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Abstract

Background: Genome wide association studies (GWAS) have identified many genetic variants 

associated with increased risk of Alzheimer’s disease (AD). These susceptibility loci may 

effect AD indirectly through a combination of physiological brain changes. Many of these 

neuropathologic features are detectable via magnetic resonance imaging (MRI).

Methods: In this study, we examine the effects of such brain imaging derived phenotypes (IDPs) 

with genetic etiology on AD, using and comparing the following methods: two-sample Mendelian 

randomization (2SMR), generalized summary statistics based Mendelian randomization (GSMR), 

transcriptome wide association studies (TWAS) and the adaptive sum of powered score (aSPU) 

test. These methods do not require individual-level genotypic and phenotypic data but instead can 

rely only on an external reference panel and GWAS summary statistics.

Results: Using publicly available GWAS datasets from the International Genomics of 

Alzheimer’s Project (IGAP) and UK Biobank’s (UKBB) brain imaging initiatives, we identify 35 

IDPs possibly associated with AD, many of which have well established or biologically plausible 

links to the characteristic cognitive impairments of this neurodegenerative disease.

Conclusions: Our results highlight the increased power for detecting genetic associations 

achieved by multiple correlated SNP-based methods, i.e., aSPU, GSMR and TWAS, over MR 

methods based on independent SNPs (as instrumental variables).

Author summary:

Structural and functional brain changes play a key role in Alzheimer’s disease progression, but 

recent studies suggest that many of these risk phenotypes remain unidentified. We implement and 

compare multiple tests of genetically-regulated brain imaging phenotypes (IDPs) associated with 

AD that leverage publicly available GWAS summary statistics on AD and 1,578 IDPs from IGAP 

and UK Biobank, respectively. We identify 35 AD-associated IDPs, including both novel and well 

established risk phenotypes. Our results emphasize the improved power of the aSPU, GSMR, and 

TWAS tests over MR approaches, the former of which utilizes multiple correlated SNPs.
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INTRODUCTION

In 2016, Alzheimer’s disease (AD) was the 6th leading cause of death in the United States, 

directly affecting an estimated 5.4 million Americans and incurring $236 billion of total 

healthcare costs [1]. Alzheimer’s disease is a neurodegenerative disease characterized by 

dementia, accumulation of beta-amyloid plaques and tau proteins on neurons, and brain 

inflammation and atrophy. In recent decades, characterization of AD and its preclinical 

stages has relied more heavily on physiological brain phenotypes as identified through 

magnetic resonance images (MRI). Structural MRI identifies volumetric and vascular 

changes in the brain and can be used to diagnose many established causes of Alzheimer’s 

disease, such as hippocampal atrophy, white matter hyperintensities (WMH), and cerebral 

bleeds [2]. Recent studies have shown changes in connectivity patterns amongst AD 

patients, such as increased connectivity in the parietal region, which can be identified 

via resting state functional MRI (rfMRI) [3]. Diffusion MRI (dMRI) provides a detailed 

characterization of the brain’s microstructure and has been used to implicate white matter 

damage in AD pathogenesis [4].

Over the last two decades, advances in genotyping technology and statistical methods for 

identifying genotype-disease associations in genome-wide association studies (GWAS) have 

facilitated the identification of many genetic markers associated with AD. The International 

Genomics of Alzheimer’s Project (IGAP) performed a two stage meta-analysis of genetic 

data across four studies in AD and published GWAS summary statistics based on a 

combined set of 17,008 AD cases and 37,154 controls [5]. Their results identified 19 SNPs 

with significant AD associations (p < 5 × 10−8).

