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Abstract
The ongoing global warming has caused unprecedented changes in the climate system, 
leading to an increase in the intensity and frequency of weather and climate extremes. This 
study uses the sixth phase of Coupled Model Intercomparison Project (CMIP6) data to 
investigate projected changes in drought events over East Africa (EA) under four Shared 
Socioeconomic Pathway (SSP) emission scenarios (SSP1-2.6, SSP2-4.5, SSP3-4.0, and 
SSP5-8.5). The CMIP6 data are bias-corrected using a quantile mapping method, with the 
Climatic Research Unit’s precipitation dataset as reference. Drought is quantified using the 
standardized precipitation index and different measures of drought are estimated: drought 
duration, drought frequency, drought severity, and drought intensity. Evaluating the accu-
racy and reliability of historical data before and after bias correction demonstrates the 
importance of the approach. The overall distribution after bias correction depicts a close 
agreement with observation. Moreover, the multi-model ensemble mean demonstrate supe-
riority over individual Global Circulation Models. Projected future changes show enhance-
ment in precipitation over most parts of EA in the far future under different SSP scenarios. 
However, the arid and semi-arid regions are expected to receive less amount of precipita-
tion, whereas the highlands and lake regions are expected to receive a larger amount of 
precipitation increase. Furthermore, the dry areas of EA are likely to experience more fre-
quent drought events with longer duration, stronger intensity, and severity in the far future. 
Overall, this study identifies possible drought hotspots over EA, enabling early preparation 
for such events.
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1  Introduction

The earth system continues to witness unprecedented climatic changes (Steffen et al. 2018). 
An observed increase in the concentration of greenhouse gases (GHGs) in the atmosphere 
has altered the climate feedback mechanisms (IPCC 2021), posing a significant threat to 
the survival of both humans and ecosystems. This has led to a “new norm” characterized 
by the unparalleled occurrence of extreme weather events such as droughts, floods, and 
heat waves (Eckstein et al. 2019). The impacts of extreme events vary in magnitude, with 
drought occurrence dominating various economic sectors (IPCC 2014). It is expected to 
worsen following the intersection of climate change with other environmental and health 
crises such as the SARS-CoV-2 (COVID-19 novel coronavirus) (Phillips et al. 2020). The 
damage caused by drought alone is estimated to have affected over 1.5 billion people so 
far in this century and will likely increase in the future (Jenkins and Warren 2015; Funk 
et al. 2019; Ukkola et al. 2020). This calls for urgent monitoring of its tendency as a way of 
identifying hotspots and vulnerable communities for timely interventions and appropriate 
adaptation strategies (Wilhite et al. 2000; Lloyd-Hughes 2012).

Research shows that the frequency of drought occurrence will increase significantly 
in the future (Trenberth et  al. 2014; IPCC 2014; IPCC 2021), mainly as a consequence 
of climate change and the rapid rise in population. However, unanimity on the extent of 
the variation and magnitude of drought is not fully reached (Sheffield et  al. 2012). Sev-
eral climate scenario studies utilize global climate model (GCM) outputs derived from the 
Coupled Model Intercomparison Project phase three (CMIP3; Meehl et  al. 2007; Ostad-
Ali-Askari et al. 2019) and/or phase five (CMIP5; Tayler et al. 2012). In general, CMIP5 
ensembles depict an increase in the intensity and frequency of droughts globally in the 
twenty-first century (Sheffield and Wood 2008; Dai 2013; Huang et  al. 2016). To illus-
trate, most climate models highlight a significant increase in drying patterns in central 
Europe, particularly in Poland (Osuch et al. 2016), western North America (Ahmadalipour 
et al. 2017; Wei et al. 2019; Zhao et al. 2021), the Mediterranean (Trenberth et al. 2014), 
the Amazon (Duffy et al. 2015), Africa (Masih et al. 2014; Haile et al. 2020), South Asia 
(Wang et al. 2018; Zhai et al. 2020), and Australia (van Dijk et al. 2013). Despite the robust 
projections that have been conducted over different parts of the world using the CMIP data-
sets, there remain some uncertainties and biases in the model results (Burke and Brown 
2008). Such biases cast aspersions on the reliability of the projections based on previous 
model outputs (Ukkola et al. 2018), thus calling for a concerted effort for improved model 
parameterization.

The new generation of CMIP outputs (CMIP6; Eyring et al. 2016) provides an opportu-
nity to enhance our understanding of the future climate. Policymakers, among other users 
of climate information, need timely information that will enable them to address pertinent 
climate-related issues, especially responses to disasters. Many recent studies have exam-
ined drought changes using CMIP6 multi-model ensembles at global and regional scales 
(Ukkola et al. 2020; Cook et al. 2020; Zhai et al. 2020; Shrestha et al. 2020). For instance, 
Ukkola et  al. (2020) report an increase in drought occurrence by more than 45% world-
wide, mainly due to changes in mean precipitation and natural variability. The findings 
concur with a related study by Cook et al. (2020) that notes a severe drying pattern with an 
anomalous increase in extreme drought events by up to 300% in some locales. Meanwhile, 
regional studies demonstrate a concomitant tendency to that of global land area analysis. 
For example, Zhai et al. (2020) reported a significant increase in drought features over the 
northwest sub-region of the larger southeast Asia domain using a CMIP6 ensemble. While 
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conducting drought changes analysis over regions of India using bias-corrected CMIP6 
data, Shrestha et al. (2020) observed that multiple severe-to-extreme drought events would 
intensify during the 2030s in most climate scenarios.

Africa remains one of the most vulnerable continents to drought-related impacts as a 
result of technological, institutional, and financing constraints (Ahmadalipour et al. 2019; 
IPCC 2022). With the largest expanse of drylands exceeding the aridity index of 0.05 
(Huang et  al. 2016), the observed and projected drought intensification will negatively 
impact nearly all spheres of livelihood. Wei et al. (2019) showed that drier and hyper-arid 
regions would experience higher warming of 2.4  °C under the worst-case emission sce-
nario (O’Neill et al. 2017). The projected warming will raise the temperature of dryland 
regions of the Sahara Desert and Southern Africa by 5.6 °C and 1.4°C, respectively, under 
the Shared Socioeconomic Pathway (SSP) 5–8.5 (Almazouri et al. 2020). The escalation 
in temperature coupled with declining precipitation over most regions of Africa is likely to 
exacerbate the occurrence of drought events.

