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Abstract

In order to diagnose TMJ pathologies, we developed and tested a novel algorithm, MandSeg, 

that combines image processing and machine learning approaches for automatically segmenting 

the mandibular condyles and ramus. A deep neural network based on the U-Net architecture was 

trained for this task, using 109 cone-beam computed tomography (CBCT) scans. The ground truth 

label maps were manually segmented by clinicians. The U-Net takes 2D slices extracted from 

the 3D volumetric images. All the 3D scans were cropped depending on their size in order to 

keep only the mandibular region of interest The same anatomic cropping region was used for 

every scan in the dataset. The scans were acquired at different centers with different resolutions. 

Therefore, we resized all scans to 512×512 in the pre-processing step where we also performed 

contrast adjustment as the original scans had low contrast. After the pre-processing, around 350 

slices were extracted from each scan, and used to train the U-Net model. For the cross-validation, 

the dataset was divided into 10 folds. The training was performed with 60 epochs, a batch size 

of 8 and a learning rate of 2×10−5. The average performance of the models on the test set 

celiale@umich.edu . 

HHS Public Access
Author manuscript
Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2022 April 
09.

Published in final edited form as:
Annu Int Conf IEEE Eng Med Biol Soc. 2021 November ; 2021: 2952–2955. doi:10.1109/
EMBC46164.2021.9630727.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



presented 0.95 ± 0.05 AUC, 0.93 ± 0.06 sensitivity, 0.9998 ± 0.0001 specificity, 0.9996 ± 0.0003 

accuracy, and 0.91 ± 0.03 F1 score. This study findings suggest that fast and efficient CBCT image 

segmentation of the mandibular condyles and ramus from different clinical data sets and centers 

can be analyzed effectively. Future studies can now extract radiomic and imaging features as 

potentially relevant objective diagnostic criteria for TMJ pathologies, such as osteoarthritis (OA). 

The proposed segmentation will allow large datasets to be analyzed more efficiently for disease 

classification.

I. INTRODUCTION

Osteoarthritis (OA) is a top cause of chronic disability, and with aging, the disease 

progresses to considerable structural and functional alterations in the joint. If the condition 

is detected earlier, treatment can prevent the large joint destruction; however, there is a 

lack of studies focusing on the early diagnosis [1–3]. There is no cure for OA, and current 

treatments attempt to reduce pain and improve function by slowing disease progression. The 

Temporomandibular joints (TMJ) are small joints that connect the lower jaw (mandible) 

to the skull. After chronic low back pain, TMJ disorders (TMD) are the second most 

commonly occurring musculoskeletal conditions, resulting in pain and disability, with an 

annual cost estimated at $4 billion [4].

The recommended Diagnostic Criteria for TMD protocol [5] include clinical and imaging 

diagnostic criteria for differentiating health and disease status, and recent studies have 

indicated the biological markers may also improve the diagnostic sensitivity and specificity 

[6]. However, feature extraction from Cone-Beam Computed Tomography (CBCT) images 

remains time consuming before this integrative model can be applied in larger scale studies.

There are some commercial or open-source tools such as ITK-SNAP [7] and 3D-Slicer [8] 

that clinicians use to interactively segment condyles in each individual image at a time 

and calculate some parameters of images. However, this process is time-consuming and 

challenging for clinicians due to low signal/noise ratio of the large field of view CBCT 

images commonly used in dentistry [9]. Therefore, our goal is to develop a method to 

automatically segment the mandibular ramus. More efficient and reproducible mandibular 

segmentation will help clinicians extract features from the mandibular condyles and ramus, 

analyze changes in the shape and anatomy of the condyles over time to properly diagnose 

the disease, as well as plan the anatomy for surgical interventions. This would facilitate the 

study of the TMJ OA and could help prevent the disease progression and predict the disease 

at early stages.

