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Abstract
Background: Hepatocellular carcinoma (HCC) is the most common histological sub-
type of liver cancer and the third leading cause of death from cancer globally. Recent 
studies suggested cell death is also a key regulator of tumour progression. The pur-
pose of this study was to generate a new predictive signature for HCC patients based 
on a complete analysis of necroptosis-associated genes.
Methods: We extracted the mRNA expression profiles of HCC patients from the 
TCGA and ICGC databases and their clinical data. In addition, we used the IMvigor210 
cohort to validate our model molecule's ability to predict the effect of immunother-
apy. In the TCGA cohort, a seven-gene risk-prognostic model was constructed using 
univariate cox-Lasoo regression. External validation was conducted using the ICGC 
cohort. The ssGSEA algorithm is used to determine the degree of immune function 
response. The CMAP databases are used for chemotherapy drug analysis and screen-
ing for drugs that reduce the expression of high-risk genes. The cbioportal database 
was used to explore mutations in model genes.
Results: Survival analysis shows shorter survival for high-risk patients. Immune func-
tion analysis revealed significant differences in the activity of immune pathways 
between risk subgroups. Varied risk scores result in dramatically diverse immune infil-
tration and tumour growth, as well as significantly different chemotherapeutic sensi-
tivity. In addition, Apigenin and LY-294002 reduced the expression of high-risk genes, 
while Arecoline had the opposite effect. In the immunotherapy IMvigor210 cohort, 
risk scores were significantly different between the objective responder and non-
responder groups. By comparing the models constructed with published literature, it 
is suggested that our model has better predictive power.
Conclusions: We created a new prognostic signature of necroptosis-related genes 
that can be used as potential prognostic biomarkers to guide effective personalized 
therapy for hepatocellular carcinoma patients.
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1  |  INTRODUC TION

Ninety percent of primary liver cancers are caused by hepatocel-
lular carcinoma (HCC), the third most common cause of cancer-
related death globally. According to the American Cancer Society, 
in 2021  liver cancer is expected to cause approximately 30,230 
American deaths.1 Genetics, epigenetic alterations, chronic hep-
atitis B, are the main risk factors for hepatocellular carcinoma. 
Hepatocellular carcinoma has a poor prognosis because of its pro-
pensity for recurrence and dissemination. Genetics, epigenetic 
alterations, chronic hepatitis B, are the main risk factors for hepa-
tocellular carcinoma. Hepatocellular carcinoma has a poor prognosis 
because of its propensity for recurrence and dissemination.

Immune checkpoint inhibitors (ICIs) have become an effective 
therapy option for patients with advanced HCC in recent years due 
to their increased clinical use. Clinical agents for treating HCC with 
checkpoint inhibitors include anti-CTLA-4 and anti-PD-1 drugs. 
Anti-PD-1 drugs have demonstrated significant effects in improving 
tumour response and patient survival.2 However, immune check-
point inhibitors (ICIs) only benefit one-third of cancer patients and 
have significant limitations.

The majority of cancers are very resistant to apoptosis, and in-
duced cell death processes can be a brand new cancer treatment, 
and numerous recent research has established a link between vari-
ous cell death mechanisms and anticancer immunity. Recent studies 
have revealed that  pyroptosis and ferroptosis combined with im-
mune cell infiltration can affect the progression of different cancers 
and have developed some novel prognostic molecules.3,4 However, 
few studies have explored how necroptosis affects the progression 
of hepatocellular carcinoma and the immune infiltration of hepato-
cellular carcinoma cells.

Necroptosis occurs downstream of PRK1 and RIPK3, which 
form oligomeric complexes known as necrosomes.5 MLKL me-
diates the release of cell contents by necrosome-promoted cell 
swelling and plasma membrane collapse, resulting in the spillage 
of intracellular organelles and biomolecules into the extracellu-
lar environment. Necroptosis has been shown to inhibit tumour 
progression, but it can also promote cancer metastasis and immu-
nosuppression by eliciting an inflammatory response.6,7 However, 
the mechanism of necroptosis's role in hepatocellular carcinoma 
remains unknown, so this study used bioinformatics to investigate 
the prognosis of necroptosis-related molecules as well as the im-
munological role.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition and collation