A few CMIP6-based studies (e.g., Cook et  al. 2020; Ukkola et  al. 2020) have been 
conducted over Africa’s hydroclimatic sub-regions to examine the drought changes. The 
existing studies over EA focus on precipitation changes owing to the observed decrease 
in the March to May (MAM) seasonal rainfall (Funk et al. 2014; Ongoma and Chen 2017; 
Nicholson 2017). The region’s most common extreme weather events are droughts and 
floods (Lukamba 2010; Nkunzimana et al. 2021; Fatahi Nafchi et al. 2022). These events 
cause losses of lives, disruption of livelihoods, and destruction of property in EA (Otieno 
and Awange 2006; Lyon and Dewitt 2012; Opiyo et al. 2015), calling for response meas-
ures that, often, consume millions of dollars annually (Martey et al. 2020).

The availability of CMIP6 GCMs provides an opportunity to re-examine the future 
changes in drought events and map out possible drought hotspots over EA. In compari-
son with the previous generation (i.e., CMIP5, Tayler et al. 2012), CMIP6 includes more 
comprehensive GCMs with generally more sophisticated physics and higher resolution, 
which yield a better representation of the observed climate systems (Ayugi et al. 2021a, b, 
c). Moreover, the SSPs (O`Neill et al. 2017) provides additional descriptions of socioeco-
nomic development, unlike the previous versions of representative concentration pathways 
(RCPs; Van Vuuren et al. 2011) that only captured the projections of the components of 
radiative forcing for use for assessment of changes in the climate system. Subsequently, 
these SSPs were considered and applied in the latest Sixth Assessment Report (AR6; IPCC 
2021) to examine how the societal actions will impact the emissions of greenhouse gases 
(GHGs) and also how climate goals under Paris Agreement will be attained.

Thus, this work employs the latest SSP scenarios under CMIP6 to examine the projected 
future changes in drought characteristics over East Africa. Notably, the biases reported in 
the previous versions of the CMIP simulations also exist in the CMIP6 simulations (Abdel-
moaty et al. 2021; Tian and Dong 2020). Therefore, bias correction is herein introduced 
to obtain a reliable future projection of drought characteristics over the region. This infor-
mation is needed for devising effective adaptation and mitigation strategies in the region 
that has remained a drought hotspot and vulnerable to its effects (Trisos et al. 2022; Ayugi 
et al. 2022). This study uses the Standardized Precipitation Index (SPI) to build an accu-
rate drought map for EA. Ukkola et  al. (2020) advocated for the use of SPI since other 
approaches that incorporate potential evapotranspiration (PET) such as Standardized Pre-
cipitation Evapotranspiration Index (SPEI) tend to overestimate projected future drought. 
According to Swann et al. (2016), including PET in the computation of droughts tends to 
introduce errors by double-counting the effects of surface humidity and temperature on 
droughts. In a different study, Ntale and Gan (2003) reported that SPI is more suitable for 
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application over the region, as compared to Palmer drought severity index (PDSI) and the 
Bhalme–Mooley index (BMI) over East Africa,

This study thus seeks to answer one main question: What is the spatial and temporal 
extent of projected drought extremes over EA? This information is useful in improving the 
accuracy and reliability of existing drought early warning systems. The rest of the paper is 
organized as follows: Sect. 2 describes the physical, climate, and socio-economic outlook 
of the study area, data used, and the methods while Sect. 3 highlights the key findings and 
related discussions. Finally, Sect. 4 captures conclusions and recommendations for further 
studies.

2 � Study area, data, and methods

2.1 � Study area

EA lies in the equatorial region, within 28° E–42° E and 12° S–5° N (Fig. 1). In this study, 
Rwanda and Burundi are regarded as part of Tanzania owing to their relatively small size 
and having homogenous climate with Tanzania. Other countries in the region considered 
are Kenya and Uganda. The Great Rift Valley divides the study area into nearly two halves. 
Others entail Africa’s largest lake, Lake Victoria, among other large inland water bodies 
that partly regulate moisture distribution in the region (Song et al. 2004), as well as being 
a source of livelihood to the region’s population (Ntiba et al. 2001). The region equally has 
the highest elevation point in Africa with a height of more than 5800 m (Mt. Kilimanjaro), 

Fig. 1   Diagrammatic sketch of the African continent and elevation map (m) of East Africa, consist-
ing of three countries: Kenya [35°E–41.5°E, 3°S–4.5°N], Uganda [29°E–5°E, 1.5°S–4°N], and Tanzania 
[29°E–40°E, 10°S–4°S].
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followed by Mt. Kenya (> 5199 m) and Mt. Ruwenzori (> 5109 m). Other features include 
the largest expanse of Arid and Semi-Arid Lands (ASAL) covering most parts of eastern 
Kenya, Somalia, and northern Uganda (Camberlin 2018).

The average mean annual precipitation over EA  ranges between 800 and 1200  mm, 
characterized by a high spatio-temporal distribution (Indeje et  al. 2001; Ongoma et  al. 
2018a). This is due to the region’s complex topography, water bodies, and maritime influ-
ence (Ogwang et al. 2014). Most parts of the region, especially Kenya, the western part of 
Uganda, and eastern Tanzania, receive a bimodal rainfall distribution during MAM and 
October–December (OND) (Kabanda and Jury 1999; Ongoma and Chen 2017; Gebre-
chorkos et al. 2020). The rainfall seasonality is mainly influenced by the movement of the 
inter-tropical convergence zone (Nicholson 2018). Rainfall interannual variability is also 
influenced by El Niño and La Niña (El Niño-Southern Oscillation, ENSO) and other fac-
tors such as the Quasi-Biennial Oscillation (QBO) and Indian Ocean Dipole (IOD) (Endris 
et  al. 2016). On the other hand, the temperature is generally warm throughout the year, 
ranging between 19 and 30 °C (Ongoma and Chen 2017; Camberlin 2018; Ayugi and Tan 
2019). Generally, the region is classified as tropical savanna climate (Peel et al. 2007). The 
warmest months across the region are January and February while the coolest month is 
between June to September (Ongoma and Chen 2017). More details on the area of study 
can be found in Camberlin (2018).