Combining knowledge of genetic and MRI-derived biomarkers could reveal new insights 

into AD. Mendelian randomization (MR) is a commonly used instrumental variable (IV) 

approach that tests for a putatively causal endophenotype-disease association by leveraging 

known information about SNP-endophenotype and SNP-disease relationships. MR relies on 

the principle that a genetic variant only affects a complex disease by way of intermediate 

endophenotypes, such as the collection of brain abnormalities that characterize Alzheimer’s 

disease. Two-sample Mendelian randomization (2SMR) typically uses independent sets of 

GWAS summary statistics from the endophenotype and disease to test for this causal effect 

using a single SNP as an IV [6]. Various methods exist to combine single-IV MR estimates 

across a set of GWAS-significant and independent SNPs/IVs. These methods are adapted 

from the meta-analysis literature, and include inverse variance weighted (IVW), weighted 

median, Egger regression, simple mode and weighted mode meta analyses. A possibly more 

powerful extension of the 2SMR model is the so-called generalized summary statistic based 

Mendelian randomization (GSMR) model, a generalized least squares based method that 

allows and accounts for linkage disequilibrium (LD) between multiple correlated SNPs as 

IVs [7].
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Similar to MR methods, the method of transcriptome wide association studies (TWAS) 

aims to identify genetically-regulated gene expression (or another endophenotype) causally 

associated with a complex disease [8–14]. TWAS was originally designed to study the effect 

of cis-regulated gene expression on disease outcomes, but has since been generalized for 

the study of other intermediary endophenotypes, including neuroimaging endophenotypes 

[15]. In particular, TWAS has been applied to GWAS of neuroimaging phenotypes [16,17]. 

Due to the use of multiple possibly correlated SNPs (as IVs), TWAS is expected to be more 

powerful than 2SMR, which is to be confirmed here. On the other hand, the IV assumptions 

will likely be violated for both MR and TWAS, especially with correlated SNPs used in 

TWAS [18,19], leading to invalid causal conclusions.

Evidently, TWAS is equivalent to the (weighted) Sum (of score) test, which is itself a 

special case in the class of the sum of powered score (SPU) tests [20,21]. This class of 

tests was developed to address the loss of power incurred by the Sum test when many 

genetic variants have opposite signed effects on the disease. Any given SPU test has 

varying performance based on the underlying unknown association patterns of the data, 

motivating the development of a data adaptive sum of powered score (aSPU) test to provide 

a consistently powerful test for SNPs-disease associations. These tests have the added 

flexibility of only requiring GWAS summary statistics and an external reference panel [22].

In this study, we integrate GWAS summary data for AD and 1,578 heritable brain image 

derived phenotypes (IDPs) as endophenotypes using 2SMR, GSMR, TWAS/Sum and aSPU 

tests. One goal is to identify candidate IDPs associated with, and possibly causal to (if the 

IV assumptions hold for 2SMR, GSMR and TWAS) AD. The other aim is to compare the 

power of these methods. In particular, since various 2SMR methods are typically based 

only on independent SNPs (as IVs), while other methods incorporate and thereby take 

advantage of possibly correlated SNPs, the 2SMR methods are expected to have lower 

power, as confirmed here. On the other hand, the aSPU does not have an interpretation 

for causal inference like the TWAS/Sum and MR tests do, but due to likely violations of 

the assumptions in the latter methods, as recently discussed for TWAS [18,19], we regard 

any significant result by any method as only an association, not necessarily causal. Strictly 

speaking, the aSPU test is only intended to detect SNPs-disease associations. However, 

by the use of an IDP to select and construct weights for SNPs, any significant result by 

the (weighted) aSPU test would suggest a possible association between the IDP and the 

disease. Hence, throughout this paper, if an TDP yields a significant aSPU test based on 

IDP-selected and weighted SNPs, we loosely conclude this IDP is association with AD. 

Our application of the aSPU test to integrate IDPs with AD (or other disease/trait) GWAS 

is related to, but differing from the so-called imaging-wide association studies (IWAS), in 

which only cis-SNPs associated with the expression level of each gene (i.e., cis-eSNPs 

for each gene) are used in turn for each gene [15]; in contrast, here we use an IDP to 

select and weight genome-wide (nearly) significant SNPs. Our methodology is similar to 

[23], which considered other GWAS traits, not necessarily IDPs, as intermediate traits or 

endophenotypes for AD. We use summary statistics from IGAP and UK Biobank’s (UKBB) 

brain imaging initiative, in addition to a reference panel of European ancestry from the 

1000 Genomes Project for estimation of LD correlations [24,25]. For each test, we filter the 

UKBB IDP GWAS summary statistics at three different significance thresholds (5 × 10−4, 
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5 × 10−5, and 5 × 10−6) and compare results. Ultimately, we aim to identify IDPs with 

consistently significant associations across these tests and GWAS significance thresholds, as 

well as compare the power of the considered tests for detecting genetic associations.