The TCGA database (https://portal.gdc.cancer.gov/) was utilized to 
download transcriptome datasets (FPKM) and clinical information 
for 424 samples of hepatocellular carcinoma (50 normal and 374 
tumour samples). As a training set, we use the TCGA cohort. We 

also downloaded the Japanese cohort's transcriptome and clinical 
information gleaned from the ICGC database (https://dcc.icgc.org/
proje​cts/LIRI-JP) and obtained 231 samples with survival time, out-
come and pathological stage as the validation cohort by collating and 
merging the transcriptome and clinical data (Appendix S1 and S2). In 
addition, we gathered 62 genes related to the necroptosis pathway 
for inclusion in this study by searching the literature. In addition, the 
immunotherapy IMvigor210 cohort was derived from the literature.8 
Because TCGA and ICGC are open source databases, there are no 
ethical concerns or conflicts of interest.

2.2  |  Differentially expressed necroptosis-related 
genes with prognostic effects

We extracted the expression of 62 genes associated with necroptosis 
from the TCGA transcriptome as a new matrix for subsequent analy-
sis, and identified 42 genes differentially expressed between the tu-
mour and normal groups using the ‘limma’ package9 [logFold change 
>1, false discovery rate <0.05]. Screening of necroptosis genes asso-
ciated with prognosis by univariate COX analysis (Appendix S1 and 
S2). Prognosis-related differentially expressed genes were identified 
by taking intersections using the Venn package. (PR-DEGs).

2.3  |  Gene ontology and KEGG analysis of 
differentially expressed genes

We used ‘clusterProfiler’ package10,11 to transform IDs of DEGs and 
performed gene ontology and Kyoto Encyclopedia of Genes and 
Genomes analysis, and ‘ggplot2’, ‘enrichplot’ packages to visualize 
the obtained data.

2.4  |  Development of the necroptosis-related gene 
prognostic model

Screening of PR-DEGs by the LASSO algorithm of the ‘glmnet’ R 
package to identify genes for model building. Seven genes' expres-
sion levels and regression coefficients were used to determine the 
risk scores for HCC patients (Table 1). The equation employed was:

TA B L E  1 Coefficients of prognostic genes obtained based on L 
asso algorithm

Gene Coef

TRAF2 0.105398580022597

PGAM5 0.385771773843994

ATG16L1 0.100232667095849

CARD9 0.330982332251438

PCYT1A 0.161666550305379

TLR2 0.020691625065588

PARP2 0.193368483419255

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/projects/LIRI-JP
https://dcc.icgc.org/projects/LIRI-JP
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Patients were classified as high- or low-risk depending on the 
TCGA training set's median risk scores. The expression matrix of 
the ICGC validation set is also log2 (X + 1)-normalized, and the TCGA 
training set's median risk score is used as the criteria for grouping 
the ICGC cohort. (Appendix S1 and S2). To determine the predic-
tive accuracy of the risk scores, ROC curves were constructed using 
the ‘Survival’ and ‘Time ROC’ packages. The ‘Rtsne’ and ‘ggplot2’ 
packages were used for PCA and t-SNE analysis and visualization 
to explore whether our risk model can better distinguish between 
different patients. We collected immunohistochemical profiles of 
the corresponding necroptosis-related genes through the Human 
Protein Atlas12-14 database(https://www.prote​inatl​as.org/) to 
identify trends in differential gene expression in different tissues. 
The Single Cell Expression Atlas (SCEA) database project was15 
used to explore the expression of key genes in hepatocellular car-
cinoma at the single-cell level. In addition, the immunotherapy 
IMvigor210 cohort was used to validate the model's ability to predict 
immunotherapy.

2.5  |  Risk prognostic model independent 
prognostic analysis

We analysed whether a risk-prognosis model for two independ-
ent cohorts could be distinguished from traditional clinicopatho-
logical characteristics as an independent prognostic indicator 
for patients by univariate Cox and multivariate Cox . Based on 
the results of multivariate COX analysis we built the Nomogram 
(Appendix S1 and S2) and then labelled a patient's score informa-
tion for clinical use. Calibration curves occur at 1, 2 and 3 years. 
Multi-indicator ROC curves and decision curve analysis (DCA) 
curves and calibration curves are used to assess the accuracy of 
the Nomogram.