2.2 � Datasets

This study utilizes the gridded monthly rainfall data from the University of East Anglia Cli-
matic Research Unit (CRU version TS4.04) spanning 120 years (1901–2020) as observed 
data. The data have been successfully used in related studies over EA (e.g., Ogwang et al. 
2014, 2015; Maidment et al. 2015; Ongoma et al. 2015, 2018b; Sagero et al. 2018; Ayugi 
et al. 2018). The CRU data are preferred over station data because it has a long time series 
and is quality controlled. Most weather records over EA are of low quality and have short 
records, many of which are less than 50 years and exhibit incompleteness, as reported by 
several studies (e.g., Omondi et al. 2014; Ongoma et al. 2018c). The CRU data are created 
by interpolating station data on a 0.5° × 0.5° resolution grid (Harris et al. 2014). A detailed 
description of the CRU version TS4.04 data is provided by Harris et al. (2020). CRU data 
are preferred over other datasets of similar time length, such as the Global Precipitation 
Climatology Centre (GPCC) data (Schneider et al. 2015), owing to its higher accuracy in 
reproducing rainfall over EA (Ayugi et al. 2016; Ongoma and Chen 2017). Many studies 
recommend the use of datasets with the longest possible time series to examine drought 
events since most indices detect drought by comparing rainfall over a given period to long 
term mean  (McKee et al. 1993; Wu et al. 2005; Mishra and Sigh 2010).

Further, this study employs a multi-model ensemble (MME) of 16 CMIP6 GCM outputs 
derived from the first variation run. The datasets are accessed through the Earth Systems 
Grid Federation (ESGF; https://​esgf-​node.​llnl.​gov/​search/​cmip6/) data replication centers 
(Eyring et  al. 2016). The modelled precipitation for historical and four future scenarios 
(SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are used to estimate drought patterns. The 
SSP denotes an integrated scenario of possible future climate and societal change, which 
would be employed to assess topics such as the mitigation and adaptation efforts needed to 
attain a particular climate outcome (O ‘Neill et al. 2016). The historical experiment starts 
from 1850 to 2014, while projections under the Scenario Model Intercomparison Project 
(Scenario MIP; O`Neill et  al. 2017) run from 2015 to 2100. Table  1 gives the models’ 

https://esgf-node.llnl.gov/search/cmip6/
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descriptions. The drought index used in the present study is computed from the data-
set native resolution and then re-gridded to a consistent spatial resolution of 1° × 1° using a 
bilinear interpolation technique.

2.3 � Methods

2.3.1 � Model bias correction and validation

To improve the reliability of CMIP6 data in projecting the changes in drought properties, 
the study employs the quantile mapping (QM) based on the gamma distribution bias cor-
rection technique (Ines and Hansen 2006; Piani et al. 2010) to minimize the biases reported 
in recent studies over EA (Akinsanola et al. 2021; Ayugi et al. 2021a; Ngoma et al. 2021). 
Quantile perturbations adjust the model output values for historical simulation to mimic 
similar features as the observed data. The same distribution is then enforced on the projec-
tion datasets, assuming that the bias is similar in the historical and future periods (Maraun 
2013). The Climate Data Bias Corrector developed by Gupta et al. (2019) is used to cor-
rect the bias. The empirical cumulative distribution function (ECDF) is used to display the 
model’s performance before and after the QM implementation. The general method of QM 
is calculated based on Eq. 1 and 2 as follows: 

where Xbc is the corrected variable, and CMIP6 datasets and CRU observation data are 
denoted by the subscript m and o, respectively. c and p represent the calibration and the 
scenario projected period, respectively. Fo,c and F−1

0,c
 are the corresponding empirical cumu-

lative distribution function (ECDF) and its inverse in the calibration period. The effective-
ness of the technique has been affirmed in previous studies where it was applied on various 
climatic variables such as precipitation and temperature over different regions (Ayugi et al. 
2020a; Tabari et al. 2021; Dike et al. 2022).

2.3.2 � Drought index and event characteristics

This study examines future meteorological drought evolution over EA using the SPI multi-
scale drought technique (McKee et al. 1993). The computation of SPI depends mainly on 
precipitation, based on the assumption that precipitation deficits over varying periods or 
timescales affect groundwater, reservoir storage, soil moisture, and streamflow (Wu et al. 
2005). SPI computes drought events for varying timescales by aggregating the precipita-
tion timescales over the period of interest (i.e., 3 months for SPI-3; 6 months for SPI-6; 
9 months for the SPI-9; 12 months for the SPI-12; and 24 months for SPI-24) (McKee et al. 
1993).

Subsequently, SPI can be employed to effectively monitor agricultural (SPI-3), 
hydrological drought (SPI-6), and groundwater (SPI-12 and -24). The drought events 
over EA are quantified on a three-month timescale (SPI-3) to mirror the seasonal pre-
cipitation climatology (MAM and OND) of the study domain. The SPI-3 illustrates the 
influence of precipitation anomalies on short-term water availability, which is important 
for rainfed agricultural activities. Compared to other existing drought indices, SPI uses 

(1)Fm,c(Xm,c)=Fo,c(Xo,c)

(2)Xbc=F−1

o,c{Fm,p(Xm,p)}



1157Natural Hazards (2022) 113:1151–1176	

1 3

Ta
bl

e 
1  

L
ist

 o
f t

he
 C

M
IP

6 
G

C
M

s u
se

d 
in

 th
is

 st
ud

y

S/
N

M
od

el
s

Re
po

rti
ng

 in
sti

tu
tio

ns
H

or
iz

on
ta

l r
es

o-
lu

tio
n 

(la
t ×

 lo
n)

1
B

C
C

-C
SM

2-
M

R
B

ei
jin

g 
cl

im
at

e 
ce

nt
er

 (B
C

C
) a

nd
 C

hi
na

 m
et

eo
ro

lo
gi

ca
l a

dm
in

ist
ra

tio
n 

(C
M

A
), 

C
hi

na
1.

13
° ×

 1.
13

°
2

C
an

ES
M

5
C

an
ad

ia
n 

ce
nt

re
 fo

r c
lim

at
e 

m
od

el
lin

g 
an

d 
an

al
ys

is
, e

nv
iro

nm
en

t a
nd

 c
lim

at
e 

ch
an

ge
 C

an
ad

a,
 V

ic
to

ria
, C

an
ad

a
2.

