Skip to main content
. 2022 Apr 8;60(6):1595–1612. doi: 10.1007/s11517-022-02553-9

Table 6.

Comparison of the results with state-of-the art CNN methods for COVID-19 dataset

Source Models/methods Number of classes Overall acc (%)
Song et al. [78] DRE-Net

2

3

86

93

Ozturk et al.[79] DarkCovidNet

3

2

87.02

98.08

Wang et al. [80] CNNs, transfer learning 2 89.5
Keidar et al.[81] Data augmentation, segmentation and CNN 2 90.3
Wang et al. [50] Customized CNN architectur 3 93.33
Zhang et al.[82] COVID19XrayNet 2 91.92
Goel et al.[83] OptCoNet 3 97.78
Proposed COVID-CCD-Net 3 98.107