2.6  |  Identifying differences in gene 
enrichment and pathological features between 
risk subgroups

We analysed the differences in the enrichment pathways between 
the different risk subgroups by the gene set enrichment analysis 
(GSEA) algorithm.16 Patient expression data were combined with 
clinical data to observe differences in clinical characteristics be-
tween the high- and low-risk groups of the two cohorts of TCGA and 
ICGC by chi-square test(Appendix S1 and S2).

2.7  |  Differential analysis of immune cells and 
function in different risk subgroups

We obtained the immune score using the ssGSEA algorithm in the 
GSVA package17 and visualized the differences in immune cells 
and function in different risk subgroups by plotting box plots. We 
included 19 immune checkpoint-related genes, extracted signifi-
cantly differentially expressed between risk subgroups using the 
Wilcox test, and visualized gene expression differences using box 
plots(Appendix S1 and S2).

2.8  |  Drug sensitivity analysis and CMAP 
drug screening

The drug sensitivity files were downloaded by accessing the NCI-
60 database through CellMine (https://disco​ver.nci.nih.gov/cellm​
iner), and Pearson correlation analysis was used to investigate the 
relationship between model gene expression and drug sensitivity to 
correlate the efficacy of FDA-approved drugs (Table 2) (Appendix 
S1 and S2).

We obtained different genes by differential analysis of high-risk 
and low-risk subgroups. In order to reduce the risk of patients and 
improve survival, we performed drug screening through the CMAP 
database (https:/portals.broadinstitute.org/cmap/) and searched 

Riskscore =0.10539×TRAF2+PGAM5×0.38577+ATG16L1×0.10023

+CARD9×0.33098+PCYT1A×0.16166+TLR2×0.02069

+PARP2×0.19336

TA B L E  2 CMAP database top 10 drug screening results

Rank Cmap Name Mean N Enrichment p value Specificity
Percent 
non-null

1 Verteporfin −0.896 3 −0.993 0 0 100

2 Apigenin −0.834 4 −0.952 0 0 100

3 Tanespimycin −0.524 62 −0.44 0 0.0924 79

4 Trichostatin A −0.397 182 −0.267 0 0.6238 71

5 Phenoxybenzamine −0.838 4 −0.932 0.00002 0.0091 100

6 Adiphenine 0.735 5 0.925 0.00002 0 100

7 LY−294002 −0.441 61 −0.325 0.00002 0.2883 73

8 Biperiden 0.702 5 0.852 0.00018 0.0061 100

9 Alprostadil 0.443 7 0.739 0.00022 0 71

10 Pheneticillin 0.644 4 0.877 0.00034 0 100

https://www.proteinatlas.org/
https://discover.nci.nih.gov/cellminer
https://discover.nci.nih.gov/cellminer
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F I G U R E  1 Identification of genes differentially expressed in different tissues in relation to prognosis. (A) Univariate COX analysis of 
prognosis-related genes. (B) The intersection portion of the Wayne plot shows 18 differentially expressed genes associated with prognosis. 
(C) Heat map showing differential expression of genes. (D) Correlation graph between genes
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F I G U R E  2 Gene enrichment and pathway analysis. (A,B) Gene ontology enrichment analysis. (C,D) KEGG analysis with these differential 
genes was enriched in Necroptosis, TNF signalling pathway. (E,F) Circle diagram for GO and KEGG analysis
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the PubChem website (https:/pubchem.ncbi.nlm.nih.gov/) for two-
dimensional and three-dimensional structural formulas of drugs(Ap-
pendix S1 and S2).

2.9  |  Mutation analysis of model genes

We visualized mutations in different risk subgroups using the 
maftools package, analysed the relationship between tumour muta-
tion burden (TMB) and risk score, and examined mutations in model 
genes with corresponding amino acid structural domain mutations 
using the cbioportal (http://www.cbiop​ortal.org/) database.

2.10  |  Comparison between prognostic risk models

We collected literature on hepatocellular carcinoma,18-20 extracted 
the genes they used to construct predictive models and performed 
survival curve and ROC curve analysis to compare the predictive 
power of our constructed models.

2.11  |  Statistical analysis

All statistical analyses including Kaplan–Meier survival analysis and 
univariate multivariate COX analysis were done in R language ver-
sion 4.1.1, and p values <0.05 were considered statistically signifi-
cant in different comparisons.