Manual, user interactive or semi-automatic methods use different imaging modalities such 

as magnetic resonance (MR) imaging, computed tomography (CT), cone-beam computed 

tomography (CBCT), ultrasonography, and conventional radiography [10–17] to segment 

the mandibular condyle and ramus with applications for TMJ and dentofacial treatment 

planning and assessment of outcomes. Up to date, automatic segmentation tools for condylar 

and thin bone cortical areas of the mandibular ramus have been limited to high resolution 

CBCT images [18] or small sample size acquired with the same scanning protocol [19]. 

The algorithm presented in this paper aimed to create a fully automated method to segment 
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the ramus and condyle out of large field CBCT scans of the head from 4 different clinical 

centers and scanning acquisition protocols. The dataset is presented in Section II and the 

different steps of the proposed method are explained in Section III. We then show the 

experimental results of the proposed method and compare them with condyles manually 

segmented by clinician experts. Finally, conclusion remarks are presented in Section IV.

II. DATASET

We used de-identified datasets from the University of Michigan, State University of Sao 

Paulo, Federal University of Goias and Federal University of Ceara, that consisted of 3D 

large field of view scans CBCT scans of the head of 109 patients. At the different clinical 

centers, the images were acquired with different scanners, spatial resolutions varying from 

0.2 to 0.4mm3 voxels, and image acquisition protocols.

The dataset used in this study contains both patients with radiographic diagnosis of 

osteoarthritis and healthy condyles. The inclusion of both OA and non-OA patients in the 

dataset helps develop a more generalizable segmentation model across healthy and diseased 

patients. The images were first interactively segmented by clinicians using ITK-SNAP 

(3.8.0) or 3D Sheer (4.11). These segmentations were used as ground-truth to train and 

evaluate the performance of the proposed method.

III. Proposed method and Experimental results

The proposed method developed to segment the mandibular condyles and ramus out of 

CBCT scans is based on image processing and machine learning approaches that are 

summarized in the flowchart shown in Figure 1.

We first describe image pre-processing to deal with the quality of the images and region 

of interest. After that, we explain the machine learning techniques used to segment the 

mandibular condyles and ramus and to detect its contours out of the craniofacial structures. 

After identification of the mandibular condyles and ramus contours, we perform post-

processing for artifact removal and improvement the segmentations quality.

A. Pre-processing

Figure 2 shows an example of a cross-sectional image from a raw large field of view 

CBCT scan with the mandibular ramus and condyles on each side of the image. The head 

large field CBCT scans were low contrast images, therefore we adjusted the contrast to 

improve the training of our deep learning model and help it to make a better prediction. 

We performed slice cropping according to the number of slices in each scan to keep 

only the region of interest where the condyles are in the large field of view scans. The 

algorithm selected the same anatomic cropping region for every 3D scan in the dataset, then 

split it into 2D cross-sections, and every cross-section was resized to 512 × 512 pixels to 

standardize the dataset. Each CBCT scan resulted in 300-400 cross-sectional images after 

the pre-processing, depending on the number of slices composing the scan, which variates 

with the acquisition protocol used.
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Figure 3 shows an example of a CBCT image after pre-processing. The output of the 

pre-processing is used in the next step where we train our deep learning model.

B. U-Net training

We used the images obtained from the pre-processing to train a U-Net model. This 

network was first developed for biomedical image segmentation and later utilized in other 

applications, such as field boundary extraction from satellite images [20].

We split the dataset into 2 parts: 90 patients CBCT scans for training (approximately 80% 

of the total dataset) and 19 patients CBCT scans for testing (approximately 20% of the 

total dataset). We performed a 10 folds cross-validation on the training set and used the 

testing set to evaluate the model performances. Each fold of the cross-validation contained 

the cross-sectional images from 9 scans. We equally distributed the scans into the different 

folds according to the acquisition center, to avoid the overfitting of the model.

The models were trained during 60 epochs to ensure that the model would converge, with 

a batch size of 8, due to computer performance limitations, and a learning rate of 2×10−5, 

to be able to determine with precision the most appropriate epoch. We used Tensorboard 

to measure and visualize the loss and accuracy of the model and selected the epoch of the 

model before it overfitted.

We gave the high-contrast cross-sectional images from the testing dataset to every trained 

model for them to predict a segmentation of the condyles for every image.