81
° ×

 2.
81

°
3

C
ES

M
2-

W
A

C
C

M
N

at
io

na
l c

en
te

r f
or

 a
tm

os
ph

er
ic

 re
se

ar
ch

, U
SA

1.
25

° ×
 0.

94
°

4
C

M
C

C
-C

M
2-

SR
5

Eu
ro

-M
ed

ite
rr

an
ea

n 
ce

nt
re

 o
n 

cl
im

at
e 

ch
an

ge
 c

ou
pl

e 
m

od
el

 (C
M

C
C

-C
M

2)
, I

ta
ly

1.
3°

 ×
 0.

9°
5

EC
-E

A
RT

H
3

EC
-E

A
RT

H
 c

on
so

rti
um

, E
ur

op
e

0.
70

° ×
 0.

70
°

6
EC

-E
A

RT
H

3-
Ve

g
EC

-E
A

RT
H

 c
on

so
rti

um
, E

ur
op

e
0.

70
° ×

 0.
70

°
7

FG
O

A
LS

-g
3

LA
SG

, i
ns

tit
ut

e 
of

 a
tm

os
ph

er
ic

 p
hy

si
cs

, C
hi

ne
se

 a
ca

de
m

y 
of

 sc
ie

nc
es

, C
hi

na
2.

25
° ×

 2.
0°

8
G

FD
L-

ES
M

4
G

eo
ph

ys
ic

al
 fl

ui
d 

dy
na

m
ic

s l
ab

or
at

or
y,

 U
SA

1.
25

° ×
 1.

00
°

9
H

ad
G

EM
3-

G
C

31
-M

U
K

 m
et

 o
ffi

ce
 h

ad
le

y 
ce

nt
re

, U
K

1.
86

° ×
 1.

25
°

10
IN

M
-C

M
4-

8
In

sti
tu

te
 fo

r n
um

er
ic

al
 m

at
he

m
at

ic
s, 

Ru
ss

ia
n 

ac
ad

em
y 

of
 sc

ie
nc

e,
 M

os
co

w
, R

us
si

a
2.

00
° ×

 1.
50

°
11

IN
M

-C
M

5-
0

In
sti

tu
te

 fo
r n

um
er

ic
al

 m
at

he
m

at
ic

s, 
Ru

ss
ia

n 
ac

ad
em

y 
of

 sc
ie

nc
e,

 R
us

si
a

2.
00

° ×
 1.

50
°

12
K

A
C

E-
1-

0-
G

N
at

io
na

l I
ns

tit
ut

e 
of

 M
et

eo
ro

lo
gi

ca
l S

ci
en

ce
s/

K
or

ea
 m

et
eo

ro
lo

gi
ca

l a
dm

in
ist

ra
tio

n 
(N

IM
S-

K
M

A
), 

Re
pu

bl
ic

 o
f 

K
or

ea
1.

92
° ×

 1.
44

°

13
M

PI
-E

SM
I-

2-
H

R
M

ax
 p

la
nc

k 
in

sti
tu

te
, G

er
m

an
y

0.
90

° ×
 1.

30
°

14
M

R
I-

ES
M

2-
0

M
et

eo
ro

lo
gi

ca
l r

es
ea

rc
h 

in
sti

tu
te

 (M
R

I)
, J

ap
an

1.
13

° ×
 1.

13
°

15
N

ES
M

3
N

an
jin

g 
U

ni
ve

rs
ity

 o
f i

nf
or

m
at

io
n 

sc
ie

nc
e 

an
d 

te
ch

no
lo

gy
, N

an
jin

g,
 C

hi
na

1.
9°

 ×
 1.

9°
16

N
or

ES
M

2-
M

M
C

lim
at

e 
m

od
el

in
g 

co
ns

or
tiu

m
, N

or
w

ay
0.

9°
 ×

 1.
25

°



1158	 Natural Hazards (2022) 113:1151–1176

1 3

precipitation as an input fit in a gamma distribution. Subsequently, it requires the esti-
mation of gamma distribution parameters such as ∝ and � , which would then transform 
into a normal distribution as follows (Eq. 3):

where ∝, 𝛽, x > 0 are a shape parameter, a scale parameter, and the precipitation amount, 
respectively, and �(∝) is the gamma function. The SPI is estimated based on the cumulative 
probability function as follows (Eq. 4):

where G(x)   is cumulative probability of the observed precipitation. If the actual precipita-
tion shows low probability, then the region is under drought prevalence while the reverse 
probability indicates wet events. Besides, the gamma function is undefined for x = 0 and 
precipitation may have zero values (Gidey et al. 2018). In this study, the cumulative prob-
ability function was analyzed as shown in Eq. 5:

where q is the probability of zero. Estimation of SPI values is derived from a transforma-
tion of cumulative probability represented by zero as a mean and variance equal to 1. Sub-
sequently, the long-term mean of historical and projection precipitation data of the study 
area was computed by summing the whole record and dividing by the number of measure-
ments during the study duration (Eq. 6)

where x  is mean value, n   is the number of years (study period), xi  is the value of ith time-
scale being averaged. The standard deviation was also computed to measure the spread of 
precipitation as follows (Eq. 7):

 where � is the standard deviation, xi  is each value of datasets, x  is the mean of the data 
sets, n is the total number of observations and scenario and 

∑

 is the sum of all datasets. A 
model was then developed to quantify the values of SPI as follows in Table 2 (Eq. 8):

where pi is the  baseline precipitation value, p is the  projected mean value, and �  is  the 
standard deviation of the projected records.

To investigate the possible changes in drought conditions over the study area, 
two equal time slices of 30 years are used: the mid-future (2041 – 2070) and the far- future 
(2071 – 2100) in comparison to the baseline period of 1985 – 2014.
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2.3.3 � Analysis of drought duration, magnitude, intensity, and frequency

To examine the impact of drought events in the study region, the study considers drought 
components of drought duration (DD), drought frequency (DF), drought intensity (DI), and 
drought severity (DS) to detect the possible effects of climate change on drought events in 
the wake of global warming. The study defines the DS, DI, and DF for dry events over the 
study domain as given in Eq. 9–11:

	 (i)	 Severity is the cumulative sum of the index value based on the duration extent (Eq. 9) 
as follows:

	 (ii)	 The intensity of an event is the severity divided by the duration (Eq. 10). Events that 
have a shorter duration and higher severity will have large intensities.

