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Abstract
Background: Necroptosis is a type of programmed cell death, and recent researches 
have showed that lncRNAs could regulate the process of necroptosis in multiple can-
cers. We tried to screen necroptosis-related lncRNAs and investigate the immune 
landscape in breast cancer (BC).
Methods: The samples of breast normal and cancer tissue were acquired from TCGA 
and GTEx databases. A risk prognostic model was constructed based on the iden-
tified necroptosis-related lncRNAs by Cox regression and least absolute shrinkage 
and selection operator (LASSO) method. Moreover, the forecast performance of this 
model was verified and accredited by synthetic approach. Subsequently, an accurate 
nomogram was constructed to predict the prognosis of BC patients. The biological 
differences were investigated through GO, GSEA, and immune analysis. The immu-
notherapy response was estimated through tumor mutation burden (TMB) and tumor 
immune dysfunction and exclusion (TIDE) score.
Results: A total of 251 necroptosis-related lncRNAs were identified by differential 
coexpression analysis, and SH3BP5-AS1, AC012073.1, AC120114.1, LINC00377, 
AL133467.1, AC036108.3, and AC020663.2 were involved in the risk model, which 
had an excellent concordance with the prediction. The pathway analyses showed 
that immune-related pathways were relevant to the necroptosis-related lncRNAs risk 
model. And the risk score was significantly correlated with immune cell infiltration, 
as well as the ESTIMATE score. Most notably, the patients of higher risk score were 
characterized with increased TMB and decreased TIDE score, indicating that these 
patients showed better immune checkpoint blockade response.
Conclusion: These findings were conducive to understand the function of necroptosis-
related lncRNAs in BC and provide a potential promising therapeutic strategy for BC.
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1  |  INTRODUC TION

Worldwide, breast cancer (BC) is one of the most prevalent types 
of malignancy and a major cause of cancer death.1 The treatment 
landscape of patients with breast cancer has been rapidly evolving 
in recent years, and optimal therapy paradigm for breast cancer de-
pends on subpopulations of patients.

Necroptosis, mainly mediated by receptor-interacting protein ki-
nase 1 (RIPK1), RIPK3, and mixed lineage kinase domain like pseudoki-
nase (MLKL), belongs to the category of programmed cell death.2-4

Increasing evidence demonstrated that necroptosis played a piv-
otal role in the occurrence and progression of multifarious diseases, 
such as neurodegenerative diseases, ischemic cardiovascular, and 
cancer metastasis.5 Besides, necroptosis had dual impact on pro-
moting and suppressing tumor growth in multiple tumor types.6-8 
Accordingly, regulating tumor necroptosis may be a novel and poten-
tial therapeutic strategy for BC.9

Long noncoding RNAs (lncRNAs) have attracted growing focus 
as tumor markers for early-stage detection, diagnosis, prognosis, 
and prediction of drug therapy response.10,11 Different lncRNAs 
regulate the expression of genes through epigenetic regulation or 
transcriptional alternation, and the aberrant expression of lncRNAs 
is closely linked to tumorigenesis, metastasis, and chemoresistance 
of cancer.12-14 Up to date, it has been reported that some lncRNAs 
engaged in modulating the process of necroptosis by interacting 
with miRNA to regulate necroptosis-related genes products.15-17 
Given that, further insight into the function of necroptosis-related 
lncRNAs in BC may provide novel approach for precise treatment 
and individualized management.

2  |  MATERIAL S AND METHODS

2.1  |  Normal and tumor sample extraction from 
dataset

The transcriptome RNA-seq datasets (HTSeq-Counts and FPKM) of 
female breast cancer (BC) and normal samples were acquired from 
The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression 
Project (GTEx), respectively. The HTSeq-Counts value matrix was 
used to search for the differentially expressed (DE) lncRNAs, while 
the FPKM values were transformed to TPM values for other analy-
ses. After excluding the sample of male, 191 normal tissue samples 
(79 samples from GTEx dataset) and 1086 BC samples were obtained 
from two datasets. After ruling out the missing overall survival time, 
1057 cases with survival time and 908 cases with full clinical pathol-
ogy information were extracted for following analyses.

