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e The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA   

A R T I C L E  I N F O   

Keywords: 
COVID-19 
Survival analysis 
Competing risks 
Composite ranking 

A B S T R A C T   

Having a complete and reliable list of risk factors from routine laboratory blood test for COVID-19 disease 
severity and mortality is important for patient care and hospital management. It is common to use meta-analysis 
to combine analysis results from different studies to make it more reproducible. In this paper, we propose to run 
multiple analyses on the same set of data to produce a more robust list of risk factors. With our time-to-event 
survival data, the standard survival analysis were extended in three directions. The first is to extend from 
tests and corresponding p-values to machine learning and their prediction performance. The second is to extend 
from single-variable to multiple-variable analysis. The third is to expand from analyzing time-to-decease data 
with death as the event of interest to analyzing time-to-hospital-release data to treat early recovery as a 
meaningful event as well. Our extension of the type of analyses leads to ten ranking lists. We conclude that 20 out 
of 30 factors are deemed to be reliably associated to faster-death or faster-recovery. Considering correlation 
among factors and evidenced by stepwise variable selection in random survival forest, 10 ~ 15 factors seem to be 
able to achieve the optimal prognosis performance. Our final list of risk factors contain calcium, white blood cell 
and neutrophils count, urea and creatine, D-dimer, red cell distribution widths, age, ferritin, glucose, lactate 
dehydrogenase, lymphocyte, basophils, anemia related factors (hemoglobin, hematocrit, mean corpuscular he
moglobin concentration), sodium, potassium, eosinophils, and aspartate aminotransferase.   

1. Introduction 

The purpose of meta analysis is to combine information from 
different datasets in multiple studies in order to provide robust and 
consistent conclusions on the effect of a factor on an outcome (Boren
stein et al., 2009; Haidich, 2010). However, it is less common to attempt 
multiple analyses on the same set of data to extract robust information. 
For example, in investigating risk factors for COVID-19 infection sus
ceptibility, disease severity (e.g. hospitalization), and mortality (Guan 
et al., 2020), the most common approach is to carry out one test to 
obtain p-value (Tian et al., 2020; Tian et al., 2021; Liu et al., 2020a, 
2020b; Rosenthal et al., 2020; Williamson et al., 2020; Fadl et al., 2021). 
The test can be t-test/Wilcoxon test for continuous variable, or 
χ2-test/Fisher’s test for discrete variables, with the value of a risk factor 
in samples within two groups compared. Alternatively, uni-variable 

logistic regression can be used, and the null hypothesis of regression 
coefficient to be zero is tested. For time-to-event data (survival data), the 
time from hospitalization to death of a COVID-19 patient can be used to 
examine which factor contributes to a faster death (per unit time rate of 
death), which can be done by the Cox regression (proportional hazard 
model). The null hypothesis of zero regression coefficient is then tested. 

In this paper, we extended the above common practice in three di
rections, on a COVID-19 patient time-to-event data. The first is to use 
both p-value based measures and prediction performance based ones. 
Although p-value-based approach has advantages: the meaning is easy 
to understand and the result is easy to report, it also has problems. P- 
value itself, often treated as the “gold standard for statistical validity", 
may not be so golden (Nuzzo, 2014). A change in true prior probability 
of a signal will change the prediction error even when the p-value is the 
same (Nuzzo, 2014; Colquhoun, 2017). There have already been 
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proposals of alternatives for p-value in evaluating variables (Lu and 
Ishwaran, 2018; Halsey, 2019). 

The second extension is to use multiple-variable methods as well as 
single-variable ones. Single-variable methods evaluate a variable in 
isolation with respect to other variables. As a result, they would not 
detect conditional importance of a variable and its interaction with 
other variables. Inconsistency, or larger confidence interval, between 
different datasets concerning the importance of a factor may well reflect 
the contextual heterogeneity in other variables (Ghahramani et al., 
2020; Kermali et al., 2020). The multi-variable statistical/machine 
learning models (Strobl et al., 2008) are ideal to supplement the 
single-variable analyses, but in the case of COVID-19 data analysis, are 
most focused on prediction and diagnosis (An et al., 2020; McCoy et al., 
2021; Li et al., 2020, 2021a, 2021b; Bennett et al., 2021; Karthikeyan 
et al., 2021; Aljameel et al., 2021; Mahdavi et al., 2021; Cornelius et al., 
2021; Kocadagli et al., 2022; Malik et al., 2022), not on variable eval
uation such as in our work. There are more applications of machine 
learning and artificial intelligence in the context of COVID-19, ranging 
from drug repurposing to medical assistance (Zeng et al., 2020; Deepthi 
et al., 2021; Chen et al., 2022; Alafif et al., 2021; Khan et al., 2021; 
Piccialli et al., 2021; Dogan et al., 2021; Majeed and Hwang, 2022). On 
the other hand, over-interpreting specific multi-variable models (Yan 
et al., 2020) might not be a good practice as it may not be applicable to 
other data (Barish et al., 2021). 

The third extension is specific for time-to-event data. For our inpa
tient data, not only have we deceased patients admission-to-death time 
information, but also we have larger number of patients who are 
completely recovered and released. In a typical survival analysis, these 
patients’ time-to-release information would be treated as right-censored 
data. However, treating them as the main event of interest, extra in
formation might be obtained (Cetin et al., 2021b, 2021c). 

With our three extensions, we are able to carry out ten analyses on 
the same set of data. Combining these analyses to get a composite 
ranking of risk factors for COVID-19 faster death or faster recovery, we 
effectively run a meta-analysis on the same dataset. Besides the standard 
testing for unit hazard ratio from Cox regression (thus p-value based), 
we also used single-variable random survival forest (Breiman, 2001; 
Ishwaran et al., 2008) (thus prediction performance based), 
multi-variable random survival forest and variable selection in regu
larized regression (thus multiple variable based). Two different mea
sures of performance (discordance index and integrated Brier score) in 
single-variable random survival forest are used. Then all these ana
lyses were repeated for the time-to-release data, resulting in ten different 
sets of results. We will show that our composite ranking of ten runs result 
in a more robust list of risk factors for COVID-19 severity than the 
p-value based method alone, and our selected factors are fully validated 
by being consistent with the literature. 