3  |  RESULTS

3.1  |  Identification of genes differentially 
expressed in different tissues in relation to prognosis

Through univariate COX analysis, we identified 22  genes with 
prognostic significance. (Figure  1A). 18 PR-DEGs were obtained 
by taking intersections of differentially expressed genes with 
prognosis-related genes (Figure  1B). Heatmap demonstrates the 
difference in expression of 18 PR-DEGs in tumour and non-tumour 
tissues (Figure 1C). Correlation diagram showing the different asso-
ciations between the 18 PR-DEGs (Figure 1D).

3.2  |  Gene ontology and KEGG analysis of DEGs

We have used gene ontology to analyse the three components 
of gene involvement: cellular components, molecular functions 

and biological processes. We found that DEGs are mainly en-
riched in the biological process of stress-activated MAPK cas-
cade at the BP level. In terms of cellular components, they 
mainly constitute membrane rafts, which are microstructural 
domains enriched in cholesterol-saturated lipids (e.g. sphingolip-
ids) but insoluble in Triton X-100. In addition, for molecular func-
tions DEGs are concentrated in protein serine/threonine kinase 
activity(Figure 2A,B,E). In addition, KEGG analysis revealed that 
DEGs were mainly enriched in Necroptosis and NOD-like receptor 
signalling pathways(Figure 2C,D,F).

3.3  |  Risk prognostic modelling and external 
cohort validation

Seven genes involved in the construction of the model were identi-
fied by univariate cox and lasso analysis. The sum of the coefficients 
of the seven genes and the product of their respective expressions 
was the patient's risk score (Figure  3A,B; Table  1). The single-cell 
clustering plots demonstrate the differences in expression of dif-
ferent model genes in different clusters, and most genes are highly 
expressed in cluster 7 (Figure 3C,D). Immunohistochemistry map of 
the HPA database illustrating gene expression trends in various tis-
sues. Significantly high expression of TRAF2, PGAM5 and ATG1621 
in the tumour group was an unfavourable prognostic factor. PCYTIA 
and CADR9 are not differentially expressed. The results obtained 
from the HPA database KM survival analysis and our analysis were 
consistent as an unfavourable prognostic factor (Figure 3E).

The Kaplan–Meier survival curve results showed that the sur-
vival rate was significantly lower in the high-risk group of the TCGA 
cohort (p = 0.002) and ICGC cohort (p = 0.016) (Figure 4A,B). The 
area under the ROC curve for the TCGA cohort at 1, 2 and 3 years 
was 0.741, 0.717 and 0.648. In the ICGC cohort, the AUCs were 
0.687, 0.691, 0.611. The AUC values of the ROC curves for the two 
cohorts revealed the predictive power of our constructed model in 
different datasets. PCA and t-SNE analyses demonstrate that risk 
models can more accurately distinguish between patients with vary-
ing degrees of risk (Figure 4C,D).

3.4  |  Independent prognostic 
analysis of risk prognostic models and comparison 
with multiple indicators

In both the TCGA and ICGC cohorts, univariate and multivariate 
cox analyses revealed that stage of risk score and pathological char-
acteristics were significant predictors (Figure 5A,B). In addition, to 
better utilize patient information and reduce the errors associated 

F I G U R E  3 Participate in the screening and identification of construct model genes. (A,B) LASSO coefficient plots and 10-fold 
cross-validation plots for seven model genes. (C,D) In the SCEA database, all hepatocellular carcinoma monocytes were clustered into 
31 subgroups after setting the appropriate parameters. Most of the model genes can be used as marker genes for group 7. (E) Differences in 
expression trends of model genes in different tissues in the HPA database

http://www.cbioportal.org/
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with the prognosis of individual indicators, we combined the patient's 
stage, gender, grade, age, risk information to develop a nomogram. 
We randomly labelled the corresponding clinical information and the 
patient's total score on the graph (Figure 5C). The calibration curve 
shows the stability of the Nomogram (Figure  5D). The ROC curve 
demonstrates the specificity and sensitivity of the predictive ability of 
each prognostic indicator (Figure 5E). The DCA curve shows the best 
predictive ability of our constructed Nomogram model (Figure 5F).