2.2  |  Identification of Necroptosis-related lncRNA

According to necroptosis gene set M24779.gmt and previous litera-
ture search, 67 necroptosis-related genes were collected for next 

identification.18 Then, we used GENCODE annotation file to identify 
14,106 lncRNAs in the TCGA combined with GTEx datasets (http://
cance​rgeno​me.nih.gov/about​tcga, http://www.gtexp​ortal.org). The 
DE lncRNAs were screened by DESeq2 R package with the standard 
of |log2 fold change (FC) | >1, false discovery rate (FDR) <0.05, and p 
adjusted <0.05. The Pearson correlation algorithm was used to iden-
tify necroptosis-related DE lncRNA with correlation filter >0.4 and 
p < 0.001. After the completion of screening steps, 251 necroptosis-
related lncRNAs were retrieved for further analysis. The analyses 
were based on limma R package.

2.3  |  Establishment and validation of prognostic 
risk assessment model

Preliminarily, the prognostic-classified lncRNAs were selected by 
using univariate Cox (uni-Cox) regression with p value < 0.05. Then, 
LASSO regression analysis was made to filter necroptosis-related 
lncRNA with 10-fold cross-validation. Further, the necroptosis-
related lncRNAs screened by LASSO method were used for multi-
variate (multi-Cox) proportional hazards regression and risk model 
construction. The risk score was calculated by using following for-
mula: risk score = Σn

k=1
 expression (lncRNAk) × coefficient(lncRNAk). 

The median risk score that calculated by the above formula was used 
to stratify the BC patients into low- and high-risk groups. The chi-
square test was used to validate the correlation of the clinical fea-
tures and the risk group. The independent variables were assessed 
by uni-Cox and multi-Cox regression analyses, respectively. Receiver 
operating characteristic (ROC) curves and concordance index(C-
index) were subsequently applied to measure the precision of the 
model. The analyses were based on survival, caret, glmnet, rms, sur-
vminer, and timeROC R packages.

2.4  |  Predictive nomogram construction and 
calibration

With rms R package, the nomogram was set up based on risk group, 
age, and clinicopathological factors. The nomogram aimed to evalu-
ating the predictive efficacy of risk score we got for 1-, 3-, 5-, and 
10-year overall survival rates. Subsequently, the calibration curve 
was developed to illustrate the prediction power of the established 
nomogram model.

2.5  |  PCA, GO, and GSEA analysis

The principal component analysis (PCA) was used to classify BC 
samples through necroptosis-related lncRNAs expression pat-
terns. Additionally, the spatial distribution of samples was displayed 
through three-dimensional scatterplot. We identified the differen-
tial genes among the low- and high-risk groups for subsequent Gene 
Ontology (GO) analysis, aiming to investigate the relevant biological 
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process. Furtherly, differentially expressed KEGG pathways in two 
groups were identified by Gene Set Enrichment Analysis (GSEA). The 
KEGG gene set(c2.cp.kegg.v7.0.symbols.gmt) was derived from the 
website (https://www.gsea-msigdb.org/). The limma, org. Hs.eg.db, 
clusterProfiler, and enrichplot package based on R 4.1.1 were used 
for the analysis. The threshold of significantly enriched biological 
processes and pathways was set as p < 0.05 and FDR <0.25.

2.6  |  Tumor microenvironment in low- and high-
risk groups

The correlations between risk score and tumor-infiltrating immune 
cells (TIICs) were evaluated by CIBERSORT algorithm. Furthermore, 
with ESTIMATE R package,19 we calculated the tumor microenviron-
ment (TME) score, including stromal score, immune score, and esti-
mate score between low- and high-risk groups.

2.7  |  Tumor mutation burden and Tumor Immune 
Dysfunction and Exclusion score

The somatic mutation file (TCGA.BRCA.varscan.DR-10.0.somatic) 
was obtained from the TCGA website. The original mutation annota-
tion format (MAF) was divided into two groups according to the risk 
score. Then, we calculated the tumor mutation burden (TMB) score 
according to the somatic mutation data for each patient in the two 
groups. The foregoing analyses were based on maftools R package. 
Potential immune checkpoint blockade (ICB) response was assessed 
by tumor immune dysfunction and exclusion (TIDE) algorithm.20 
Finally, we used pRRophetic R package to calculate the semi-
inhibitory concentration (IC50) values of chemotherapeutic drugs.