2. Methods and data 

2.1. COVID-19 patient data 

Our COVID-19 patient data was collected from Tokat State Hospital 
(Turkey), with 3084 people and 35 potential risk factors. This study was 
carried out with the approval of Gaziosmanpaşa University Faculty of 
Medicine Non-Interventional Clinical Research Ethics Committee (de
cision No: 22-KAEK-051). The 2682 outpatients do not have time-to- 
event data and would not be used in our survival analysis by RSF. For 
the remaining 402 inpatients, five factors have too much missing data 
(activated partial thromboplastin clotting time (aPTT), red blood cell 
(RBC) count, HbA1C, fibrinogen, and C-reactive protein (CRP)) and are 
not used. The remaining 30 factors are: age, gender, glucose, D-dimer, 
calcium, chloride, potassium, sodium, creatine, ferritin, urea, alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), lactate 

dehydrogenase (LDH), white blood cell (WBC) or leukocyte count, 
neutrophils (NEU) cell count, lymphocyte (LYM) cell count, monocyte 
(MON) cell count, eosinophils (EOS) cell count, basophils (BAS) cell 
count, platelets (PLT) cell count, hemoglobin (HGB) count, hematocrit 
(HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin 
(MCH), mean corpuscular hemoglobin concentration (MCHC), red cell 
distribution widths (RDW.CV and RDW.SD), mean platelet volume 
(MPV), platelet distribution width (PDW). Some of these factors still 
have missing data, but none of the missing rate exceeds 14%. 

2.2. Assessing independent variables in their contribution to time-to-event 
dependent variable using four methods 

Our data is of the following form: 30 independent variables, x→ = {

x1, x2, ⋯x30}, and one dependent variable y→ = {T, δ}, where T is the 
time to the event, and event status δ can take the value of 1 (event 1, or 
death), 2 (event 2, or release from hospital), 0 (right censored). We do 
not have any samples with right-censored time. How to handle multiple 
events data is usually within the scope of “competing risks" survival 
analysis (example: death from heart attack versus death from stroke); 
though in our case, the two events, risk and benefit, do not point to the 
same direction. How to analyze our special type of data will be discussed 
in the Result section. Here we simply reset δ = 2 to δ = 0 and summarize 
the existing methods. 

All four of our analyses aim at finding which independent variable is 
associated with the dependent variable. We will describe each method as 
below. (1) In Cox regression, instead of modeling and fitting the survival 
function, an arbitrary baseline survival function is assumed, and a 
change in independent variable is assumed to lead to a constant multiple 
of the whole baseline curve (proportional hazard hypothesis): 

h(t, xi)

h0(t)
= eβ0+βixi (i = 1, 2,⋯30) (1)  

where h0(t) is the arbitrary baseline hazard function, h(t, xi) is the hazard 
function with one of the independent variable present. The p-value pi for 
testing βi = 0 measures the statistical significance of the contribution of 
xi to the time-to-event data, and eβi measures the hazard ratio with one 
unit change in xi. 

(2) Random survival forest (RSF) (Ishwaran et al., 2008) is an 
extension of Random Forest (RF) (Breiman, 2001) to handle 
time-to-event data. RF/RSF construct many decision trees (therefore 
“forest") that separate the dependent variable value in two daughter 
nodes as much as possible (for introduction on RF, see, for example, 
(Louppe, 2014; Fernández-Delgado et al., 2014). Once the splitting of 
nodes in a tree is done, in each external node, the cumulative hazard 
function (CHF) can be estimated by the Nelson-Aalen estimator (Ish
waran et al., 2008). The CHF with an independent variable xi can be 
obtained by tracing the path on the tree, according to the xi value, to 
reach the external node (Ishwaran et al., 2008): 

Ĥnode(t) =
∑

tj,node<t

dj,node

nnode

H(t| x→) = meannode,tree Ĥnode(t)(the node a bootstrap of x→value leads to)
(2) 

The performance of a RSF is measured by samples not used in the 
construction of the tree/forest, as only 1 − e− 1 ≈63.2% of the data are 
used in a sample-with-replacement approach (bootstrap), and those are 
called out-of-bag (OOB) samples. The CHF of individual OOB samples 
can be obtained in a similar way by tracing the path along a tree by its 
independent variable values, and averaged over trees (Ishwaran et al., 
2008). Averaging over all OOB samples lead to an ensemble prediction 
of the CHF. As all samples will become an OOB in one of run of a tree, if 
the number of runs is large enough, a RSF will produce a predicted CHF 
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for each sample. 
Using the predicted CHF from the RSF program, two errors can be 

used to measure the prediction performance. One is Harrell’s concor
dance index (C-index) (Harrell et al., 1982) whose complement can be 
called discordance index (D-index) (Cetin et al., 2021a). The C-index 
(D-index) is simply the number of sample pairs whose event time and 
predicted CHF are consistent (not consistent), divided by the number of 
permissible sample pairs: 

C=%
(
Tj<Tk&H

(
t=Tj∣xj

→)〉
H(t=Tk∣xk

→))
j,kindexforpermissiblesamplepair

D=1− C
(3)  

The second measure is (integrated) Brier score (IBS) (Brier, 1950), which 
is the squared difference between the actual value (e.g. binary indicator 
for survival) and the predicted value (e.g., predicted survival probability 
Prob(T > t)), integrated over available time-to-event points in the 
sample: 

BS(t) =
1
n

∑n

j=1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
Prob(T > t)j − 1

)2
if t < Tj

Prob(T > t)2
j if t ≥ Tj, δj = 1

NA if t ≥ Tj, δj = 0

IBS ≈
1
nT

∑

j
BS

(
Tj
)

(4)  

where nT is the number of samples with δ = 1 and the sum is over these 
samples. 