3.5  |  Differences in clinical characteristics and 
gene enrichment among different risk subgroups

Gene set enrichment analysis results found that the high-risk group 
was associated with cell cycle, base excision repair and cytokine 
receptor interaction pathway (Figure  6A). The low-risk group was 
enriched in drug metabolism cytochrome -P450 (Figure  6B). The 
rectangular plots show the differences between the clinicopatho-
logical characteristics stage between different risk subgroups in two 
independent cohorts. The stage was significantly different between 
different risk subgroups in the TCGA (p = 0.004) and similarly in the 
ICGC (p = 0.007), and in addition, we explored the different clinico-
pathological characteristics between different risk subgroups, and 
we marked the indicators with significant differences (Figure 6C,D).

3.6  |  Differences in immune cells and function in 
different risk subgroups

Tumour stem cell correlation analysis was performed by mRNA 
expression and DNA methylation data. There is a statistically sub-
stantial correlation between risk scores and RNA stemness scores 
(RNAss), but risk score was not correlated with DNA stemness score 
(DNAss) (p = 0.55) (Figure 7A,B). We aimed to discuss whether the 
risk groupings we constructed differed between subtypes, and 
the results of the analysis showed significant differences between 
subtypes except for C3 and C4 where the risk scores did not differ 
significantly (p  =  0.097) (Figure 7C). Using the SSGSEA algorithm, 
we obtained immune scores for each patient and explored the dif-
ferences in immune function based on the previous risk subgroups. 
aDCS, macrophages and treg immune cells were significantly 
more infiltrated in the high-risk group than in the low-risk group 
(Figure 7D). In addition, the Type II IFN Response cytolytic activity 
functional pathway was more active and significantly different in the 
low-risk group than in the high-risk group (Figure 7E). We included 
19 immune checkpoint-associated genes to explore the differences 
between high- and low-risk subgroups (Figure 7F).

3.7  |  Drug sensitivity analysis and 
screening of drugs

We investigated the expression of model genes involved in risk 
prognosis in the NCI-60 cell line by looking at which model genes 
affect the sensitivity of drugs through sensitivity analysis. The cor-
relation graphs show these results, where cor values greater than 
0 and p values <0.05 indicate that higher gene expression is more 
sensitive to the drug and vice versa. For example as the expres-
sion of the PGAM5  gene increases, the more sensitive the cells 
are to Cytarabine, the better the treatment effect (Figure 8A). In 
the above GSEA analysis study, the low-risk group was enriched in 
the process of drug metabolism P450. We conducted a differential 
analysis based on risk groups to identify high-risk genes and con-
ducted drug screening through the CMAP database to select drugs 
to reduce patient risk and improve patient survival. Enrichment 
score <0 and p-value <0.05 were considered drugs that could in-
hibit the expression of high-risk genes. We searched for the two-
dimensional and three-dimensional structures of related drugs 
through the Pubchem website to help us better understand the 
drugs (Figure 8B-D).

3.8  |  Model gene mutation analysis

Waterfall plots show the mutations in different risk subgroups, 
where TP53, CTNNB1, TTN gene mutations are more frequent 
(Figure 9A,B). There was no significant correlation between tumour 
mutation burden and risk score, and the difference in TMB was not 
significant in different risk subgroups (Figure 9C,D). The cbioportal 
database demonstrates mutations in model genes in TCGA samples 
(Figure 9E), and also demonstrates mutations in amino acid structural 
domains, but most genes are not significantly mutated (Figure S1).

3.9  |  Comparison between different risk 
prognostic models

The ROC curve results suggest that our model has better predic-
tive power, especially in predicting the survival of patients in the 
second year (Figure 10A), as demonstrated by the results of the sur-
vival curve when compared with the prognostic models constructed 
by the other three authors (Figure  10B,C). In addition, using the 
IMvigor210 cohort, we found that our model could also predict to 
some extent the effect of immunotherapy in patients, with statis-
tically significant differences in risk scores between the objective 
responder and non-responder groups (Figure 10D,E).