3  |  RESULTS

3.1  |  Altered Expression of the necroptosis-related 
lncRNA in BRCA

We analyzed the necroptosis-related lncRNA expression level in 
1,086 BC samples and 191 normal samples from the TCGA and 
GTEx datasets, and 2,848 DE lncRNAs were obtained. Then, 251 
necroptosis-related lncRNAs were identified in the DE lncRNAs by 
the Pearson correlation algorithm.

3.2  |  Construction and verification of prognosis 
risk assessment model

Firstly, 16 lncRNAs was extracted by means of the uni-Cox regres-
sion analysis. Then, 12 lncRNAs were acquired by LASSO analysis, 
and 7 of which were brought in the multi-Cox proportional hazards 

model (Figure 1A-E). Finally, we got the risk score with the formula 
from multivariate Cox regression: Risk score = SH3BP5-AS1 × (−0.
3537) + AC012073.1 × (0.3945) + AC120114.1 × (0.3010) + LINC0
0377 ×  (−1.6837) + AL133467.1 ×  (−0.7597) + AC036108.3 ×  (−0.
3151) + AC020663.2 × (−0.5513). In the complete set, training and 
validation partitions, all patients in the high-risk group had a sig-
nificantly shorter overall survival duration (Figure 2A-I). The same 
results were displayed in the different clinicopathologic characteris-
tics (Figure 2M). The area under the 1-,3-,5-, and 10-year ROC curve 
(AUC) was 0.731, 0.643, 0.641, and 0.694, respectively (Figure 3A). 
At the 10-year ROC of the model, the AUC of risk score was 0.731, 
demonstrating strong predictive ability compared with other clinico-
pathology features (Figure 3B). The 1-year C-index in the risk model 
was 0.726 (Figure 3C). In uni-Cox and multi-Cox regression, the haz-
ard ratio (HR) of the risk score were 1.246 and 1.279, respectively 
(both p value < 0.001) (Figure 3D-E).

3.3  |  Construction of nomogram

Based on risk score, age, and clinicopathological factors, a nomo-
gram was developed for predicting the 1-, 3-, 5-, and 10-year OS 
incidences (Figure 4A). The calibration plots were applied to testify 
that whether the nomogram had an excellent concordance with the 
prediction (Figure 4B), which exhibited the good consistency with 
the actual observation.

3.4  |  The PCA and biological pathways analyses

The three-dimensional scatter diagram of the PCA respectively 
showed the distribution of different patterns. The samples grouped 
by risk score had distinct aggregation feature (Figure 5A-C). The re-
sults of Gene Ontology (GO) analysis include positive regulation of 
activation of immune response, humoral immune response, and B-
cell receptor signaling pathway (Figure 5D-E). The results from the 
GSEA analysis showed different biological functions between the 
low- and high-risk groups, such as cell cycle, DNA replication, pyrimi-
dine metabolism, RNA degradation, spliceosome, and immune net-
work (Figure 5F-G). Therefore, we tried to make an immune-related 
analysis based on the risk model.

3.5  |  Investigation of immune signature in 
risk groups

Significant differences in the immune cell infiltration were ob-
served between the two groups (Figure 6A), and the intricate cor-
relations existed between TIICs and 7 necroptosis-related lncRNAs 
(Figure 6B). As shown in the scatter diagrams, dendritic cells acti-
vated, M0 macrophages, and M2 macrophages were positively cor-
related with the aforesaid risk scores, by contrast, the other TIICs 
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F I G U R E  1 Identification of prognostic necroptosis-related lncRNAs in BC. (A) The prognostic lncRNAs extracted by uni-Cox regression 
analysis. (B) The heatmap of 16 lncRNAs expression. (C) The 10-fold cross-validation for tuning parameter selection in the LASSO model. 
(D) The LASSO coefficient profile of 16 survival-associated lncRNAs. (E) 7 lncRNAs identified by multi-Cox proportional hazard model. (F) 
Correlations between lncRNAs in the risk model and necroptosis-related genes