RESULTS

Table 1 gives the number of significant IDP-AD associations for each test (q < 0.05) after 

filtering SNPs from each IDP GWAS at a 5 × 10−5 significance threshold. While there 

were a number of significant IDPs using the aSPU, Sum and GSMR tests, no IDPs were 

significant based on any of the 2SMR meta-analyses. The marginal −log10 q-values for each 

IDP from the GSMR, Sum and aSPU tests are illustrated in Fig. 1. Of the 1,578 considered 

IDPs, 13 were significant for both aSPU and GSMR (Fig. 2). These consisted of two dMRI, 

three T1-FAST ROIs, one T2 FLAIR BIANCA, and seven rfMRI measures. As expected, 

only a subset of the aSPU significant IDPs were also supported by the Sum test results 

at the 5 × 10−5 GWAS significance threshold. Specifically, 10 of the 35 aSPU significant 

IDPs were also significant for the Sum test, eight of which were also identified by GSMR. 

Manhattan plots for each of these eight IDPs, as given in Fig. 3, illustrate the pattern of 

marginal associations for the genome-wide variants included in each test.

Many of these identified IDPs have supported associations with AD in the literature. Three 

T1-weighted structural MRI phenotypes related to the calcarine sulcus were significant for 

all three tests; right and left supracalcarine cortices and the right intracalcarine cortex. 

The calcarine sulcus houses the primary visual cortex and is involved in visuospatial 

perception and object recognition. Atrophy in this region has previously been implicated 

in AD pathogenesis [26]. Another notable IDP that was significant for all three tests is the 

volume of white matter hyperintensities (WMH), lesions of white matter tissue characterized 

by increased brightness on a T2-weighted structural MRI scan. Increased WMH volume 

is characteristic of the aging brain and has a well established role in late onset AD 

progression [27]. Other noteworthy brain phenotypes identified by at least one test at the 

5 × 10−5 GWAS significance threshold include volumetric measures of the thalamus, as well 

as connectivity within the tapetum, cerebral peduncle, longitudinal fasciculus, cingulum-

hippocampus network, and both posterior and anterior limbs of the internal capsule (Table 

2). These IDPs all have previously identified AD-associations [28–32].

Figures 4 and 5 illustrate the numbers of significant IDPs at the 5 × 10−4 and 5 × 10−6 

SNP significance thresholds, respectively. As with the 5 × 10−5 SNP significance threshold, 

no IDPs were significant for any 2SMR tests. At the 5 × 10−6 threshold, seven IDPs were 

significant for all three tests (Sum, aSPU and GSMR), five of which overlapped with the 5 

× 10−5 threshold based results. No IDPs were significant for all three tests (Sum, GSMR, 

and aSPU) at the 5 × 10−4 SNP significance threshold, but of the four IDPs that were 

significant for both aSPU and GSMR, three were found to be significant under the other 

SNP significance thresholds. The following five IDPs were significant for all three GWAS 

significance thresholds for at least one test: T1 FAST ROIs Right Intracalcarine Cortex (ID 

= 0073), T1 FAST ROI Right Supracalcarine Cortex (ID = 0119), NODEamps100-0031 (ID 

= 0922), NODEamps100-0036 (ID = 0927) and NET100-0599 (ID = 1755), where the latter 

three IDPs are rfMRI measures.
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It is not entirely surprising that the GSMR and aSPU tests, increasing power by considering 

multiple SNPs and their LD correlations, identified more significant IDPs than the 2SMR 

methods. Nonetheless, we investigate the association patterns of some of the aSPU and 

GSMR significant IDPs to reveal potential explanations for their lack of significance under 

any 2SMR models.

The power of the 2SMR tests can heavily rely on the independence between SNPs. 

