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Desiccation-tolerance and globular proteins adsorb similar
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Abstract

When exposed to desiccation stress, extremotolerant organisms from all

domains of life produce protective disordered proteins with the potential to

inform the design of excipients for formulating biologics and industrial

enzymes. However, the mechanism(s) of desiccation protection remain largely

unknown. To investigate the role of water sorption in desiccation protection,

we use thermogravimetric analysis to study water adsorption by two

desiccation-tolerance proteins, cytosolic abundant heat soluble protein D from

tardigrades and late embryogenesis abundant protein 4 from the anhydrobiotic

midge Polypedilum vanderplanki, and, as a control, the globular B1 domain of

staphylococcal protein G. All samples adsorb similar amounts of water,

suggesting that modulated water retention is not responsible for dehydration

protection by desiccation-tolerance proteins.
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1 | INTRODUCTION

Water is essential to biology,1,2 but selected organisms
from all domains of life can survive anhydrobiosis, a state
in which cellular water is less than 5% w/w compared to
typical values of 60–70%.3 Although the mechanism(s) of
anhydrobiosis remain largely unknown, many resistant
organisms express small, disordered proteins upon
desiccation.4,5

Drying protein-based drugs (biologics) and industrial
enzymes can increase their stability and thereby avoid
challenges associated with refrigerated transport and
storage (the so-called cold chain) that hinder their use.6–8

Unfortunately, many proteins do not withstand dehydra-
tion because of water's crucial role in globular protein
structure and function.9,10 Proteins can be formulated

with protective molecules called excipients prior to
drying,8,11 but the process of choosing an effective excipi-
ent is empirical, and formulation often fails because we
know so little about dehydration protection.8,11,12

Uncovering the mechanisms by which desiccation-
tolerance molecules protect proteins will advance our
understanding of anhydrobiosis and facilitate the logical
choice and design of excipients, making enzymes and
life-saving biologics more affordable and accessible.13

Hypotheses about the mechanism of protein dehydra-
tion protection have been proposed. In the preferential
hydration hypothesis, a hydration layer is maintained by
protectants that trap or crowd water at the hydrophilic
surface of client proteins.14 Using this model, one might
predict that desiccation-tolerance molecules are more
hygroscopic than those unrelated to desiccation
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tolerance, holding on to water that then interacts with
the client protein surface.

In the water replacement hypothesis, protectants pro-
vide H-bonds to client proteins that are usually made by
water.12,15 Furthermore, water can accelerate the chemical
degradation of proteins such that desiccation protection
might involve inhibiting water's adverse effects.12,16–18

These ideas suggest that desiccation-tolerance molecules
limit degradation by replacing water, which means they
perhaps bind less water than molecules unrelated to desic-
cation tolerance. In summary, the amount of retained
water by desiccation-tolerance proteins might be skewed
in either direction compared to proteins not related to des-
iccation tolerance.

Here, we use thermogravimetric analysis (TGA) to
quantify water sorption by two desiccation-tolerance pro-
teins, one from a tardigrade and another from a midge.
Tardigrades are microscopic animals many species of
which survive desiccation and/or other extreme
stresses.19–21 Cytosolic abundant heat soluble (CAHS)
proteins are unique to tardigrades, necessary for their
desiccation survival, intrinsically disordered, and protect
heterologously expressing cells and enzymes from desic-
cation damage.22–24 They also form reversible,
concentration-dependent hydrogels.25,26 We tested CAHS
D from the tardigrade Hypsibius exemplaris. The midge
Polypedilum vanderplanki survives multiple cycles of
complete dehydration and accumulates late embryogene-
sis abundant (LEA) proteins upon desiccation.27 LEA
proteins, also disordered, are involved in desiccation tol-
erance of many plants and animals, and inhibit protein
aggregation.27–30 We tested LEA protein 4 from
P. vanderplanki (PvLEA4).27 As a control we tested a
globular protein not implicated in desiccation tolerance,
the B1 domain of staphylococcal protein G (GB1).31