(3) RF/RSF also provides a performance-based evaluation of indi
vidual variables when all variables x→ are used in RF/RSF (Breiman, 
2001; Ishwaran et al., 2008). We refer to the permutation based measure 
of variable important as VIM (the other choices are external node purity 
based, such as the Gini index (Nembrini et al., 2018). In this approach, a 
variable is removed (version-1) or randomized by permuting its value 
among samples (version-2), and the RF/RSF performance before and 
after permutation is compared: 

ver1 VIMP(xi) = error( x→\xi) − error( x→)

ver2 VIMP(xi) = error(x1, x2,⋯xi− 1,R(xi), xi+1,⋯ ) − error( x→)
(5)  

where R() refers to the random permutation step. Usually, it is the 
version-2 that is implemented in the commonly used programs. The 
variable that leads to the largest decrease of performance (or largest 
increase of error) is the most important variable. Note that this approach 
provides only a ranking of variables, and no cutoff of the list to separate 
important from unimportant variables is given. (4) The regularized 
(Hastie et al., 2009) regression LASSO (Tibshirani, 1996, 1997) for Cox 
regression for multiple variables is: 

h(t, xi)

h0(t)
= exp( β→

T
⋅ x→)conditional on

∑

i

⃒
⃒
⃒
⃒
⃒
βi

⃒
⃒
⃒
⃒
⃒
< c (6)  

When c → 0, all regression coefficients are zero. As c increases, {βi} 
gradually emerge from zero to non-zero value one by one. It is a variable 
selection technique, and the order of variables being selected can be 
used to rank them. For example, the first variable with non-zero coef
ficient is ranked no.1. A LASSO plot (how regression coefficient values 
change with the constraint) can be used to easily find the rank order. 

2.3. Programs used 

The R statistical platform (https://www.r-project.org) is used for our 
analysis. We use the R package randomForestSRC for random survival 
forest (Ishwaran and Kogalur, 2007), our own R functions for calculating 
IBS errors (http://github.com/wlicol/coxrsf/) (Cetin et al., 2021a), 

survival package for Cox regression and other survival analyses (Ther
neau and Grambsch, 2010). For LASSO on right-censored data, we use 
the R package glmnet (Simon et al., 2011). The Kendall correlation and 
testing of zero correlation is carried out by the R function cor( … 
method=“kendall") and cor.test( …method=“kendall"). 

In the main RSF program we used, the rfsrc function from random
ForestSRC package, the default number of trees (ntree=1000), default 
number of variables for splitting a branch (mtry=

̅̅̅̅̅̅
30

√
∼ 5), default 

minimum (average) number of samples in the external nodes 
(nodesize=15), are used. We choose samptype = “swr" (sampling with 
replacement), na.action = “na.impute" (imputing the missing value). 
The decision to use several default parameter settings is based on our 
experimenting with the parameter values (Probst et al., 2019), as have 
been done previously (Cetin et al., 2021a). Note that sampling with 
replacement is not the default setting in rfsrc, but consistent with the 
original proposal by Breiman. 

3. Results 

3.1. Survival analyses with two types of mutually exclusive events 

Our time-to-event data contains two events of very different nature. 
As early as 1980s, it was suggested to use a type-specific (cause-specific) 
use of standard survival analysis program by switching the second type 
event to right-censored event (i.e., convert δ = 2 to δ = 0) (Kalbfleisch 
and Prentice, 1980). The cause-specific (cs) hazard is defined as: 

hcs
k (t) = lim

Δt→0

Prob(t ≤ T < t + Δt,K = k|T ≥ t)
Δt

, k = 1, 2 (7)  

Although this definition clearly points to the possible cause-specific 
hazard for the second event, most people only concern about the main 
event, death, and do not consider the second event type. 

We argue here that to run a survival analysis on the time-to-release 
data, while masking death as right-censored, actually provide valuable 
information. If hcs

2 (xi + 1)∕hcs
2 (xi) > 1, then a higher value of xi leads to a 

faster release of a patient, and the variable-i is protective. For that same 
variable, we would expect hcs

1 (xi + 1)∕hcs
1 (xi) < 1 for the death event. 

The deceased samples should be more important in estimating hcs
1 . 

Similarly, the released samples should be more useful for the estimation 
of hcs

2 (xi). Therefore, we believe running the same survival analysis twice 
to find variables contributing to the two cause-specific hazard-ratios 
would use the dataset more fully. 

In competing risk survival analysis, there is another population 
approach called Fine-Gray model (Fine and Gray, 1999) which defines 
the following subdistribution hazard: 

hsd
k (t) = lim

Δt→0

Prob(t≤T < t+Δt,K = k|(T ≥ t)∪(T < t∩K ∕= k))
Δt

,k= 1,2 (8)  

where the occurring of a type-2 event has no impact on the calculation of 
hsd

1 , with the underlying assumption that the sample experiencing type-2 
event may continue to experience a type-1 event. However, this scenario 
is impossible in our example because our two types of events, release 
from hospital and die from COVID-19, are mutually exclusive. Using 
cause-specific survival analysis for mutually exclusive events is explic
itly recommended in (Allison, 2014). 

3.2. Composite ranking of factors based on five measures (time-to-death) 

The factors are ranked five times using five measures: D-index from 
single-variable RSF, IBS from single-variable RSF, p-value for testing 
unit hazard ratio by single-variable Cox regression, permutation based 
VIM from the full model RSF, the variable selection order in LASSO. We 
found that for full-model RSF, because of random components in a run 
(both samples and variables are randomly chosen in a tree formation), 

A. Ulgen et al.                                                                                                                                                                                                                                   

https://www.r-project.org
http://github.com/wlicol/coxrsf/


Computational Biology and Chemistry 98 (2022) 107681

4

the ranking order may change from run to run, especially for low- 
ranking factors. Therefore, we run the full-model RSF 100 times and 
the average of these runs is used. Table 1 shows the results of these five 
measures. The rank for each method is within the parentheses, and the 
factors are listed by the overall rank order. It can be seen that some 
factors are consistently ranked high no matter what method is used (e.g., 
urea is ranked no.1 by all five methods, neutrophils and calcium are 
ranked within top 5 by all five methods). Other factors are not ranked 
consistently among methods: e.g., LDH, AST are ranked high in the three 
RSF based methods but ranked lower by Cox and LASSO; sodium is 
ranked lower in single-variable RSF measures; etc. The consistency is 
reassuring that the very top factors would be discovered by any method. 
The inconsistency or variation provides a basis for our approach of 
combining multiple rankings to improve the robustness of the result, 
even for one dataset. 