C. Post-processing

The post-processing consisted in binarizing the output images coming from the U-Net model 

using a threshold based on Otsu’s method, resize them to their original size, and adding 

them to reconstitute the original 3D scan. We then calculated the volume of each component 

on the 3D image, and used a volumetric threshold depending on the size of the image to 

remove small objects (artefacts) that are not part of the condyle.

The performance of the proposed segmentation method was evaluated by comparing the 

output of the method to the ground truth, scans manually segmented by clinicians.

Figure 4 shows both the manual segmentation by the clinicians and the automatic 

segmentations output by our algorithm.

We used Area Under the Receiver Operating Characteristic Curve (AUC), F1 score, 

accuracy, sensitivity and specificity to quantify the precision of the models. These 

measurements vary from zero to one, where zero means no superposition between the two 

volumes, and one shows a perfect superposition between both. They were performed on the 

binarized 3D images resulting from the post-processing.

The results we obtained for the validation dataset and the testing dataset are summarized in 

the following tables.
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The average measurements of the AUC, F1 Score, accuracy, sensitivity and specificity of 

the testing dataset for the 10 folds of the cross-validation were each above 0.9 as shown in 

Tables 1 and 2, which demonstrates the precision of the automatic segmentations compared 

to the ground truth interactive segmentations. Additionally, the standard deviations 

were quite low, indicating that the automatic segmentations were very consistent and 

generalizable to unseen patients.

We selected the trained model presenting the highest F1 score when evaluating the model on 

the test dataset and used it to deploy the validated algorithm as a docker container, called 

MandSeg, in an open-source data management system, the Data Storage for Computation 

and Integration (DSCI) [21], that allows clinicians and researchers to access a secure user 

interface to compute automated segmentations for their patients or study datasets.

IV. CONCLUSION AND FUTURE WORK

The MandSeg algorithm produces accurate automated mandibular ramus and condyles 

segmentation compared to the ground truth interactive segmentation. Such an efficient 

automatic mandibular segmentation of CBCT scans will help clinicians early diagnose and 

predict TMJ disease progression by extracting imaging features of the condyle scans. We 

expect that the fully automated mandibular ramus and condyles segmentation algorithm 

presented in this study will improve accuracy in the classification of degeneration in 

the TMJs even when using the low-resolution large field of view CBCT images that are 

conventionally taken for jaw surgery planning.

The current dataset is only composed of 109 scans, coming from 4 different clinical centers 

and the trained models utilized segmentations of only the condyles and ramus, which are 

the most challenging mandibular areas to segment due to the thinness of the cortical bone 

in those anatomic regions. Our future objectives include the addition of scans from other 

clinical centers, training new deep learning models with segmentations of the full mandibles, 

and integration of the resulting automatic segmentations with other imaging modalities such 

as digital dental models for clinical applications in dentistry (Figures 5 and 6).
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Figure 1 - 
Schematic diagram of the proposed method
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Figure 2 - 
An example of one raw CBCT image
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Figure 3 - 
Scan after pre-processing
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Figure 4 - 
Comparison of manual segmentations (left) and automatic segmentations (right), for two 

different cases
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Figure 5 - 
Additional training with datasets from other clinical centers for automatic segmentation of 

the lower jaw (full mandible)
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Figure 6 - 
Integration of lower jaw automatic segmentation with digital dental models for decision 

support systems in dentistry
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Table 1 -

AUC, F1 Score, accuracy, sensitivity and specificity of the validation dataset

Validation dataset AUC F1 score Sensitivity Specificity Accuracy

Average 0.955 0.907 0.923 0.9998 0.9996

Standard deviation 0.040 0.045 0.065 0.0002 0.0003
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Table 2 -

AUC, F1 Score, accuracy, sensitivity and specificity of the test dataset

Test dataset AUC F1 score Sensitivity Specificity Accuracy

Average 0.954 0.915 0.926 0.9998 0.9996

Standard deviation 0.051 0.031 0.057 0.0001 0.0003
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