	 (iii)	 Frequency of occurrence 
(

Fs

)

 is defined in Eq. 11 as follows:

where ns is the number of drought events (SPI < − 1 .0), N2 is the total of the months for the 
study period, and s is a grid cell.

In order to display the changes in drought characteristics listed above, the study employs 
a boxplot to demonstrate the distribution of DD, DF, DI, and DS over the study area. A 
box-and-whisker plot is useful in representing the spread and comparison of various 
drought characteristics. It highlights the distribution of datasets based on five key indica-
tors: minimum value, first quartile (25th percentile), median, third quartile (75th percen-
tile), and maximum value. The interquartile range shows the changes in drought events. 
This approach is utilized in various studies (e.g., Sheffield et al. 2012; IPCC 2013; Haile 
et al. 2020).

(9)S =

Duration
∑

i=1

Index

(10)I =
Severity

Duration

(11)Fs =
ns

Ns

× 100%

Table 2   Classification of SPI for 
drought and wet events (McKee 
et al. 1993)

Drought classes SPI values

Extremely wet (EW)  ≥ 2.0
Severe wet (SW) 1.5–1.99
Moderate wet (MW) 1.0–1.49
Normal (N) − 0.99 to 0.99
Moderate dry (MD) − 1.0 to − 1.49
Severe dry (SD) − 1.5 to − 1.99
Extreme dry (ED)  ≥ 2.0
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3 � Results and discussion

3.1 � Model correction and validation

The ability of models to simulate observed precipitation is assessed over the study area. The 
accuracy of future projected changes depends on models’ capability to replicate observed 
values at the historical level (Piani et al. 2010; Tabari et al. 2021). To examine their agree-
ment with observations and the effect of quantile mapping, the GCMs data before (BC) 
and after correction (AC), together with their MME, are presented in Fig. 2. The results 
after correction indicate a consistent improvement by all the models and largely agree with 
the observation. The models before correction over EA (Fig. 2a) remarkably deviate from 
CRU with an increase in amounts, especially when rainfall exceeds 80  mm. After cor-
rection (Fig. 2b), the overall distribution shows a tight agreement with observation. Fur-
ther statistical analysis of correlation coefficients, RMSEs, and standard deviations, the 
bias-corrected data show improved skills compared to the original ones (Table  S1). For 
instance, the BC CMIP6-MME shows a correlation coefficient of 0.58, which is improved 
to 0.8 AC, while the RMSE is reduced from 43.84 (BC) to 39.9 (AC). The standard devia-
tion also denotes an improvement in the individual models and their respective MME after 
bias correction. The present findings agree with existing studies that highly recommend the 
correction of inherent GCM biases before employing the data for impact studies (Dosio 
et al. 2021; Tabari et al. 2021; Ayugi et al. 2021a). In fact, recent studies that employed 
GCMs in projecting extreme events such as drought, high temperatures, and extreme pre-
cipitation equally conducted bias correction before using the model data in examining the 
projected changes over various locales (Mondal et al. 2021; Iyakaremye et al. 2021; Dosio 
et al. 2021; Dike et al. 2022), making bias correction powerful mathematical tool for ana-
lyzing climate data.

Fig. 2   Empirical cumulative density function (ECDF; mm/month) of GCMs before a and after the bias cor-
rection, b relative to the precipitation observation (CRU data) over East Africa
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3.2 � Projected change in precipitation

Precipitation is a major factor regulating the occurrence of drought from one region 
to another (Dai 2018). Other factors include mean surface air temperature, wind speed, 
humidity, and incoming solar radiation that directly or indirectly affect drought occurrence 
in terms of enhanced evaporative demand through vapor pressure deficit (IPCC 2014). 
Thus, it is imperative to understand the projected changes in precipitation to relate the 
changes to drought events. Figures 3 and 4 show the future temporal and spatial precipita-
tion change over EA relative to the historical period (1995–2014). Generally, all the sce-
narios depict increasing patterns with differing magnitudes. The SSP5-8.5 scenario shows 
intensified changes during the far future (15%) relative to the historical period (5%), while 
minimal changes are predicted to occur under SSP1-2.6 during the mid (3%) and far future 
(7%) (Fig. 3). Meanwhile, spatial changes in precipitation over EA during the mid and far 
future depict a homogeneous spread of precipitation with a 100–300% increase under high 
emission scenarios (Fig. 4d, h). However, negative anomalies are projected to occur over 
most parts of Kenya and the coastal belt in Tanzania at − 40% under SSP1-2.6 during the 
mid and far future (Fig. 4a, e). Interestingly, a persistent dry anomaly is projected to occur 
over the coastal belt of Tanzania across all scenarios and timescales, with intense dryness 
at − 60% under SSP1-2.6 and subsequent reduction at − 10% under SSP5-8.5 (Fig. 4). Gen-
erally, the projected increase in precipitation under a high emission scenario demonstrates 
the impact of anthropogenic GHG emissions. The results of this study agree with exist-
ing literature over EA that demonstrated the pronounced increase in precipitation under 
high emission scenarios as compared to the low forcing sustainability pathways (Onyutha 
et  al. 2021; Ayugi et  al. 2021b; Makula and Zhou 2021). The recently released assess-
ment report of the Inter-governmental Panel on Climate Change Working Group 1 (IPCC 
2021) pointed to unprecedented changes that will affect the climate system due to human 

Fig. 3   Time series of mean precipitation anomaly (%) over East Africa during the historical period (1995–
2014), and mid (2041–2070) and far future (2071–2100) under the four SSP scenarios. The black, green, 
purple, blue, and red lines are the CRU, MME-historical, and  SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-
8.5 scenarios, respectively. The shadings indicate the GCMs spread. The green dashed line separates the 
observed period from the projected one
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influence as a result of GHG emissions. For instance, the report projected an increase or 
decrease in the frequency and intensity of heavy precipitation over most land areas, leading 
to more drought or flood events over different regions. It is thus necessary to examine the 
possible changes in EA’s drought characteristics that exhibit high interannual precipitation 
variability (Ongoma and Chen 2017; Ongoma et al. 2018a, b, c, d; Tan et al. 2020; Ayugi 
et al. 2021c).