3.3. Composite ranking of factors based on five measures (time-to- 
release) 

Table 2 shows the similar five rankings (and the factors are ordered 
by the composite ranking obtained the five) with time-to-release as the 
dependent variable. It is interesting that different methods do not share 
a common top factor: the three RSF based methods pick ferritin as the 
top factor, whereas Cox regression picks age, and LASSO picks calcium. 
When the overall rank in Table 2 is combined with the overall rank in 
Table 1, we have a composite rank using 10 ranking lists (last column in 
Table 2). 

To compare the time-to-death and time-to-release obtained ranking, 
we plot the two 1/ranks versus the composite-19 rank in Fig.1(A). 
Generally speaking, the two are consistent. When the two are less 
consistent, a “bubble" is formed. We mark the name in black if a factor is 
ranked higher (by more than 3) in the time-to-death analyses, and in 

blue if the factor is ranked higher in the time-to-release analysis (and 
gray if the ranks are similar). We can see that neutrophils, urea, glucose, 
creatine, lymphocytes, etc. are ranked higher in time-to-death runs, 
whereas RDW.SD, age, ferritin, HGB, etc. are ranked higher in time-to- 
release runs. Fig. 1(B) and (C) also show if the individual ranks within 
the time-to-death group and those within the time-to-release group are 
consistent or not. If a factor has a large variance (normalized by the 
mean rank) among individual ranks, it is marked by the brown color, 
otherwise by gray color. All curves in Fig. 1 are decreasing functions, 
indicating a general agreement among all ranking lists. A factor with a 
star (*) indicates that it is highly correlated with another higher ranked 
factor (see Table 3). 

3.4. Correlated factors 

Because collinearity in a regression model is a problem of concern, 
we examine variable pairs that are correlated with each other. We use 
plotting of the raw data, correlation coefficient, p-value for testing 
correlation to be zero, the R2 from regression to determination the 
correlation status. Several issues are considered: (1) we check the 
deceased samples and survived samples separately; (2) we check both 
the original data and log-transformed data; and for the same reason, the 
correlation coefficient and testing zero correlation is based on the non- 
parametric Spearman method; (3) if the visual impression of the scatter 
plot is a guide, the R2 from regression provides a better quantity to use 
than, e.g. p-value for testing zero correlation. 

We found six pairs of strongly correlated variables: urea and crea
tine, neutrophils and white blood cell, AST and ALT, RDW.CV and RDW. 
SD, HGB and HCT, MCV and MCH. The measure of their correlation is 
shown in Table 3. The lower ranked factor of a pair is marked with 
asterisk in Tables 1 and 2. There are more correlated variable pairs than 
those shown in Table 3, e.g., sodium and chloride. We use a more 

Table 1 
Composite ranking of factors based on time-to-death of COVID-19. Column 1 (Col-1): composite rank from five analyses; Col-2: names of factor; Col-3: two error 
measures of single-variable random survival forest (RSF): discordance index (D) and integrated Brier score (IBS). The number in the parenthesis is the rank (also for 
Cols 4–6); Col-4: p-value from single-variable Cox regression; Col-5: permutation-based variable importance (VIM) from the full RSF model, averaged over 100 runs; 
COl-6: (ranking according to the variable selection order from LASSO; T for tied rank).  

combined rank var single-var RSF Cox C full RSF LASSO 
(time-to-death)  D (rank), IBS (rank) pv (rank) VIM × 103 (rank) (rank)  

1 urea .186 (1),.121 (1) 1.4E-19 (1) 38.2 (1) (1)  
2 calcium .220 (3),.131 (3) 5.6E-14 (4) 12.6 (2) (3)  
3 NEU .235 (4),.141 (5) 3.1E-16 (2) 9.05 (4) (2)  
4 WBC * .252 (5),.153 (8) 2.2E-14 (3) 5.05 (8) (7)  
5 creatine * .214 (2),.127 (2) 2.1E-12 (5) 10.6 (3) (19)  
6 LYM .326 (12),.167 (14) 1.3E-9 (8) 5.3 (7) (5.5T)  
7 D-dimer .3 (8),.167 (16) 1.1E-9 (7) 1.13 (15) (4)  
8 glucose .281 (7),.154 (9) 4.4E-5 (14) 2.69 (10) (11)  
9 sodium .367 (18),.18 (21) 4.2E-11 (6) 2.6 (9) (5.5T)  
10 BAS .377 (20),.14 (4) 2.4E-6 (13) 0.98 (17) (9T)  
11 chloride .35 (14),.175 (20) 4.24E-8 (9) 1.32 (12) (9T)  
12 RDW.SD .313 (10),.171 (18) 5.8E-8 (10) .56 (19) (9T)  
13 LDH .26 (6),.15 (7) .015 (23) 7.56 (5) (26)  
14 AST .302 (9),.15 (6) .021 (24) 5.54 (6) (24)  
15 EOS .365 (17),.164 (11) 4E-4 (17) 1 (16) (13.5T)  
16 potassium .319 (11),.167 (15) 5.7E-4 (18) 0.279 (23) (15)  
17 age .373 (19),.171 (17) 8.7E-8 (11) 0.319 (21) (13.5T)  
18 ALT * .354 (15),.165 (13) .0403 (27) 0.454 (20) (12)  
19 RDW.CV * .335 (13),.165 (12) 1.7E-4 (16) 0.29 (22) (25)  
20 ferritin .38 (22),.183 (22) 3.6E-7 (12) 0.186 (24) (21)  
21 MPV .378 (21),.192 (24) 1.5E-4 (15) 0.0648 (25) (16)  
22 PDW .356 (16),.174 (19) .036 (25) -0.0178 (26) (21)  
23 HCT .474 (27),.214 (29) .008 (22) 1.16 (14) (17)  
24 MCHC .407 (23),.193 (25) .0011 (19) -0.047 (27) (18)  
25 PLT .443 (25),.2 (26) .0019 (21) 0.88 (18) (23)  
26 HGB * .416 (24),.206 (27) .0014 (20) 1.22 (13) (29)  
27 MON .475 (28),.208 (28) .49 (28) 1.35 (11) (21)  
28 gender .637 (30),.155 (10) .83 (29) -0.06 (28) (28)  
29 MCV .461 (26),.189 (23) .037 (26) -0.1 (29) (30)  
30 MCH * .561 (29),.218 (30) .86 (30) -0.21 (30) (27)  
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conservative R2 cutoff point, and require the correlation in both sur
vived and deceased group. 