F I G U R E  4 Construction of a risk prognostic model with external cohort validation. (A) Construction of a risk-prognosis model using the 
TCGA cohort as the training set. (B) ICGC cohort for validating the prognostic value of risk prognostic models. (C,D) Analyses of the receiver 
operating characteristic curves for risk scores, and PCA and T-SNE analysis revealed that our model was more capable of discriminating 
between patients with varying levels of risk
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F I G U R E  5 Independent prognostic analysis of risk prognostic models. (A,B) COX analysis on a univariate and multivariate basis in the 
TCGA and ICGC cohorts (C) Predictive nomogram for predicting patients at 1, 3 and 5 years. (D) Calibration curve showing the stability of 
the nomogram. (E) Multi-Indicator ROC Curve. (F) Decision curve analysis(DCA)
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F I G U R E  6 Differences in clinical characteristics and gene enrichment among different risk subgroups. (A, B) GSEA enrichment 
analysis results. (C) Analysis of the relationship between risk and stage in TCGA cohort and ICGC cohort. (D) Significantly different clinical 
characteristics in different risk subgroups
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F I G U R E  7 Immune cell and functional differential analysis based on different risk subgroups. (A, B) Tumour stem cell correlation analysis. 
(C) Differences in RiskScore between different immunophenotypes. (D, E) Immune function analysis of the TCGA cohort. (F) Immune 
checkpoints express differently in different risk subgroups
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F I G U R E  8 Drug sensitivity analysis and drug screening. (A) Correlation analysis of chemotherapeutic drug sensitivity and different gene 
expressions.| Identification of drugs that reduce and promote the expression of high-risk genes. (B) Apigenin. (C) LY-294002. (D) Arecoline
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F I G U R E  9 Genetic mutation landscape. (A-B) TP53, CTTNB1 and TTN had the highest number of mutations in both groups. (C,D) 
Relationship between tumour mutation burden and risk score. (E) Mutation of model genes between samples
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4  |  DISCUSSION

Identification of necrotizing apoptosis often requires multiple ap-
proaches because no specific molecular markers have been identi-
fied to date for detecting necroptosis. Additionally, the impact of 
necrosis on tumour progression remains unknown, although some 
reports indicate that necrosis may have an anti-tumour effect in can-
cer. However, necrosis has been shown to promote tumorigenesis 
and metastasis by inducing an inflammatory response, as Liu et al.21 
reported that it has been reported that silencing RIPK1 and RIPK3 
in cancer cells decreases the pathogenic capacity of cancer cell 
lines and increases their sensitivity to chemotherapy. Seifert et al.6 

demonstrated that silencing RIPK1 in mice slowed tumour progres-
sion in animal experiments, suggesting that necroptosis-related fac-
tors promote cancer development.

In this study, we collected previous literature on necroptosis 
and included 62  genes related to necroptosis for bioinformatic 
analysis, and we identified 18 molecules with prognostic value. 
We observed that the HR values of these genes were all greater 
than 1 as risk factors, and the results of immunohistochemical pro-
files support this conclusion. Upregulation of expression of genes 
involved in model constructs promotes cancer progression, im-
plying that trends in the expression of necroptosis molecules are 
inconsistent across cancer types. We constructed a risk-prognosis 

F I G U R E  1 0 Comparison and analysis between models. (A-C) Comparison of the three authors with our model, ROC curve and KM curve 
demonstrates the predictive power metrics of different models. (D) Survival curve analysis of the immunotherapy cohort. (E) Variability 
between risk scores among different response groups
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model based on the lasso algorithm, and all genes involved in the 
construction of the model were unfavourable prognostic factors. 
The KM survival curve of the TCGA cohort revealed a lower sur-
vival rate in high-risk patients, and this conclusion was validated in 
the ICGC cohort. We used ROC curves, calibration curves and de-
cision curves to evaluate the predictive power of the nomogram. 
This reduces the error introduced by the prognostic risk model as 
a single prognostic indicator. In addition, we observed the prog-
nostic role of traditional clinicopathological features in cancer, 
which is necessary from the molecular to the clinical level of ap-
plication. Therefore, we analysed and visualized the differences 
in clinicopathological characteristics between risk subgroups, but 
the ICGC cohort only contains information in the stage column, so 
our analysis is limited in depth. We have also applied our model 
gene to the IMvigor210 immunotherapy cohort, and survival curve 
analysis suggests that high-risk patients have more prolonged sur-
vival after immunotherapy. In a previous analysis, we found that 
the immune checkpoint gene expression was much higher in the 
high-risk group than in the low-risk group, demonstrating that 
our model can predict the effect of immunotherapy in patients. 
Unfortunately, the lack of expression of our target genes in the 
GEO database and the small number of samples did not allow us 
to validate our results further, and we will use more datasets to 
validate our findings in the future.