Accordingly, we used a clumping R2 cutoff of 0.001 for all 2SMR models, as opposed to 

R2= 0.1 used for the SPU and GSMR tests. This resulted in fewer SNPs being considered in 

the 2SMR models as compared to the other multivariate models, though the difference was 

not substantial (Fig. 6). Via visual inspection of MR plots, we deduce that these excluded 

SNPs were not outliers and did not likely cause the discrepancies between 2SMR and 

multivariate models (Fig. 7). Forest plots of the marginal SNP effects at the 5 × 10−6 GWAS 

significance threshold show that the confidence intervals for all meta-analyses included the 

null value (Fig. 8). In particular, the Egger regression and IVW causal estimates, which 

were consistently furthest from the null value, had very large variances that drove our null 

findings. Ultimately, we maintain that these results highlight the improved power of the 

multivariate models, which account for aggregated effects and LD, over the 2SMR methods.

We have also considered the unweighted versions of the aSPU and Sum tests for the 

IDPs using the 5 × 10−5 p-value threshold, using the same sets of SNPs as used for the 

weighted versions for each IDP. There were 106 significant SNPs-AD associations from 

the unweighted aSPU test, more than the previously reported 35 significant aSPU test 

associations using IDP weights. 9 of these 35 associations were not significant for the 

unweighted aSPU test. The significant associations based on the weighted aSPU test, but 

not significant based on the unweighted test, might lend more support for the role of the 

corresponding IDPs for AD. In comparison, there were 21 significant SNPs-AD associations 

(using IDP selected sets of SNPs) from the unweighted Sum test, also more than the 10 

significant associations using IDP weights. Two of these 10 associations were not significant 

for the unweighted Sum test (freesurfer right superior occipital thickness, freesurfer right 

superior temporal area); these two IDPs were included amongst the 9 significant associations 

by the weighted aSPU test (but not by the unweighted aSPU test), giving greater support 

for a direct IDP-AD association. We expect that the weighted Sum/aSPU test will improve 

statistical power over the unweighted version if and only if the IDP is truly an intermediate 

phenotype on the SNP-to-AD pathway and the effects of SNPs on the IDP are well 

estimated (leading to a suitably imputed endophenotype). Here we found a greater number 

of significant associations by the unweighted tests as compared to the weighted tests. This 

result is reasonable because we anticipate that many of the 1,578 IDPs are not true mediating 

endophenotypes.

DISCUSSION

In this study, we identified potential associations between image-derived phenotypes 

and Alzheimer’s disease using the following GWAS summary statistic based techniques: 

2SMR, GSMR, TWAS/Sum test and aSPU test. Numerous IDPs remained significant, after 

FDR correction, across all tests (other than 2SMR) and various p-value thresholds for 
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selecting IDP-associated SNPs. Many of these significant IDPs, such as the right intra- and 

supracalcarine cortices, have been previously implicated in AD pathogenesis.

We included variants in each model based on three marginal SNP-IDP association’s 

significance thresholds, following LD-clumping. The 2SMR methods picked up no 

significant IDP-AD associations. We found that higher significance thresholds (i.e., more 

variants in the model) yielded additional aSPU-significant associations, including all 

associations identified from the Sum test and GSMR. Results were less consistent across 

thresholds for the TWAS/Sum test, which can be explained by possible dilution of the 

signals in the Sum test statistic when more neutral SNPs are included or when SNP effects 

of opposite signs cancel out. The GSMR method identified the fewest associations at the 

lowest significance threshold, possibly explained by the presence of weak instruments and 

violation of some IV assumptions. Ultimately, these results illustrate the improved statistical 

power of multiple correlated SNPs-based methods, such as aSPU, GSMR and TWAS, over 

the 2SMR methods that utilize only independent SNPs.

METHODS

Data: IGAP and UKBB

The International Genomics of Alzheimer’s Project combined genetic data from four major 

studies (EADI, ADGC, CHARGE, GERAD) in AD, resulting in the combined genotypic 

data of 17,008 AD cases and 37,154 controls with 7,055,881 SNPs [5]. In the first stage of 

their two-stage meta analysis, they performed a GWAS on these data and publicly reported 

summary statistics. These data can be found at the website (web.pasteur-lille.fr/en/recherche/

u744/igap/igap_download.php).