3.3 � Projected changes in dryness/wetness

To quantify the dryness and/or wetness over EA, the estimated probability distribution 
functions (PDFs) are shown in Fig.  5. The PDFs are calculated from the regional mean 
CMIP6 SPI for the baseline period, mid and far future under the selected scenarios. Fur-
ther, spatial changes in drought patterns based on SPI are presented in Fig. 6. In Fig. 5, 
there is a clear strong shift indicating notable changes during the far future as compared 
to mid-future. Strong evidence of change is noted under SSP5-8.5 scenario with a positive 
anomaly, indicating pluvial anomalies of > 1.5 relative to the baseline period. On the other 
hand, no remarkable differences were found between scenarios during mid-future com-
pared to the baseline period, except for SSP1-2.6 which depicted a slight positive shift. The 
rest of the scenarios showed a persistent drying pattern into the mid-future at -1 indicating 
the occurrence of moderate drought (Fig. 5a). The most striking result to emerge from the 
analyses is that the wetting situation will be more pronounced as compared to the drought 
incidences as evident by the magnitude of shifts during both timescales (max SPI value 
2 compared to − 1.5). In general, relative to the baseline period, the projected drought 
changes over EA are characterized by both drying and wetting patterns with average nega-
tive SPI anomalies of − 0.06, − 0.03, − 0.13, and − 0.14 for the mid-future and positive SPI 
of 0.12, 0.20, 0.41, and 0.54 in the far future. Except for SSP1-2.6 (Fig. 5a), the PDFs of 
SSP2-4.5, SSP3-7.0, and SSP5-8.5 show left-skewness during the mid-future, while this 

Fig. 4   Spatial changes in precipitation anomalies (%) for the mid (2041–2070) and far future (2071–2100) 
periods under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios relative to the baseline period (1985–
2014)
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phenomenon is expected to lapse into a distinct wetting trend in the far future as portrayed 
by the right-skewed PDFs (Fig. 5b).  

Further analysis to examine spatial changes in drought distribution based on SPI-3 for 
mid (2041–2070) and far future (2071–2100) under varying scenarios of SSP1-2.6, SSP2-
4.5, SSP3-7.0, and SSP5-8.5 scenarios relative to the baseline period (1985 – 2014) are 
presented in Fig.  6. Similar to the temporal changes as evidenced by PDFs, the spatial 
distribution of SPI anomaly reveals noteworthy drought (wetness) events during the mid-
future (far future) under the SSP3-7.0 and SSP5-8.5 scenarios (Fig.  6). It is clear from 
the analysis that a uniform wetting pattern will occur over the entire domain during far 
future ender SSP5-8.5 with strong positive change projected over regions across the north 
of the equator (Fig. 6h). Strong evidence of severe drought events (SPI = − 1.5) is projected 
across the entire domain under SSP3-7.0 and SSP5-8.5 during the mid-century (Fig. 6c, d). 

Fig. 5   PDFs of regional SPI during the a mid-future (2041 – 2070) and b far future (2071–2100) under 
SSP1-2.6 (red), SSP2-4.5 (green), SSP3-7.0 (blue), and SSP5-8.5 (orange) scenarios. The baseline period 
(1985–2014) is plotted in black

Fig. 6   Projected change in SPI-3 for mid (2041–2070) and far future (2071 – 2100) under a, e SSP1-2.6, b, 
f SSP2-4.5, (c, g) SSP3-7.0, and d, h SSP5-8.5 scenarios relative to the baseline period (1985–2014)
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Meanwhile, reverse patterns of extreme wetness events of 2.0 to 2.5 are observed toward 
the end of the twenty-first century (Fig. 6g, h). Obviously, the difference in dryness and 
wetness is high in the far future and relatively low in the near future.

Taken together, these results suggest that there is an association between the change 
of drought/flood and the warming levels. Under a high emission scenario, the region will 
likely experience more extreme precipitation events as compared to the dry anomaly. The 
results agree with the recent Sixth Assessment Report (IPCC 2021), which noted a pro-
jected increase in frequency and intensity of extreme wet events due to human-induced 
greenhouse gas emission. The persistent dry anomaly during the mid-future indicates evi-
dence of persistent drying patterns that were first detected in 1999 as a result of changes 
in sea surface temperatures, predominantly in the tropical Pacific basin (Lyon and DeWitt 
2012). Conversely, the strong shift from drought to wet events during far future could be 
mainly attributed to increased moisture in the atmosphere following the Clausius–Clapey-
ron relationship of the water holding capacity of air which increases by about 7% per 1 °C 
warming (Trenberth 2011).

3.4 � Projected changes in drought event characteristics

The absolute spatial changes of drought characteristics during the mid and far future, rel-
ative to the baseline period, are shown in Figs.  7, 8, 9, 10. To quantify the changes of 
drought characteristics, the box plots of regional drought characteristics under the four 
selected scenarios are shown in Fig.  11. Drought duration is defined as the number of 
months under drought conditions. The spatial variance and temporal distribution of drought 
duration are given in Fig.  7a–h and Fig.  11a. The analysis for SPI was derived from an 
ensemble of 16 bias-corrected GCMs simulations over EA. Units for the DD reflected 
are based on the number of months/periods in which drought occurrence took place at a 

Fig. 7   Spatial changes in mean drought duration (DD) for the mid-future (2041–2070) and far future 
(2071–2100) under SSP1-2.6 (first column), SSP2-4.5 (second column), SSP3-7.0 (third column) and 
SSP5-8.5 (fourth column) relative to the baseline period (1985–2014) over East Africa
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particular region. Relative to the baseline period, most areas under the four scenarios are 
projected to experience drought duration in the mid-future while wetting patterns are pro-
jected in the far future over EA (Fig. 7). For instance, drought duration for SPI-3 under 
the most scenario for mid-future (Fig.  7a–d) shows varying patterns of drought changes 
with regions along the northeast and southeast, stretching toward the coastal belt likely to 
experience a higher number of months affected by DD as compared to other parts of the 
study area. The mean drought duration in EA is projected to occur for 3.6, 3.62, 3.8, and 
3.85 months under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively, 
during the mid-future (Fig. 11a). Mid-future shows the lowest occurrence of DD, except 

