ICC of 0.90 

(Table 3). The reliability for the sub groups of participants with and without ASD was also 

excellent, achieving ICC scores of 0.90 and 0.89, respectively. Performance of the automatic 

methods was also validated on a per-frame basis. 136,450 frames (∼75 minutes) were coded 

for emotion across all the participants; Table 4 shows the precision, recall, and F1-scores of 

the automatic emotion classification method using the expert human rater as ground truth. 

Overall, the automatic method achieved high precision, recall, and F1 scores: 0.89, 0.90, and 

0.89 respectively.
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4.2 Behavioral analysis

4.2.1 Extracted behaviors—We now present multiple examples of ASD-risk related 

behaviors that can be automatically extracted using the above presented and validated 

methods, including responses from name-call, engagement, and emotion. During name-call 

responses it is important to not only code if the child oriented to a name-call but also the 

latency between when the child oriented and when the child’s name was called. Examples of 

head turn responses to 3 name-call prompts for a non-ASD and ASD participant are shown 

in Figure 5. The non-ASD participant not only oriented to all 3 name-call prompts, but all 

head turns exhibited less than half a second latency. The ASD participant on the other hand, 

only oriented to 1 of the name-call prompts (the second one in this case) and exhibited 

a large latency of greater than one and a half seconds. The full population study of this 

behavior is reported in [46], see below.

With the validated methods, more in-depth head movement dynamics can be extracted 

beyond head turning. Figure 6 shows examples of extracted head movement tracks and 

cumulative head movement (as a simple quantification tool) of three participants while 

watching the Puppets movie stimuli. Each participant demonstrates a distinct movement 

profile, varying from sitting still (part. 01) to moving a lot throughout the stimuli (part. 03). 

This is all automatically measured without any additional hardware, such as motion capture 

devices.

Emotion related responses to scenes in the movie stimuli, designed to elicit such emotions, 

as well as spontaneous emotions, are also of great importance for ASD related risk 

behaviors. Although for the validation of emotion coding each frame was assigned a 

categorical label, the presented methods provide fine-grained, continuous probability scores 

for each emotion. Figure 7 shows examples of participants without and with ASD expressing 

Happy when the bunny hops in the Bunny movie stimuli. Both participants react by 

expressing Happy during this segment, but the participant with ASD exhibits less instances 

of (high probability) Happy. In [26] we report further use of the automatic emotion coding 

here introduced to analyze over 4,000 movies recorded at home, see next.

4.2.2 Extensions—A direct extension of this work is presented in the recent companion 

clinical publication [46], where these automated methods were used on a study considering 

104 toddlers (82 non-ASD and 42 ASD, ages 16–31 months). The work reported that 

toddlers with ASD not only tend to orient fewer times as a response to the name-call, 

but the mean latency to orient was significantly longer compared to non-ASD (2.02 vs. 

1.06 seconds). Only automatic frame-rate methods, as the one here presented, can detect 

such important differences and potential risk markers in an easily scalable manner. The 

engagement coding allows for further quantification of compliance as well as attention span. 

Using these automatic methods here described and detailed, [46] also reported that there was 

a significant interaction between diagnostic group and age, with the ASD group showing 

significantly lower amount of time engaged in the task than the comparison group at older 

ages only.

Another extension of this work and the exploitation of the algorithms here introduced is 

presented in our at-home companion study [26], where 1,756 families participated uploading 
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a total of 4,441. Applying the automatic algorithms described in this paper, 87.6% of the 

frames were usable, providing rich data at a previously unseen scale for the applications here 

considered. It was reported, for example, that from the 530 children (ages 12–72 months) 

who watched the same movie stimuli, children with high risk for ASD (self-reported or 

due to high M-CHAT-R/F score) exhibited lower mean percentage (± standard error) of 

positive emotions compared to children not at risk (29.9% ± 1.9 vs. 35.1% ± 1.3, p<.02). 

Additionally it was reported that with increased age, children showed a greater percentage 

of exhibiting positive emotion while watching the movie stimuli (Pearson Correlation 

Coefficients with age: total positive emotion 0.208, p<.0001). See [26] for numerous 

additional findings resulting from the application of the algorithms here described to this 

large data.

These companion clinical papers, using a subset of the same stimuli and algorithms here 

described, show the scalability of the approach and its usability in diverse environments.