The UK Biobank, a large-scale prospective cohort study initiated in 2006, collected 

phenotypic and genotypic data of 500,000 UK residents. This comprehensive repository 

of data is a powerful resource for the study of gene-disease associations. In 2014, UKBB 

initiated collection of brain imaging data from a subset of participants, with a projected 

100,000 participants with these data by 2022. These data include functional, diffusion, 

and three modalities of structural MRI, which were further processed to identify 3,144 

image-derived phenotypes that characterize brain connectivity and structure. Elliott et al. 
[24] performed GWAS on each of these 3,144 IDPs using the imaging and genetic data from 

8,428 UKBB participants. The GWAS summary statistics from these studies are publicly 

available at the website (big.stats.ox.ac.uk/download_page).

Two-sample Mendelian randomization

MR is a method that uses a genetic variant as an IV to infer a causal relationship between a 

risk phenotype and disease. The MR framework is illustrated in Fig. 9, where we define Y 
as the disease, X as the risk phenotype, Zj as the SNP instrument, and C as any confounding 

variables of the phenotype-disease association. We use the notation β j, Y Z and β j, XZ to 

represent the estimated effect of SNP j on the disease and risk phenotypes, respectively. 

These can be obtained using the effect estimates of SNP phenotype and SNP-disease 

associations from GWAS summary statistics. Greater power can be achieved if these data 
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come from independent cohorts of similar ancestry due to the effective increase in sample 

size, hence the terminology “two sample” MR [6]. The estimated causal effect of the 

risk phenotype on disease, as mediated through the genetic variant, is simply given as 

β j, XY = β j, ZY /β j, ZX with approximate standard error SE β j, XY ≈ SE β j, Y Z /β j, XZ.

There are three key assumptions of the MR model that must be met for consistency of 

causal estimates: (i) the IV must be associated with the risk phenotype; (ii) the IV must 

be marginally independent of the unknown confounders of the risk phenotype-disease 

association; and (iii) the IV must be independent of the disease, conditional on the risk 

phenotype and confounders. The first of these assumptions, also known as the strong 

instruments assumption, can be met by restricting the set of instruments to those that were 

highly significant in the endophenotype GWAS. In our present study, we consider three 

different marginal p-value thresholds to select strong instruments from the IDP GWAS: 5 

× 10−4, 5 × 10−5, and 5 × 10−6. The latter two assumptions are difficult to check, partly 

because the hidden confounding variables are unobserved.

The 2SMR model illustrated in Fig. 9 considers only a single IV, Zj, at a time. However, 

methods have been developed to boost power by combining the MR estimates across a 

set of multiple SNPs. These methods borrow from existing meta-analysis techniques and 

include methods such as Egger regression, inverse variance weighting (IVW), simple mode, 

weighted median, and weighted mode. In our present study, we implement these five MR 

techniques in R using MR-base v.0.4.22 [33]. Here, we will briefly introduce IVW meta-

analysis.

Consider a set of p SNPs, each with 2SMR estimates β j, XY  and Var β j, XY , j ∈ 1, …, p. 

The IVW estimate is an average of these p effect estimates, weighted by their corresponding 

variances:

βIV W =
∑

j = 1

p
β j, XY /Var β j, XY

∑
j = 1

p
1/Var β j, XY

, (1)

Var βIV W = 1

∑
j = 1

p
1/Var β j, XY

.
(2)

Therefore, having combined information across all independent SNPs, we can simply test 

the null hypothesis of no causal effect of X on Y, H0:βIVW = 0, via a Wald or Z test.

One notable consideration for these meta-analysis techniques is the correlation structure of 

the instrumental variables. If the set GWAS-significant SNPs are correlated, i.e., in linkage 

disequilibrium, the number of truly causal variants is likely overestimated. Furthermore, the 

presence of these weak instruments threatens assumption 1 of the MR model. To avoid this 
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potential for bias, we only consider a set of independent significant SNPs by performing LD 

clumping with an R2 cutoff of 0.001 before performing MR.