F I G U R E  2 Prognosis of the risk model in the different sets. (A–C) Demonstration of risk model of the training, validation, and complete 
sets. (D–F) Survival time and clinical endpoint in the training, validation, and complete sets. (G–I) The heatmap of 7 lncRNAs expression in 
the training, validation, and complete sets. (J–L) K-M survival curves of OS of patients between the two groups in the training, validation, 
and complete sets. (M) K-M survival curves of OS prognostic value stratified by clinicopathologic characteristics in the complete set
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had negative correlations. (Figure 6C). As for the TME score, high-
risk patients showed lower stromal scores, immune scores, and 
ESTIMATE score than low-risk patients (Figure 6D).

3.6  |  TMB, TIDE, and therapeutic drug sensitivity

Then, we analyzed the variations of the somatic mutations in 
two risk groups. The ten highest mutated genes were PIK3CA, 

TP53, TTN, CDH1, GATA3, MUC16, MAP3K1, MUC4, KMT2C, 
and PTEN. Patients in high-risk group had markedly higher fre-
quencies of TP53 mutation, and the opposite result was discov-
ered with the alternation of PIK3CA and CDH1(Figure  7A–B). 
Compared with low-risk group, patients in high-risk group had 
higher TMB (Figure  7C). Besides, patients in the high-risk and 
high-TMB group had worst prognosis compared with the other 
group (Figure  7D-E). The TIDE score was significantly lower 
in high-risk group compared with low-risk group (Figure  7F). 

F I G U R E  3 Verification of prognosis risk assessment model. (A) The 1-, 3-, 5-, and 10-year ROC curves of the complete sets. (B) The ROC 
curves of risk score and clinicopathologic features. (C) The C-index curves of risk model. (D) Uni-Cox analyses of clinicopathologic factors 
and risk score with OS. (E) Multi-Cox analyses of clinicopathologic factors and risk score with OS
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Through drug sensitivity comparison, we found that A.443654, 
an AKT inhibitor, showed different IC50 between two groups, 
and BC patients in high-risk group were more sensitive to this 
drug (Figure 7G).

4  |  DISCUSSION

Necroptosis involved in immune responses and tumor microenvi-
ronment, and the benefits of activation of necroptosis pathways 

F I G U R E  5 The PCA and functional analyses of patients in two groups. (A-C) The PCA 3D scatterplot of sample distribution based on 
necroptosis-related lncRNAs in risk model, necroptosis-related lncRNAs, and necroptosis-related genes, respectively. (D-E) The GO analysis. 
(F-G) The GSEA analysis
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combined with immune checkpoint blockade have been demon-
strated in recent study.21 Nowadays, it has been proved that lncR-
NAs engage in cancer-related cellular pathways and have good 
predictive power in prognosis and diagnosis.22,23 Emerging studies 
have tried to establish novel and effective lncRNAs pattern risk 
models in malignancy,24,25 as well as discover molecular charac-
ter and potential therapy targets of breast cancer patients.26,27 
Until now, the patterns of necroptosis-related lncRNAs in BC and 
the potential capability of predicting the prognosis has not been 
elucidated.

In this study, we established a risk model with 7 necroptosis-
related lncRNAs, including SH3BP5-AS1, AC012073.1, AC120114.1, 

LINC00377, AL133467.1, AC036108.3, and AC020663.2. Then, the 
patients were divided into low- and high-risk groups according to 
the median values. The ROC and C-index curve fatherly validated 
the prognostic precision of the risk score. We found that the risk 
score could be a yardstick for predicting prognosis. Subsequently, 
a nomogram was constructed for predicting prognosis of BC pa-
tients, which had an excellent concordance with the prediction.