3.5. Estimation of the number of independent factors that achieve the 
optimal prediction performance 

Although we have the composite ranking order of factors (both 
composite-5 in Table 1 and Table 2 and composite-10 in the last column 
of Table 2), there is still a question of where to cut the list to select the 
relevant factors. Towards this, we use a stepwise variable selection, 
similar to that in regression (e.g. (Ryan, 2008), but in the framework of 
RSF. We first need to clarify the meaning of adding or removing a var
iable. There are two versions: the first is actually add a variable starting 
from an empty field, or remove a variable starting from a full model. The 
second version is to keep all variables, but instead of an empty field with 
no variable, the null model refers to all variables being value-shuffled. 
Therefore, adding the first variable is to retain its values while keep
ing other variables scrambled. The difference between the two versions 
might be written as (up to step-i of a variable selection): 

actual: (T, δ) ∼ RSF(x[1], x[2],⋯x[i])
vitual: (T, δ) ∼ RSF(x[1], x[2],⋯x[i],R(x[i+1]),R(x[i+2]),⋯ )

(9)  

where the subscript [i] refers to the i-th variable selected, and operation 
R refers to random value-shuffling. Fig. 2 shows the OOB error IBS as a 
function of variable selection with this variable selection criterion (to 
stage-i): 

[i] = min
j

IBS(x[1], x[2],⋯ , x[i− 1], xj,R( x→\{x[1], x[2],⋯ , x[i− 1]})) (10)  

where the index j goes through all variables not already selected in 
stage-1,2, ⋯ , i − 1, and all the rest of variables not selected remain to be 
value-scrambled. We have run the stepwise variable selection three 
times each for both time-to-death RSF and time-to-release RSF. The 
horizontal line is the mean of IBS from 500 runs of the full model, and 

dashed lines are one standard deviation from the mean (for time-to- 
death data, IBS= 0.0945 ± 0.000514, and for time-to-release data 
IBS=0.0753 ± 0.000246). 

There are several observations from these runs: (1) The full model is 
not the best performing model. It is related to a long debate on whether 
RF (or RSF here) needs variable selection or not (Díaz-Uriarte and De 
Andreés, 2006; Li, 2006). The Fig. 2 shows that variable selection 
(reduction from the full model) is still needed for RF/RSF. However, we 
did not show the full range of IBS; and if we do, it will be seen that the 
problem of overfitting from the full model is less severe compared to 
other methods. (2) At each stage-i, multiple variables may have very 
similar IBS’s and the selection of x[i] by Eq.10. As a result, which 
particular variable is selected at stage-i may change from run to run 
(with the exception of perhaps the first few stages). Therefore, we 
cannot use this procedure to select risk factors. (3) On the other hand, 
because the three runs (per subplot) all reach the optimal performance 
in the middle, we can use Fig. 2 to roughly estimate the number of 
(independent) factors to achieve the best performance. This estimation 
will not be precise because different runs exhibit variations; However 
10 ~ 15 (10 from Fig. 2(A) and 15 from Fig. 2(B)) factors should be a 
correct range. 

3.6. Final selection of list of risk factors 

Because the factor order in Fig. 2 changes from run to run, we use the 
pre-determined rank order (column 1 in Tables 1 and 2) to check how 
error decrease, i.e., the i-th variable added in stage-i is simply the rank- 
(i) variable in the ranking list: either the composite ranking order based 
on 5 time-to-dead analyses or on 5 time-to-release analyses. We also use 
both IBS and D-index as a measure of OOB prediction errors. Further
more, both the virtual and actual variable addition were used. The 
resulting error curves are shown in Fig. 3 (top: time-to-death runs, 
bottom: time-to-release runs; left: D-index, right: IBS; black: virtual 
addition of variables, red: actual addition of variable). It is also possible 

Table 2 
Similar to Table 1 for time-to-release analyses.  

combined rank var single-var RSF Cox C full RSF LASSO composite10 
(time-to-release)  D (rank), IBS (rank) pv (rank) VIM × 103 (rank) (rank) (rank)  