2 | RESULTS

To determine if the mechanism of desiccation protection
is related to water adsorption, we performed TGA on
lyophilized samples of GB1, CAHS D, and PvLEA4.
Immediately after 24 hr of lyophilization, samples possess
10–11% water by mass (Figure 1), which is less than one
surface layer of water for GB1 (Table S1). Upon exposure
to 75% relative humidity, the water content sharply
increases before plateauing by 24 hr. PvLEA4 samples
plateau with a water content �19%, CAHS D �16%, and
GB1 �18%, which amounts to slightly more than one
layer on the surface of GB1, similar to other results
(Table S1).32,33 From 2 hr on, the pattern from highest to
lowest water content is PvLEA4, GB1, CAHS D
(Figure 1). However, the water content of PvLEA4 and
CAHS D samples is within the uncertainty for GB1 at

each timepoint except 4 hr, where the water content of
PvLEA4 is higher than that of GB1 (Figure 1). After expo-
sure to 75% relative humidity for 72 h, all samples adsorb
similar amounts of water, showing a total water content
of �17% (Figure 1). These results are comparable to esti-
mations of water sorption based on the hydrophilic
groups in a dry protein; the procedure of Leeder and
Watt34,35 predicts equilibrium water contents for our pro-
teins of �19–21%, not far from our experimental results
(Table S2, Figure 1).

3 | DISCUSSION

The observation that PvLEA4 and CAHS D adsorb nei-
ther more nor less water than GB1 (Figure 1) and other
globular proteins at 75% relative humidity
(e.g., lysozyme, ribonuclease, chymotrypsinogen, bovine
somatotropin)34,36 shows that neither elevated nor
depressed sorption is a distinguishing feature of
desiccation-tolerance proteins. In the dry state, a globular
protein comprises an ensemble of partially folded
conformations,32,37 which suggests that the vapor-
accessible surface of a dry globular protein is more com-
parable to that of a dry disordered protein than it is to
the surface of a globular protein in solution.

Although water coordination to client proteins may
be an aspect of their mechanism, simple accumulation is

FIGURE 1 Water content, in percent weight of solid protein

sample, as determined by TGA while heating at 4�C/min. Samples

comprising 2 mg of GB1, CAHS D, or PvLEA4 in 650 μl 1.5 mM

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 6.5 were

lyophilized for 24 hr, then exposed to 75% relative humidity at

room temperature. Error bars represent the SD from three

independent experiments. Molecular weight (MW), isoelectric point

(pI), net charge calculated at pH 6.5, and FCRs are shown in the

inset. CAHS D, cytosolic abundant heat-soluble protein D; FCRs,

fraction of charged residues; GB1, B1 domain of staphylococcal

protein G; PvLEA4, LEA protein 4 from P. vanderplanki; TGA,

thermogravimetric analysis
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not sufficient to explain the function of desiccation-
tolerance proteins. Similarly, although desiccation-
tolerance proteins may replace water H-bonds to client
proteins while combating plasticizing and degradative
effects, they do not adsorb less (or more) water than other
proteins. We have also examined gelatin, a disordered
protein unrelated to desiccation tolerance. A gelatin-GB1
mixture adsorbs a similar amount of water as mixtures of
CAHS D and GB1 or PvLEA4 and GB1.33 In the same
residue-level study of dehydration protection, we show
that water content of client protein/protectant protein
mixtures does not correlate with dehydration
protection.33

These data also suggest that the ability of CAHS D to
form hydrogels25,26 is not explained by hygroscopicity,
because CAHS D adsorbs no more water than nongelling
proteins (GB1, PvLEA4, etc.).

Neither charge, fraction of charged residues, amino
acid composition, nor hydrophobicity completely
explain the amounts of retained water (Figure 1,
Tables S3 and S4). However, PvLEA4, the protein with
the highest fraction of charged residues, on average
retains more water than GB1 or CAHS D. This observa-
tion suggests that more charged proteins adsorb more
water, in agreement with studies showing that hydro-
philic groups in a dry protein correlate with sorption
capacity.34,35,38,39

In summary, desiccation-tolerance proteins adsorb
water similarly to globular proteins, suggesting that mod-
ulated water retention does not explain desiccation pro-
tection. In vivo, other molecules may modulate hydration
near desiccation-tolerance proteins, but desiccation-
tolerance proteins themselves do not necessarily bind
water differently than other proteins. Investigating what
properties are particular to desiccation-tolerance proteins
will reveal their protective mechanism(s), allowing ratio-
nal design of excipients to make protein products more
affordable and accessible.