TRAF2 (TNF receptor-associated factor 2) expression was 
found to be significantly increased in cancer tissues and was asso-
ciated with tumour metastasis in previous studies,22 but has rarely 
been reported in hepatocellular carcinoma. By inhibiting apoptotic 
signalling, PGAM5 (PGAM family member 5) has been shown to 
be a poor prognostic factor for patients with hepatocellular carci-
noma,23 which is consistent with our findings. ATG16L1 (autoph-
agy related 16 like 1) was discovered to be an apoptotic molecule 
in HCC cells. J. iaranai Peantum reported that ATG16L1 protein 
was upregulated in tumour cell lines and promoted apoptosis in 
HepG2 cells.24 CARD9 (caspase recruitment domain family mem-
ber 9) promotes metastasis-associated macrophage polarisation, 
thereby promoting tumour metastasis. There is a high correlation 
between histopathological staging and metastasis of upregulated 
CARD9 expression.25 Alec E Vaezi et al.26 reported that PCYT1A 
(phosphate cytidylyltransferase 1A, choline) has biomarker value 
in patients with lung cancer and that high PCYT1A expression im-
plies longer survival, but there is a lack of studies in hepatocellular 
carcinoma. The positive correlation between TLR2 (toll-like recep-
tor 2) expression and other proliferation and angiogenesis markers 
in hepatocellular carcinoma suggests a possible role for TLR2 in 
the pathogenesis of HCC.27 PARP2 (poly(ADP-ribose) polymerase 
2) is associated with different functions of cells in the innate im-
mune response.28

According to the GSEA results, genes in the low-risk group 
were enriched in the drug metabolism-cytochrome P450 path-
way, which is a key point of cancer treatment. They are involved 
in the inactivation and activation of anticancer drugs and mediate 
the metabolic activation of many procarcinogens.29 In addition, 

we performed sensitivity analyses of chemotherapeutic agents. 
The differential expression of our different prognostic genes in-
fluenced the effects of different agents. For example TRAF2 ex-
pression was positively correlated with the therapeutic effect of 
Cladribine, and Cladribine was reported to have an anticancer ef-
fect on human hepatocellular carcinoma HepG2 cells.30 Apigenin 
inhibits the expression of high-risk genes and acts as an anticancer 
agent to induce apoptosis in hepatocellular carcinoma cells by in-
hibiting the P13K/Akt/mTOR pathway.31,32 Conversely, Arecoline 
promotes the expression of high-risk genes, and Arecoline is a car-
cinogen that enhances the risk of cancer in patients.33,34 However, 
we cannot conclude that patients are necessarily sensitive to these 
drugs and more clinical trials are needed to verify this idea. While 
the high-risk group had more immune cells, they also expressed 
more immune checkpoint genes, implying that the high-risk group's 
immune function was more suppressed and that tumour cells had 
more opportunities to metastasize.

We further explored the mutations in the seven model genes 
and correlated them with the tumour mutation burden. We found 
that there were few mutations in the samples in our genes and few 
mutations in the structural domains of amino acids in seven of the 
genes. In addition, the correlation between risk score and TMB was 
not statistically significant. We encompassed previously published 
literature by extracting their model genes compared to our model. 
The survival of patients with hepatocellular carcinoma in the TCGA 
database was mainly located at 1–3  years. We used ROC curves 
and KM curves for analysis and comparison, and we found that our 
model was superior to other models in predicting the second-year 
survival of patients.

Our study has some limitations. Experiments in vivo and in vitro 
are needed to confirm our findings and to do more in-depth studies 
in the field of immunotherapy.

In conclusion, our study determined the prognostic and immu-
nological roles of necroptosis-related molecules such as TRAF2, 
PGAM5, ATG16L1, CADR9, PCYT1A, PARP2 and TLR2 in hepa-
tocellular carcinoma. In addition, we developed a new predictive 
model for hepatocellular carcinoma to assess the efficacy of immu-
notherapy. This study identified novel biomarkers for hepatocellular 
carcinoma.
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