Fig. 8   Same as Fig. 7, but for drought frequency (DF)

Fig. 9   Same as Fig. 7, but for mean drought intensity
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under the high emission scenario that shows the likely occurrence of longer drought dura-
tion. The emission effect from SSP1-2.6 on DD is not evident in the mid-future (Fig. 7a–d) 
but distinct in the far future (Fig. 7e–h). Interestingly, DD shows a reduction in occurrence 
toward the far-century (2071–2100), except in the southern belt, and far-end northeastern 
sides that continue to exhibit occurrence of DD (1–2 months). The locations along east-
ern sides stretching to the southern belt of the study area are mostly characterized by bare 
ASALs. Climatic characteristics of such region are predominantly dry with below normal 
rainfall experienced, leading to increased evapotranspiration which is induced by enhanced 
radiation, higher wind speed, and vapor pressure deficit, mostly linked to a higher tempera-
ture and low relative humidity. Interestingly, locations suited along the western sides and 
northwest will likely experience fewer months of moderate drought duration. These loca-
tions have large water bodies and high elevations coupled with dense vegetations. A recent 
study (Haile et al. 2020) established that the wetting/drying patterns are directly linked to 

Fig. 10   Same as Fig. 6, but for mean drought severity (DS)

Fig. 11   Boxplot of drought characteristics during the baseline period, mid-future (2041–2070) and far-
future (2071–2100) under four selected scenarios over East Africa. a DD, b DF, c DI and d DS. The boxes 
show the interquartile range, the horizontal lines represent the median and the whiskers show the maxi-
mum/minimum value of the lower/upper quartile. The dots are outliers
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the widely known concept of ‘dry gets drier and wet gets wetter’ paradigm. This pattern is 
mainly associated with the P and PET which are the main variables in the calculation of 
the drought index. These are further associated with the water balance (P-PET) estimations 
where humid regions hold wet with positive P-PET value while arid regions result in defi-
cit/negative P-PET.    

The changes in DD during the far future under SSP5-8.5 over the study area which indi-
cate the reduction in drought occurrence toward the end of the century tend to follow the 
projected trends of precipitation patterns that show a significant increase in future under 
the scenarios over the study domain, most especially under higher emission scenarios 
(Shongwe et  al. 2011; Tierney et  al. 2015; Ongoma et  al. 2018a; Ayugi et  al. 2021a, b, 
c). The projected increase in precipitation signifies high pluvial likelihood as compared to 
drought incidences. The flooding is likely to have an impact on disaster management pro-
grams due to infrastructural loss. New emerging challenges will arise due to the coupling 
scenarios where the projected surface temperature anomalies show a positive trajectory 
across the globe and over the study region (Ongoma et al. 2018a). The study area is likely 
to encounter serious problems associated with health as a result of vector-borne disease 
and other pestilences.

Figures 8 and  11b present spatially averaged drought frequency over EA that amounts 
to 15% during the baseline period, 13% (average value from all scenarios) in the mid-future 
(Figs. 8a–d and 11b), and 9% in the far future (Figs. 8e–h and  11b). From the SPI-3 results 
for SSP2-4.5 and SSP3-7.0 scenarios (Fig. 7b, c), it is evident that the study domain will 
likely experience an intensification and a more frequent occurrence of extreme incidences 
during the mid-future time slice than during the baseline period. This suggests that EA 
may experience more drought frequency in the mid future. However, late century pro-
jections show that the study area is likely to experience a sharp reduction in severe and 
extreme occurrence to more of moderate drought frequency from 14% under the low-
emission scenario (SSP1-2.6) to 3% under the high-emission scenario (SSP5-8.5). Late-
century drought projections under medium stabilization without shoot show occurrence of 
moderate to severe events and likely occurrence of high intense occurrence of an extreme 
event. The causes of extreme drought are still unknown and likely to be revealed in further 
studies. This implies the possibility of a higher DF during the mid future and a lower DF 
in the far future. This is consistent with the dryness changes shown in Figs. 5 and 6. Inter-
estingly, DF in the far future is projected to increase considerably (Fig. 8e–h), particularly 
under the average no policy (SSP3-7.0) and worst case no policy (SSP5-8.5) (Fig. 8g, h) 
along the coastal belt of the Tanzanian region. The regions dominated by dry changes (e.g., 
northern Kenya, the northern parts of Uganda, and northern tips of Tanzania, as shown in 
Fig. 6) tend to experience more drought events in the mid future under the four scenarios 
(Fig. 8a–d). For example, relative to the baseline period with an average drought frequency, 
Kenya, Uganda, Rwanda, and Burundi are projected to experience more drought events 
in the mid future (2%, 4%, and 8%) under SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios 
(Fig. 8b, c, d), respectively.

The examination of DI, computed as the ratio between DS and DD, is presented in 
Figs.  9 and 11c. The  DI is used to measure the overall intensity of drought events. For 
example, drought events of similar severity may have very different intensities if their dura-
tions are different. The mean values of DI are calculated for the historical and future peri-
ods under the different scenarios. The absolute changes in DI during the mid and far future 
are shown in Fig. 9a–h, and the regional DI statistics are given in Fig. 11c. Generally, rela-
tive to the baseline period, EA’s DI preserves similar or becomes lower in the far future 
and becomes higher in the mid future under the different scenarios. DI will likely impact 
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the northeastern parts of Kenya and Uganda during the mid future under SSP3-7.0 and 
SSP5-8.5 (Fig. 9c, d). In the mid future, relative to the baseline period, EA will experi-
ence higher DI than the baseline period at 10, 22, 21, and 25% under SSP1-2.6, SSP2-4.5, 
SSP3-7.0, and SSP5-8.5, respectively. Similarly, in the far future, the region is likely to 
experience DI at 14%, 10%, 8%, and 5% under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5, respectively.