4 | MATERIALS AND METHODS

4.1 | Materials

Ampicillin, kanamycin sulfate, and 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES) (Thermo
Fisher) were used without further purification. H2O with
a resistivity >17 MΩ cm�1 was used to prepare buffers. A
constant relative humidity of 75 ± 5% as measured by a
digital hygrometer (Fisherbrand TraceableGO™
Bluetooth datalogging digital hygrometer) was created by
sealing a 0.5-L chamber containing 200 ml of H2O satu-
rated with sodium chloride (Thermo Fisher).40

4.2 | Protein expression and purification

The pET11a plasmid (Novagen) containing the gene for
the T2Q variant of GB1 was provided by Leonard
D. Spicer's laboratory at Duke University (Durham,
North Carolina). This variant, which we call GB1, was
chosen because the mutation prevents N-terminal
deamidation.41 The pET28b plasmid containing the gene
for CAHS D was engineered as described.22 The pET28b
plasmid containing the gene for PvLEA4 fused to an N-
terminal hexahistadine (His-) tag and a TEV protease
cleavage site was ordered from Gene Universal Inc. Vec-
tors were transformed into Agilent BL21 Gold (DE3)
Escherichia coli as described.22

A single colony was used to inoculate 100 ml of
Luria-Bertani broth (Fisher, 10 g/l tryptone, 5 g/l yeast
extract, 5 g/l NaCl) supplemented with the antibiotic
ampicillin (GB1) or kanamycin (CAHS D and PvLEA4)
to a final concentration of 60 μg/ml. The culture was
shaken at 37�C overnight (New Brunswick Scientific I26
incubator, 225 rpm). Ten milliliters of the overnight cul-
ture were used to inoculate 1 l of antibiotic-supplemented
LB. One-liter cultures were shaken at 37�C until they
reached an optical density at 600 nm of 0.6–0.8, at which
point protein expression was induced by adding isopropyl
β-D-1-thiogalactopyranoside (1 mM final concentration).
Three hours after induction, cells were harvested via cen-
trifugation at 4,000g. The cell pellet from each culture
was resuspended in 10 ml of 20 mM Tris, pH 7.5, and
stored at �20�C.

Cell pellets from GB1 expression were lysed by soni-
cation (500-W dismembrator 1/8-in. tip, 15% amplitude
[Fisher Scientific]) for 8 min using a 2 s on/1 s off duty
cycle, and then GB1 was purified as described.42 CAHS D
was purified as described.23 PvLEA4 was purified as
described.33 Purified proteins were exchanged into H2O
by dialysis (ThermoScientific Snakeskin™ dialysis tub-
ing, 3,500 Da molecular weight cutoff), and divided into
2 mg aliquots. Aliquots were flash-frozen, lyophilized,
and stored at �20�C. Purity was confirmed by observation
of a single band on sodium dodecylsufate polyacrylamide
gel electrophoresis and by quadrupole time-of-flight mass
spectrometry (ThermoScientific, Q Exactive HF-X) in the
UNC Mass Spectrometry Chemical Research and Teaching
Core Laboratory.

4.3 | Thermogravimetric analysis

Aliquots of purified, lyophilized protein were
resuspended in 650 μl of 1.5 mM HEPES buffer, pH 6.5,
flash-frozen, and lyophilized (LABCONCO FreeZone
1 Liter Benchtop Freeze Dry System) for 24 hr. Samples
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were then placed, without caps, in a chamber with a con-
trolled relative humidity of 75 ± 5%, created as described
above. Individual tubes were removed after 0, 1, 2, 4,
6, 12, 24, 48, and 72 hr, and protein samples were loaded
into a TA Instruments model 550 thermogravimetric ana-
lyzer on an open Pt pan and heated from 25 to 175�C at a
rate of 4�C/min under a N2(g) sample purge of 60 ml/
min and a balance purge of 40 ml/min. The well-defined
mass loss ending around 125�C was used to quantify H2O
content.43,44 Thermograms were analyzed using Trios
V5.1.0.56403 software.
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