5 DISCUSSION

We have been developing an integrated paradigm where short and entertaining movies, 

carefully designed to elicit risk behaviors related to ASD or other developmental disorders, 

are presented on a mobile platform while the device’s camera is recording the participant’s 

responses [26], [27], [46]. This work concentrated on the validation of the computer vision 

components of this paradigm, in particular for ASD risk markers. Contrary to the standards 

in the computer vision and machine learning related literature, the ground truth used for 

validation comes from the population under study and the labeling is done by domain 

experts. The results indicate high agreement between the proposed automatic methods and 

the expert human coders, and that the automatic methods can be considered to augment 

behavioral analysis of early risk markers. Furthermore, these validated methods allow 

for automatic and objective measurements of high granularity and have many potential 

benefits for future research of risk markers. This scalability and low cost of the paradigm, 

basically software only due to the ubiquitous presence of mobile devices, opens the door to 

deployment on longitudinal studies to track behavioral progress and development. The high 

granularity of the proposed methods can also lead way to refined definitions of risk markers 

and behavioral trajectories. With these now validated automatic computer vision methods, 

we presented multiple examples of behaviors that can be extracted. For name-call responses, 

decisions based on the participant’s head turning and the latency to turning after the name 

has been prompted can be extracted (Figure 5). Attention characteristics and head movement 

dynamics of the participant throughout the movie stimuli can also be accurately quantified 

(Figure 6). Emotional responses, elicited or spontaneous, during specific events can also 

be automatically captured (Figure 7). While these behaviors are known to be relevant for 

early risk markers in ASD during actual physical interactions with a trained examiner, it 

remains to be fully verified that they are still present in this setting of watching movie 

stimuli. With this said, there are indications that ASD/non-ASD differences in response to 

name-call, attention, and emotion can be elicited and captured from this setting and by 

automatic methods [18], [26], [46].
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While in the work here presented, and as it is very common in the literature, we went 

from automatic landmark detection to automatic behavioral coding of emotions (and head 

positions), it is of interest to go directly from landmarks to screening/diagnosis via the 

training of modern classification methods (see also Figure 6, motion is derived directly 

from landmarks). This possibility increases with the availability of data, [26], and with the 

application of the scalable tools here described. This will also help to mitigate cultural and 

data biases in machine learning methods used to train emotion coding algorithms, and will 

help in the discover of new biomarkers directly connected to the dynamics of our face and 

not interpreted emotions. The work recently reported in [47] is also a step supporting this 

important direction of research.

5.1 Limitations

There are still many challenges when automatically coding behaviors in unconstrained 

settings, and even though the validation results were strong, we see this as a starting point 

for the proposed methods. Some of the missed head turn responses during a name-call were 

due to occlusions of the child’s faces right before or after a head turn happened (e.g., due 

to the child’s hands occluding his/her face), or from poor image quality when the child’s 

head is moving too quickly (using high frame rates available on mobile phones will address 

this). Since we want a simple, easy to administer setup requiring only the integrated camera 

on the mobile device, and also want to keep the most naturalistic setting possible by not 

constraining the child, chances of occlusions of the face may persist. Future algorithms 

should incorporate hand detection, e.g., [48], to assist in handling these cases.

Future algorithms should also incorporate gaze analysis and eye-tracking. As mentioned 

before, eye-tracking captures fine-grained behaviors and can be used to quantify where 

in the movie scenes the toddlers are looking and fixation patterns, and can be coupled 

with head pose to assist in defining when the child is engaged with the movie stimuli. 

A number of low-cost eye-tracking methods are available [49], [50], [51]. Methods based 

on RGB-D devices, which output both RGB and depth data, have shown to capture gaze 

in unconstrained settings and with minimal calibration [52], [53]. These advancements are 

especially promising since depth sensors are more readily being integrated within mobile 

devices, including smart phones as in our study [26]. Additionally, recent advances in 

eye-tracking studies have presented generalizable and scalable methods for screening of 

neurodevelopmental disorders [54], [55], [56], [57]. While these studies do not focus on 

toddlers and early screening, they add to the argument in favor of incorporating eye-tracking 

technology in the presented ASD paradigm.