The 3D scatterplot of the PCA showed that patients categorized 
by necroptosis-related lncRNAs exhibited distinct inherent biological 
feature. The results of Gene Ontology (GO) analysis demonstrated 
that activation of immune response, humoral immune response, 
and B-cell receptor signaling pathway played an important role in 

F I G U R E  6 Immune signature in two groups. (A) Expression of immune cells in the low- and high-risk groups. (B) Correlations between the 
TIICs and 7 necroptosis-related lncRNAs in the proposed model. (C) Correlations between risk score and immune cell types. (D) TME score in 
the in two groups
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biological pathways. Besides, the results of GSEA showed different 
enrichment of genes in KEGG, including cell cycle, DNA replication, 
pyrimidine metabolism, RNA degradation, spliceosome, and immune 
network. Although breast cancer is not regarded as a highly immu-
nogenic cancer in the past, but tumor immune microenvironment 
impacts on a subset of breast cancers and partial patients might be 
suitable to immune checkpoint blockade treatment strategies after 
evaluation.28,29 Based on the above finding, we tried to make an im-
munity analysis by CIBERSORT and ESTIMATE method in the risk 

model. The risk score was positively correlated with dendritic cells 
activated, M0 macrophages, and M2 macrophages. ESTIMATE is a 
method to assess the immune cells infiltration and tumor microenvi-
ronment according to gene expression. In this study, immune scores, 
stromal scores, and estimate scores of high-risk groups were signifi-
cantly lower.

The somatic mutation analysis showed that the samples in 
high-risk group had more frequent TP53  mutation mutated and 
TP53 mutations may boost immunotherapy activity in BC according 

F I G U R E  7 TMB, TIDE, and Chemotherapeutic Sensitivity. (A-B) The waterfall plot of somatic mutation features in two groups. (C) TMB 
between low- and high-risk groups. (D) K–M survival curves between the high-TMB and low-TMB groups. (E) K-M survival curves between 
the two groups. (F) TIDE score between two groups. (G) IC50 difference in A.443654
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to previous study.30 Although immunotherapy has been applied suc-
cessfully in some tumor types, not all the breast cancer patients can 
benefit from this treatment.31 Therefore, it is indispensable to select 
appropriate biomarkers to decern the patients who are more sensi-
tive to immunotherapy.

Hypermutated breast cancer patients may benefit from PD-1 
inhibitors,32 and high tumor mutation burden (TMB) is related to 
better therapeutic effect of immune checkpoint blockade (ICB).33,34 
In this study, the patients in the high-risk group showed a higher 
TMB. Tumor immune dysfunction and exclusion (TIDE) algorithm 
is a method for predicting ICB response in cancer.20 A higher TIDE 
score is associated with worse ICB response and has high accuracy 
in predicting the survival outcome of cancer patients treated with 
ICB.35 Some recent research supported its application in predict-
ing the therapeutic effect of ICB.36,37 In our study, the TIDE score 
was significantly lower in high-risk group. In conclusion, based on 
the evaluation of TMB and TIDE score, the patients in high-risk 
group showed better ICB response. In addition, we used pRRo-
phetic R package to calculate the IC50 values of chemotherapeutic 
drugs, and the patients with high-risk score were more sensitive to 
A-443654.38

There are still limitation and weaknesses in our study. Firstly, the 
analysis results were not validated in vitro and in vivo, and the bio-
logical function needs to be furtherly elucidated. Secondly, in view of 
complexity, we did not clarify the relationship between necroptosis-
related lncRNA and tumor-infiltrating immune cells. Thirdly, in the 
retrospective study, there may be some biases in the case inclusion 
and data processing. The collection of clinical samples and external 
validation will be implemented in the future.

5  |  CONCLUSION

A well-validated risk model was constructed based on 7 necroptosis-
related lncRNAs, including SH3BP5-AS1, AC012073.1, AC120114.1, 
LINC00377, AL133467.1, AC036108.3, and AC020663.2. The BC 
patients in the high-risk group had worse clinical outcomes. Besides, 
the high-risk patients demonstrated higher TMB and lower TIDE 
score, indicating the better immune checkpoint blockade response. 
These findings pointed novel ways of BC prognosis estimation and 
optimal treatment strategy.
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