Generalized summary statistic-based Mendelian randomization

As previously discussed, the 2SMR meta-analysis techniques are naive to the instrument 

correlation structure and thereby necessitates independence amongst SNPs. Generalized 

Summary Statistic Based Mendelian Randomization, or GSMR, is a more powerful 

multivariate approach that accounts for LD in estimating a causal association between the 

phenotype and disease.

Consider a set of p GWAS significant SNPs in LD. The vector of p marginal MR estimates 

is given by

βXY , M = β(1, XY ), …, β(p, XY ) ′ =
β(1, ZY )
β(1, ZX)

, …,
β(p, ZY )
β(p, ZX)

′
MVN βXY , M, Σ ,

where Σ is the covariance matrix of βXY , M with entries estimated by,

cov βXY , M, (i), βXY , M, (j) = r
βZX, (i)βZX, (j)

var βZY , (i) var βZY , (j)

+ βXY , M, (i), βXY , M, (j)
r var βZX, (i) var βZX, (j)

βZX, (i)βZX, (j)
−

var βZX, (i) var βZX, (j)
βZX, (i)

2 βZX, (i)
2 ,

where r is the correlation (LD) between SNPs i and j. Using a standard ordinary (or 

generalized) least squares (OLS or GLS) transformation, we can estimate a generalized 

effect of X on Y:

βXY , G = 1′Σ−11 −11′Σ−1βXY , M, (3)

Var βXY , G = 1′Σ−11 −1 . (4)

The null hypothesis of no causal effect of X on Y can be tested using a wald test, 

TGSMR = β2
XY , G/Var βXY , G χ2(1). We use the 1000 Genomes reference panel to estimate 

all LD correlations and implement these analyses using the GSMR package v.1.0.8 in R.

The Sum test with individual-level data

To motivate understanding of the summary statistic based TWAS (Sum) and aSPU tests, 

we first introduce the Sum test using individual level phenotype and genotype data for n 

samples. Let Yi represent a binary disease (i.e., AD) and Zi be the vector of genotypes for p 
SNPs in LD for subject i. We consider the logistic regression model,
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Logit P Y i = 1 = β0 + ∑
j = 1

p
Zijβj, i ∈ 1, …, n, (5)

where each βj, j ∈ 1, …, p, represents the effect of SNP j on Y. We first consider a test for 

any genetic association with the disease, corresponding to the global null hypothesis H0 : β1 

= … = βp. While there are three asymptotically equivalent tests for this hypothesis (Score, 

Wald, and LRT), we will only consider the score test to facilitate extensions to the Sum and 

aSPU tests.

Under the logistic regression model, the score vector U (i.e., the vector of first derivatives in 

βj of the log likelihood for j ∈ 1, …, p) and its covariance matrix V are given by:

U = U1, …, Up
T = ∑

i = 1

n
Yi − Y Zi,

V = Cov U |H0 = Y (1 − Y ) ∑
i = 1

n
Zi − Z Zi − Z T .

The asymptotic distribution of U under H0 is N(0, V). If we make the assumption that all 

SNPs have equal effects on the disease and again consider H0 : β1 = … = βp, we may reduce 

model (5) to a simple logistic regression model, given by model (6), and instead simply test 

H0 : β = 0 [20] in

Logit P Y i = 1 = β0 + ∑
j = 1

p
Zijβ . (6)

This formulation is equivalent to the Sum test, which achieves possibly improved power 

over the multivariate model (5) for testing for a gene-disease association under the 

assumption of homogeneous SNP effects (βj
’s). The test statistic for the Sum test is given by 

TSum = ∑j = 1
p Uj.