There were differences for precision and recall scores for facial expression (emotions) 

classification between the ASD and non-ASD groups, opening room for improvement of 

the current methods. High precision scores show that the automatic methods accurately 

made decisions; whereas, the lower recall scores indicate that the methods missed some 

codings from the expert human rater. One possible explanation for the lower recall scores 

could come from the training data, since the current methods were trained on images 

of posed expressions, and as such they perform best at the peak of expressions from 

participants, hence the high precision scores, and may miss the onset and end of expression. 
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This is a less critical problem if the biomarkers relate to the presence or absence of the 

emotion event for certain period of time, without the need to use the exact (frame accuracy) 

time length. We should note that human experts also disagree on the start and end of 

facial expressions. Additionally, the current facial expression methods were trained on 

thousands of images from adults and based on adult facial codings. With the annotated 

data from this work, advancements in techniques to automatically code facial expression, 

and recent understandings of facial dynamics of individuals with ASD [47], new emotion 

classification methods based on spontaneous emotion recognition of toddlers are currently 

being considered by our team. This can be added to the current trained system via modern 

domain adaptation machine learning techniques.

6 CONCLUSION

We proposed and validated computer vision methods to automatically code behaviors related 

to early risk markers of ASD. The algorithms are applied to video recordings from the 

front camera of a mobile device while the child watched movie stimuli designed to elicit 

such behaviors. In particular, we focused on automatic methods for quantifying engagement, 

name-call responses, and emotion responses. We validated the automatic methods using 

manual coding from an expert human rater on a diverse population of toddlers with and 

without ASD. Additionally, we showed examples of how the proposed methods can further 

risk marker research with fine-grained quantification of behaviors. The results suggest these 

low-cost, objective, and automatic methods can be considered to aid behavioral analysis, and 

can be suited for objective automatic analysis of large and longitudinal studies.
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Fig. 1: 
Screenshot of the recorded video from the front facing tablet’s camera and example of 

automatic facial landmarking are shown in first row. In this screenshot, the child (1) is sitting 

on the caregiver’s (2) lap, while the practitioner (3) is standing behind. All six outlined 

automatically detected landmarks (in black) are used for face pre-processing, while the 

lowest nose and the two outer eye landmarks are used to track head movement. Screenshots 

of frames from the movie stimuli being presented are shown in the remaining rows. These 

are Bubbles, Bunny, and Puppets, respectively.
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Fig. 2: 
Audio is analyzed to detemine the exact time point the practitioner said the child’s name 

during a name-call. The power spectrum density (psd) of the recorded audio signal (2a) 

contains audio from the movie stimuli (predominantly music) and instances of vocalizations. 

Root mean squared (RMS) values of the audio signal (2b) provide quantification of audio 

signals at each time point, and are used to detect a name-call prompt. Knowing that 

practitioner was asked to prompt a name-call at 15 seconds into the stimuli, in this example 

we are able to focus on speech around the time point (green box) and detect the exact time 

point when maximum speech occurred.
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Fig. 3: 
Example of a head turn using the automatic method. To differentiate a head turn from a face 

occlusion, we determine if the child is performing a head turning motion before and after the 

face is lost or when its exhibiting a yaw pose with large magnitude. The red bars represent 

the half-second windows used to determine if the child is exhibiting a head turning motion 

before and after the face is lost (by the camera) or when its exhibiting a yaw pose with large 

magnitude.
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Fig. 4: 
Area plots of absolute time difference between automatic methods and hand labeled data for 

name-call prompt detection (4a) and for head turn detection (4b). Fitted exponential curves 

are shown in the dotted red lines.
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Fig. 5: 
Examples of responses from a non-ASD and ASD toddler to name-call.
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Fig. 6: 
Examples of the head movement of three participants during the Puppets stimuli. 6a shows 

the head movements of the participants, where the axis represent pixel coordinates in the 

video recording. The lines are color-coded with respect to time, where the colorbar on the 

right represents time (seconds) in the movie stimuli. A log-plot of the cumulative head 

movement (as a simple quantifying measure) for all three participants is shown in 6b. Figure 

is best viewed in color.
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Fig. 7: 
Probability scores of expressing Happy for a non-ASD (top) and ASD (bottom) toddler 

reacting to a scene during the Bunny movie stimuli. Screenshots of the stimuli are shown in 

the first row; in this scene in the movie the bunny is jumping and then stopping and making 

noises while moving its ears and nose. The colorbar on the right indicates probability scores 

of expressing Happy. Figure is best viewed in color.
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TABLE 1:

Demographics table reported in means (standard deviations) or counts (percentage)

non-ASD ASD

Total participants 18 15

Males 16 (89%) 13 (87%)

Age in months 26.4 (std 4.6) 25.5 (std 3.8)

ADOS-T Total - 17.7 (std 5.3)
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TABLE 2:

Number of video recordings

Group Bubbles Bunny Puppets Total

non-ASD 18 18 18 54

ASD 15 15 15 45
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