1 ferritin .327(1),.099 (1) 1.9E-17 (7) 21.4 (1) (2.5T) (8)  
2 RDW.SD .355 (4),.103 (5) 2.6E-19 (3) 7.87 (3) (4.5T) (6)  
3 WBC .361 (6),.1 (2) 8.8E-18 (5) 5.8 (6) (2.5T) (2)  
4 age .338 (2),.108(12) 1.5E-27 (1) 15.8 (2) (4.5T) (7)  
5 calcium .354 (3),.107 (9) 3.8E-21 (2) 4.08 (7) (1) (1)  
6 D-dimer .368 (7),.104 (6) 3.6E-15 (9) 6.56 (4) (6.5T) (5)  
7 NEU * .359 (5),.102 (3) 1.1E-17 (6) 6.48 (5) (17.5T) (3)  
8 HGB .39 (11),.105 (7) 6.4E-19 (4) 1.89 (10) (6.5T) (14)  
9 HCT * .395 (12),.105 (8) 6.5E-19 (8) 1.04 (18) (9T) (16)  
10 LDH .38 (9),.11 (14) 8.9E-15 (10) 2.85 (9) (19) (11)  
11 urea .373 (8),.109 (13) 3.7E-14 (11) 3.19 (8) (26) (4)  
12 glucose .397 (13),.112 (17) 8.7E-8 (16) 1.52 (11) (11) (9)  
13 BAS .42 (17),.103 (4) 0.64 (29) 1.35 (15) (15.5T) (13)  
14 MCHC .441 (21),.118 (26) 8.1E-9 (14) 1.4 (13) (9T) (21)  
15 LYM .41 (15),.107 (11) 1.4E-4 (20) 0.81 (19) (21) (12)  
16 RDW.CV * .422 (18),.114 (20) 6.7E-10 (12) 1.42 (14) (27) (18)  
17 gender .541 (30),.107 (10) 0.002 (23) 0.78 (20) (9T) (25)  
18 creatine * .387 (10),.115 (23) 4.3E-9 (13) 0.43 (21) (24) (10)  
19 sodium .415 (16),.117 (25) 1.5E-5 (18) 0.32 (23) (12.5T) (15)  
20 potassium .409 (14),.115 (22) 7.7E-5 (19) 0.29 (25) (17.5T) (17)  
21 MCV .454 (26),.118 (27) 3.7E-6 (17) 1.05 (17) (15.5T) (29)  
22 PLT .452 (25),.112 (16) 0.217 (27) 1.1 (16) (20) (27)  
23 MPV .467 (27),.119 (28) 8E-8 (15) 0.37 (22) (14) (24)  
24 EOS .48 (28),.115 (24) 0.777 (30) 1.48 (12) (12.5T) (19)  
25 PDW .44 (20),.114 (19) 4.7E-4 (21) 0.13 (28) (22.5T) (26)  
26 MON .447 (24),.111 (15) 0.09 (26) 0.24 (26) (22.5T) (28)  
27 ALT .445 (23),.112 (18) 0.002 (24) 0.21 (27) (25) (23)  
28 AST * .425 (19),.114 (21) 0.0014 (22) 0.12 (30) (30) (20)  
29 chloride .444 (22),.12 (29) 0.03 (25) 0.1 (29) (29) (22)  
30 MCH * .509 (29),.122 (30) 0.22 (28) 0.31 (24) (28) (30)  
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to remove the least important (low ranking) variables first (going 
through the ranking list backward), but the results were very similar 
(not shown). 

It has been suggested in the literature that IBS is a better measure 
than D-index because it is more practical (Longato et al., 2020) and more 
quantitative (Kattan and Gerds, 2018). We also prefer the virtual vari
able addition over actual one because the change in the error curves in 
Fig. 3 is smoother. Therefore, we use the black curve in Fig. 3(B) to 
choose the top 14 factors as removing (the number 15 factor does not 
visibly reduce the error further, and that in Fig. 3(D) to choose the top 8 
factors (again because removing the number 9 factor in Fig. 3(D) does 
not seem to reduce the error greatly). Using the similar error curve from 
the ranking order from VIM in full RSF model (columns 5 in Tables 1 and 
2) (not shown), we will have a similar list of selected top factors. All 
these information and more are presented in Table 4. 

In Table 4, we mark factors being selected by Fig. 3(B), Fig. 3(D), and 
those by two other error curves not shown. The last two columns in 
Table 4 mark factors which would have been selected by the standard p- 
value approach (p-value <0.001). In fact, the threshold for p-value can 
be 0.01, or 0.005, and 0.001, but we consider the threshold 0.001 to be a 
good choice (see, for example, Colquhoun, 2017; Ioannidis, 2018; Li 
et al., 2021a, 2021b). If we choose factors that contribute to a better 
prediction performance, 21–22 factors would be selected, 17–18 of them 
are independent. These are the factors above the horizontal partition 
line, except potassium. We may consider chloride a borderline choice as 
it ranks last in our list, and monocyte as a borderline possibility. Note 

Fig. 1. (A) Comparing the composite rank based on 5 time-to-death analyses (black) and the composite rank based on 5 time-to-release analysis (blue). The x-axis is 
the composite rank based on 10 analyses, and y-axis is 1/(composite rank using 5 analyses). (B) Comparing the five ranks obtained from five time-to-death analysis. 
The x-axis is the composite rank and y-axis is 1/(individual rank). (C) Similar to (B) for ranks from five time-to-release analyses. 

Table 3 
Factor pairs that have very strong correlation (with R2 > 0.6 in both survived 
and deceased group, either in the original level or log-transformed level). The 
correlation coefficient (cc) and p-value for testing cc= 0 both refer to Spearman 
correlation.  

factor1 factor 2 deceased samples: n, R2 

(linear)/ (log), 
survived samples: n, R2 

(linear)/ (log),   
cc (Spearman), pv 
(Spearman) 

cc (Spearman), pv 
(Spearman) 

urea creatine 94, 0.58/0.61, 0.78, 9.7E-21 308, 0.42/0.61, 0.57, 1.6E- 
27 

NEU WBC 89, 0.99/0.98, 0.99, 6.8E-78 257, 0.87/0.98, 0.91, 1.4E- 
97 

AST ALT 94, 0.62/0.73, 0.79, 6.5E-21 307, 0.6/0.73, 0.71, 4.6E-48 
RDW. 

CV 
RDW. 
SD 

94, 0.61/0.62, 0.77, 2.3E-19 290, 0.66/0.62, 0.71, 9.3E- 
46 

HGB HCT 94, 0.96/0.96, 0.98, 4.9E-64 290, 0.96/0.96, 0.98, 1.1E- 
210 

MCV MCH 94, 0.81/0.82, 0.81, 2.1E-23 290, 0.86/0.82, 0.92, 1.5E- 
122  
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Fig. 2. IBS from OOB samples in RSF run with 
the stepwise variable selection (Eq.10), for 
time-to-death data (A) and time-to-release data 
(B). For each variable at each stage, 10 RSF runs 
were carried out. The variable with the lowest 
mean IBS is selected, and its mean the one 
standard deviation up or down are shown in a 
vertical bar. The whole process is repeated 
three times (for (A) and for (B) separately). The 
larger IBS’s with few variables (i < 5) are cut 
off in order to zoom in the middle range of i’s.   