The weighted Sum test with individual-level data

Let wj be the estimated effect of SNP j on an imaging phenotype from the IDP GWAS 

summary statistics. We can consider ∑j
pwjZi, j as an imputed trait, reflecting the genetic 

contribution toward the IDP for subject i. That is, ∑j
pwjZi, j is the weighted sum of risk 

alleles in subject i, where each SNP is weighted by the estimated effects from the IDP 

GWAS summary statistics. Replacing ∑j = 1
p Zij in model (6) with this imputed trait yields 

the following:

Logit P Y i = 1 = β0 + ∑
j = 1

p
wjZijβ . (7)
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We again consider testing H0 : β = 0, which can now be interpreted as no “genetically-

regulated” effect of the phenotype on disease. This null hypothesis corresponds to the Sum 

test with score vectors based on the weighted SNP effects,

U* = W U = ∑
i = 1

n
W Yi − Y Zi,

TSum = ∑
j = 1

p
Uj* = ∑

j = 1

p
wjUj, (8)

where W = diag w1, …, wp . This model is analogous to the transcriptome-wide association 

study, which derives weights based on eQTL data to test the effect of gene expression on 

disease.

The SPU and aSPU tests with individual-level data

One drawback of the Sum test is the loss of power that can occur when the weighted SNP 

effects are of opposite signs and each SNP’s effect contribution is canceled out, yielding a 

small TSum statistic and failure to reject H0. The sum of powered score (SPU) tests were 

motivated by this issue and are defined as

TSPU(γ) = ∑
j = 1

p
wjUj

γ for integers γ ⩾ 1, (9)

of which the Sum test is a special case when γ = 1. As with the Sum test, wj in Eq. (9) 

are obtained from the j-th SNP’s GWAS effect estimate from IDP summary statistics. By 

summing over Uj
2, the SPU(2) test (aka sum of squared score (SSU) test) is invariant to 

the directions of Uj. Therefore, this test may be more powerful than the sum test in some 

situations. In general, as γ increases, SPU(γ) applies larger weights to larger Uj, thereby 

giving larger influence to those test statistics that support rejection of H0. Consequently, the 

choice of γ can critically impact the power of the SPU test. The adaptive SPU test, or aSPU, 

provides a data adaptive solution for the selection of γ that maintains high power across 

scenarios.

Consider a set of possible values of γ, such as Γ = [1, …, 8, ∞], which is the set of we 

will consider in our analysis. If PSPU(γ) is the p-value corresponding to the SPU(γ) test, the 

aSPU test statistic is given by:

TaSPU = min
γ ∈ Γ

PSPU(γ) .

The p-values for the SPU tests are estimated via Monte Carlo simulations, where B null test 

statistics are calculated based on resamples from the asymptotic normal null distribution of 

the U, notated as TSPU(γ)
(b)  [21]:
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PSPU(γ) = ∑
b = 1

B
I |TSPU(γ)

(b) | ⩾ |TSPU(γ)| + 1 /(B + 1), (10)

PaSPU = ∑
b = 1

B
I |TaSPU

(b) | ⩽ |TaSPU| + 1 /B . (11)

The SPU and aSPU tests with summary statistics

In our present study, we use an adaptation of the the aforementioned SPU and aSPU 

tests that only require GWAS summary statistics and estimated LD correlations from a 

reference panel. Let Q = (Q1, Q2, …, Qp)T be the vector of Z statistics from the disease 

GWAS statistics, where Qj = β j/SE(β)j. Note that the Wald (Z statistic) and Score tests are 

asymptotically equivalent, so Qj = β j/SE(β)j ≈ Uj/SE Uj . By these approximations, we can 

calculate the SPU test statistics by redefining Uj = Qj in Eq. (9);

TSPU(γ) = ∑
j = 1

p
wjQj

γ, (12)

TaSPUs(γ) = minγ ∈ ΓPSPUs(γ) . (13)

Note that the asymptotic distribution of Z under H0 is N(0, R), where R = Cov(Qj, Qk). 

Further, note that

Cov Qj, Qk = Corr Qj, Qk ≈ Corr Uj, Uk ≈ Corr Zij, Zik ≡ R .

We can easily estimate R and thereby Cov(Qj, Qk), using a reference panel of similar 

ancestry to that of the GWAS cohorts. Therefore, the asymptotic distribution for the TSPU(1) 

is N(0, WRWT), since E[TSPUs(1)] = E[WQ] = 0 and Var[TSPUs(1)] = Var[WQ] = WRWT for 

large n.