Lastly, the study assesses the changes in DS, which is defined as the cumulated SPI 
value during the drought event and is used to measure drought magnitude. The larger 
the DS value, the more severe the drought. The absolute change in mean drought sever-
ity is calculated for each grid in the mid and far future under the four future scenarios 
(Fig. 10a–h). In addition, the statistics of DS over EA are also shown in Fig. 11d. In gen-
eral, EA is projected to experience a more severe drought during the mid and far future 
under the different scenarios. As expected, DS increases much more in the mid future than 
in the far future, partly contributed to by the great increase in DD as presented in Fig. 7. 
The coastal region and parts of Tanzania are projected to experience less severe droughts 
in the far future under SSP5-8.5 scenarios (Fig. 10d). The effect of emission concentra-
tion is not apparent in the far future in most regions. In western Kenya and north parts of 
Tanzania, there is an interesting higher DS for the low emission concentration (Fig. 10e), 
while in the far future, the emission concentration effects on DS are less significant over 
the entire region (Fig. 10f–h).

The results agree with previous studies conducted over the region based on the Repre-
sentative Concentration Pathways (RCPs) scenario derived from CMIP5 data and demon-
strated an increase in wetness and dryness during the far future (Tan et al. 2020; Spinoni 
et  al. 2020). For instance, related studies (e.g., Nguvava et  al. 2019; Haile et  al. 2020) 
showed an increase in drought events, mainly attributed to increased evaporation from 
higher temperatures. The studies mentioned above were mainly based on the Standardized 
Precipitation Evapotranspiration Index (SPEI) which accounts for both precipitation and 
PET. Supportably, Joeng et  al. (2014) affirmed that the observed and projected drought 
extremes are mainly driven by an increase in mean surface temperature and PET. In fact, 
recent studies based on CMIP6 models (e.g., Almazroui et al. 2020; Ayugi et al. 2021c; 
Iyakaremye et al. 2021) have all pointed out a steady increase in mean and extreme temper-
ature properties over EA comparative to other sub-regions of the continent. For instance, 
Almazroui et  al. (2020) stated that the increasing trend in temperature over EA under 
SSP1-2.6, SSP2-4.5, and SSP5-8.5 is projected to be 0.03, 0.22, and 0.49  °C decade−1, 
respectively.

However, other researchers have remarked that the more pronounced drought events 
projected at a regional level are mainly due to uncoupled modelling approaches that largely 
overestimate regional drought events due to wrong assumptions under increasing CO2 
emissions (Swann et al. 2016; Yang et al. 2019). Overall, the projected drought changes 
over EA follow changes in emissions and different periods. The mid future shows persis-
tent drought events under medium forcing middle-of-the-road pathways (+ 7.0 W m−2) and 
high-end forcing pathways (+ 8.5  W  m−2), reflecting a sustained pattern observed since 
1992, following intense warming that occurred along the Western Indian Ocean (Lyon and 
DeWitt 2012; Liebmann et al. 2014) and SST variations over the Indo-Pacific associated 
with the Walker circulation (Hua et al. 2016) over EA. In contrast, during the far future, 
the region will likely experience more wetness under SSP3-7.0 and SSP5-8.5 as compared 
to the low emission scenario of SSP1-2.6 or under low forcing sustainability pathways of 
SSP2-4.5. The results reaffirm the conclusions of the IPCC (2021) that reported with high 
confidence the influence of humans on climate, causing climate change.
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4 � Conclusion

This study employs bias-corrected data derived from CMIP6 GCMs to assess the future 
changes in meteorological drought over EA. Four scenarios (SSP1-2.6, SSP2-4.5, SSP3-
7.0, and SSP5-8.5), representing different ranges of future GHGs emissions and land use 
are used to project changes in drought during two time slices: mid future (2041–2070) and 
far  future (2071–2100), relative to a baseline period (1985–2014). The CMIP6 GCMs’ 
ability to capture the multi-year annual precipitation spatial patterns improves when the 
models are subjected to quantile gamma mapping. The overall distribution shows a tight 
agreement with observation. The MME shows superiority over individual GCMs. Also, the 
BC (AC) CMIP6 MME shows a correlation coefficient of 0.58 (0.8). The RMSE is equally 
reduced from 43.84 before correction to 39.9 after bias correction. The downscaled GCMs 
and their ensembles can be used for drought monitoring over EA. Our finding demonstrats 
that large parts of EA are expected to get more precipitation in the future under different 
scenarios. However, the spatial heterogeneity of the increase in precipitation magnitude is 
high. In general, dry regions are expected to receive less precipitation increase, whereas 
highlands and lake regions are expected to receive a larger amount of precipitation. In the 
late twenty-first century (2071–2100), the increase in precipitation is projected to be much 
higher than during the mid future. Generally, relative to the baseline period, the projected 
drought changes over EA are characterized by both drying and wetting patterns with aver-
age negative SPI of − 0.06, − 0.03, − 0.13, and − 0.14 for the mid future and positive SPI of 
0.12, 0.20, 0.41, and 0.54 in the far future under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5, respectively. From the low to high emission scenarios, the drying pattern is observed 
in the mid future, while this phenomenon is expected to lapse into a distinct wetting trend 
in the far future. Obviously, the difference in dryness and wetness is larger in the far future 
and relatively smaller in the mid future. Lastly, projected changes in drought event charac-
teristics considering the duration, intensity, frequency, and severity are examined on how 
they will evolve over the study domain during the mid and far future under varying climate 
change scenarios. Overall, drought events are likely to occur more frequently over the dry 
regions (ASAL) of EA with longer durations, and more significant severity and intensity 
in the far future under the four different scenarios. Precipitation and SPI-3 also project a 
similar trend in the far future. For instance, the mean drought duration in EA is projected to 
occur for 3.6, 3.62, 3.8, and 3.85 months under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5 scenarios, respectively, during the mid future. Considering DF, relative to the baseline 
period, the region will likely experience more drought events in the mid future (2%, 4%, 
and 8%) under SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. DI will likely 
impact the northeastern parts of Kenya and Uganda during the mid future under SSP3-7.0 
and SSP5-8.5. In the mid future, relative to the baseline period, EA will experience higher 
DI than the baseline period at 10, 22, 21, and 25% under SSP1-2.6, SSP2-4.5, SSP3-7.0, 
and SSP5-8.5, respectively. Similarly, in the far future, the region is likely to experience 
DI at 14%, 10%, 8%, and 5% under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respec-
tively. The findings of this study call for further quantification of drought changes, particu-
larly over dry regions of EA under different warming scenarios of 1.5, 2.0, 3.0, and 4.0 °C. 
The expected population exposure should also be investigated. This will aid in developing 
effective short- and long-term mitigation and adaptation strategies against drought events.
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