Fig. 3. OOB RSF error (D-index on left, IBS on right) for time-to-dead (top) and time-to-release (bottom) data, as a function of i (stage-i of addition of the top-i ranked 
factors), with black for virtual variable addition and red for actual addition. The horizontal line is the mean and one standard deviation away from the mean of the 
full model errors (from 500 runs). The vertical bar represents one standard deviation away from the mean at stage-i by 10 runs. 
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that the Cox regression p-value based selection (at p = 0.001) would 
select MPV and PDW, which are not on our list. 

The partition of factors in Table 4 into selected and not-selected ones 
should be considered to be ad hoc to some extent. We are only more 
confident of the factors being selected based on multiple lines of evi
dence, whereas less confident for the factors not selected. It does not 
imply that those not selected here are never relevant to COVID-19 
severity/mortality, only that in our data they do not have the fullest 
level of evidence support. 

4. Discussions 

In this work, we have carried out a careful analysis from a single 
dataset to determine which factors contribute to either faster death or 
faster release from hospital. By a literature search, we found all our 
selected factors were addressed in other studies and were shown to be 
significantly associated with the COVID-19 disease severity. Here is a 
partial summary:  

• Low calcium level is associated with poor prognosis of COVID-19 
(Filippo et al., 2020; Liu et al., 2020a, 2020b; Lee et al., 2022), 
probably due to its role in viral infection and replication.  

• Higher neutrophil/lymphocyte ratio (NLR) is known to be associated 
with severity of COVID-19 (B. Zhang et al., 2020; Ma et al., 2020; 
Ulgen et al., 2021). Individually, higher neutrophils (Reusch et al., 

2021) and lymphopenia (lower lymphocyte) (Tan et al., 2020; 
Tavakolpour and Rakhshandehroo, 2020) both are linked to severity. 
Besides blood test, proteomics based neutrophil signatures have been 
proposed (Meizlish et al., 2021). The pathologic effect of innate 
immune system represented by a high level of neutrophils was 
investigated in Sinha et al. (2022).  

• Although leukocyte count may be normal or decreased in COVID-19 
patients, the incidence of leukocytosis (higher WBC) increases in ICU 
patients, and has been reported to be associated with COVID-19 
severity (Huang et al., 2020; Sayad et al., 2020). There is also an 
investigation of the causal role of WBC in disease severity by Men
delian randomization (Sun et al., 2021). Note that leukocytosis could 
also be related to bacterial infections, corticosteroids use, or age, and 
others unrelated to COVID-19 severity.  

• The urea and creatine level has been observed to be higher in COVID- 
19 patients, and these are related to kidney abnormalities/failure 
(Cheng et al., 2020; Ye et al., 2021). A recent study indicated that 
SARS-Cov-2 infection of kidney was possible (Jansen et al., 2022).  

• D-dimer, as a byproduct of fibrinogen degradation, is closely related 
to thrombosis. D-dimer has been recommended as a quantity to 
monitor in COVID-19 patients (Thachil et al., 2020) due to ample 
evidence of its association with disease severity (Tang et al., 2020; 
Berger et al., 2020; Terra et al., 2022).  

• The association of red blood cell distribution width with COVID-19 
severity and mortality is reported in Foy et al. (2020), Wang et al. 
(2020), Wang et al. (2022). 

• Age is perhaps the best established risk factor for severity and mor
tality, see, e.g. (Williamson et al., 2020).  

• Elevated ferritin serum levels have been found to significantly 
correlate with COVID-19 severity, as discussed in these papers (Lin 
et al., 2020; Carubbi et al., 2021; Ahmed et al., 2021; Kaushal et al., 
2022), among others. 

• The short-term glucose has been shown to be a much stronger pre
dictor for COVID-19 severity than the history of diabetes status 
(Singh and Singh, 2020; Coppelli et al., 2020; Ling et al., 2020; Cetin 
et al., 2021d; Guarisco et al., 2022). In a recent study, it was shown 
that higher glucose level (> 180) had increased the odds of death by 
4-fold for non-diabetes, whereas only 1.8-fold increase for diabetes 
COVID-19 patients (Skwiersky et al., 2021).  

• Lactate dehydrogenase (LDH), which was already known to be 
associated with poor outcome from viral infection, could predict 
COVID-19 severity (Henry et al., 2020; Han et al., 2020; Jin et al., 
2022). 

• Both basophils and eosinophils are found to be among the most dy
namic cell populations during disease progression (Rodriguez et al., 
2020), implicating them important roles played in anti-viral defense. 
Basophils are predicted to be a causal factor in COVID-19 severity 
(Sun et al., 2021), and the role of eosinophil is studied in Lindsley 
et al. (2020), Xie et al. (2021), Tan et al. (2021),  

• Hemoglobin and anemia has been discussed in their role of COVID- 
19 in W. Zhang et al. (2020), Hariyanto and Kurniawan (2020), 
Benoit et al. (2021), Tao et al. (2021). Hematocrit (HCT) was 
mentioned as one of the laboratory tests for COVID-19 diagnosis and 
prognosis (Mertoglu et al., 2021). MCHC was among the lab test 
indicators to be significant for COVID-19 severity (Ballaz et al., 
2021).  

• On other essential minerals besides calcium, low abnormal sodium 
level (hyponatremia) was reported to be linked to COVID-19 severity 
(Tzoulis et al., 2021; De Carvalho et al., 2021), negative association 
between potassium and severity was observed in D. Wang et al. 
(2020), while which patient population may have this correlation 
with hypokalemia was cautioned in Szoke et al. (2021). It is inter
esting that the borderline item on our list, chloride, was not shown to 
be significantly associated with severity in Lippi et al. (2020). While 
chloride’s link was investigated in other studies, its p-values were as 
good as other electrolytes (Wu et al., 2020; Carvalho et al., 2021a). 