Testing procedure

Figure 10 presents the workow for testing the association between a single IDP and AD. 

Elliott et al. published results from a heritability analysis of all 3,144 IDPs using LD score 

regression [8]. We only considered the 1,578 IDPs that were identified as heritable through 

their analysis. For each of these heritable IDPs, we performed LD Clumping using the 1000 

Genomes reference panel with a clumping radius of 1 Mb. For the SPU and GSMR tests, 

we clumped with an r2 cutoff of 0.1. We further restricted the r2 cutoff to 0.0001 for the 

2SMR tests. SNPs for the IDP datasets were further filtered based on three significance 

thresholds, 5 × 10−4, 5 × 10−5 and 5 × 10−6. For MR analyses, we aimed to filter out 

weak instruments (i.e., those SNPs with minimal association with the phenotype) while also 

retaining enough SNPs to support an informative model. Table 3 gives a summary of the 

number of overlapping SNPs after filtering at the three GWAS significance thresholds and 
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further compares the number of variants used in the SPU and GSMR tests versus 2SMR, 

for which we used a restricted set of “independent” SNPs resulting from more stringent LD 

clumping (R2 < 0.001). Based on these numbers, we primarily focus on our conclusions 

based on the 5 × 10−5 p-value cut-off, but compare results across thresholds. p-values from 

all analyses were adjusted using FDR at α = 0.05 and will be reported as q-values. The 

LD correlation matrices used in the SPU and GSMR tests were estimated using the 1000 

Genomes reference panel, assuming independence between chromosomes. Example code 

can be found at the website (github.com/kathalexknuts/ADIDP).
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Figure 1. Manhattan plots comparing GSMR, aSPU and Sum tests.
Significant IDPs labelled with IDP ID number from UKBB.
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Figure 2. 
Significant IDPs for GSMR, aSPU and Sum tests for the 5 × 10−5 SNP significant threshold.
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Figure 3. Manhattan plots for the 8 IDPs with significant tests for GSMR, Sum and aSPU tests.
All plotted SNPs have IDP GWAS marginal p < 5 × 10−5 and passed clumping at an LD 

cutoff of 0.1. The red line represents genome-wide significance (p < × 5 × 10−8).
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Figure 4. 
Significant IDPs for GSMR, aSPU and Sum tests at the 5 × 10−4 SNP significance threshold.
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Figure 5. 
Significant IDPs for GSMR, aSPU and Sum tests at the 5 × 10−6 SNP significance threshold.

Knutson and Pan Page 19

Quant Biol. Author manuscript; available in PMC 2022 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Number of SNPs used in 2SMR vs. aSPU/GSMR tests for each IDP that was significant for 

any test at the 5 × 10−5 SNP significance threshold.
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Figure 7. 
MR plots for 5 IDPs that were significant for all 3 SNP significance thresholds for at least 

1 test, including effect estimates for SNPs excluded in 2SMR analysis but used in GSMR/

aSPU analyses.
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Figure 8. Forest plots for the 5 IDPs with significance for all 3 GWAS thresholds for at least 1 
test.
All plotted SNPs have IDP GWAS marginal p < 5 × 10−6 and passed clumping at an LD 

cutoff of 0.1.
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Figure 9. Mendelian randomization framework.
MR uses a genetic variant, Zj, as an instrumental variable to infer the relationship between 

a phenotype, X, and a disease, Y. There is a possible presence of some hidden/unknown 

confounders, C.
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Figure 10. 
Data processing workow for testing the association between AD and a single IDP using 

marginal SNP effect estimates.

Knutson and Pan Page 24

Quant Biol. Author manuscript; available in PMC 2022 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Knutson and Pan Page 25

Table 1

Number of significant associations based on each test at the 5 × 10−5 significance threshold

Test Number of significant associations

SUM 10

aSPU 35

GSMR 13

Egger regression 0

IVW 0

Simple mode 0

Weighted median 0

Weighted mode 0
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