Table 4 
The risk factor selection worksheet. T2D/T2R: time-to-death/time-to-release 
data. VIM/rank5: rank order from variable importance of the full RSF model 
(column 5 of Tables 1 and 2)/composite rank order (column 1 of Tables 1 and 2). 
If a factor is selected by either being among the top ranking variables by the 
corresponding error curve, or by the p-value < 0.001 in Cox regression, it is 
marked by + .  

rank factor VIM/ 
T2D 

rank5/ 
T2D 

VIM/ 
T2R 

rank5/ 
T2R 

Cox/ 
T2D 

Cox/ 
T2R  

1 calcium + + + + + +

2 WBC + + + + + +

3 NEU ( → 
WBC) 

+ + + + + +

4 urea + + + + +

5 D-dimer  + + + + +

6 RDW.SD  + + + + +

7 age   + + + +

8 ferritin   + + + +

9 glucose + + + + +

10 creatine ( → 
urea) 

+ + + +

11 LDH + + + +

12 LYM + + + +

13 BAS  + +

14 HGB + + + +

15 sodium + + + +

16 HCT ( → 
HGB) 

+ +

17 potassium     + +

18 RDW.CV ( 
→ RDW.SD)   

+ + +

19 EOS   + +

20 AST + +

21 MCHC   + +

22 chloride + + +

23 ALT ( → 
AST)        

24 MPV     + +

25 gender        
26 PDW      +

27 PLT        
28 MON + +

29 MCV        
30 MCH ( → 

MCV)        
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• Liver biochemical biomarkers are associated with COVID-19 disease 
severity and clinical outcomes. Admission aspartate aminotrans
ferase (AST) was shown to be higher in those requiring ICU stay (Gu 
et al., 2021; Mo et al., 2020; Ding et al., 2020; Aloisio et al., 2021). 
Having fatty liver disease can be a risk for COVID-19 severity (Pan 
et al., 2021). 

Our “within-sample-meta-analysis" lead to a more robust conclusion 
concerning risk factors for COVID-19 severity. Using independent 
studies published by other groups, our cutoff in Table 4 may lead to close 
to zero false discovery rate (FP/(FP+TP)) or close to 100% precision 
(positive predictive value, TP/(FP+TP)). 

We may still underestimate the number of risk factors for the 
following reason. Because the number of variables selected by Figs. 2 
and 3 represent the sufficient number of variables needed to achieve 
optimal performance, and adding more correlated/collineared variables 
would not decrease the error further. Among factors not selected in 
Table 4, several are related to platelet: PLT itself, and MPV and PDW 
related to platelet size. Because platelet is a key regulator of thrombosis 
and inflammation, both present in severe COVID-19 patients, it is a good 
candidate for risk factor (Barrett et al., 2021; Rohlfing et al., 2021; 
Delshad et al., 2021). However, it is suggested that 
platelet/large-cell-cell ratio (PLCR) (Daniels et al., 2021) is a better 
marker than MPV and PDW, and platelet-to-lymphocyte ratio (PLR) 
(Asan et al., 2021) is a better marker than platelet count. However, see 
counter conclusions in Aydinyilmaz et al. (2021), Lippi et al. (2021). 

Other factors not selected by our composite ranking in Table 4 
include gender, monocyte, MCH/MCV (mean corpuscular hemoglobin/ 
volume). Male gender seems to be a risk for severity/mortality (Jin et al., 
2020), though the effect size can be weak (Ortolan et al., 2020; 
Mukherjee and Pahan, 2021). We also cannot exclude the possibility of 
impact from gender-specific comorbidities (Ya’qoub et al., 2021). 
Monocytes usually make up a very small percentage of all white blood 
cells. Although it could play a role in COVID-19 severity (Vanderbeke 
et al., 2021), neutrophils with a much larger percentage in white cell 
population, should provide more signal. MCH/MCV tend to be less sig
nificant than other variables as reported in (Ballaz et al., 2021; Rahman 
et al., 2022). ALT is in a special situation because it is highly correlated 
with another factor selected (AST). There were indications that ALT 
could be a relevant biomarker by itself (Malik et al., 2021), or not (Qin 
et al., 2020), or within some patients (Bertolini et al., 2020). 

The fact that factors not selected in our data whereas mentioned in 
other publications as potential relevant factors might reflect two situa
tions. The first is that these factors are actually only weakly associated 
with COVID-19 severity/mortality and we are not able to detect them. 
The second possibility is that any two datasets can not be identical, and 
there are always chances that heterogeneity, unmeasured covariates, 
variations due to finite sample sizes may lead to inconsistent 
conclusions. 

In the calculation of variable VIM in RSF, one variable is removed/ 
shuffled from the full model, and the most important variable is listed 
first. It is tempting to extend this for a stepwise variable selection pro
cedure by removing/shuffling the important variable at each stage 
(currently we remove/shuffle the least important variable first). How
ever, this procedure does not produce an error curve that reaches 
plateau (result not shown). Therefore, we did not use this procedure for 
deciding the cutoff in our variable list. 

In conclusion, with more interests in using blood test for prognosis in 
COVID-19 patients (COMBAT Consortium, 2022), we have carried out a 
careful analysis on blood-test factors affecting COVID-19 hazard in a 
time-to-event data from a Turkish cohort. We use multiple measures and 
methods to rank factors, some are traditional single-variable test (Cox 
proportional hazard ratio model), whereas others are multiple-variable 
machine learning techniques (random survival forest). A novel choice in 
our composite ranking is to utilize shorter hospital stay for released 
patients to discover protective factors, which should also be a risk factor 

when the factor value changes in the opposite direction. This approach 
complements the approach in using the time-to-death information for 
deceased patients. All of our top choices in the composite ranking list are 
confirmations to one of the other studies for risk factors for COVID-19 
severity and/or mortality, resulting in a 100% positive predictive value. 
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