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ABSTRACT

Muscular co-contraction of antagonistic muscle pairs is often observed in human
movement, but it is considered inefficient and it can currently not be predicted in
simulations where muscular effort or metabolic energy are minimized. Here, we
investigated the relationship between minimizing effort and muscular co-contraction
in systems with random uncertainty to see if muscular co-contraction can minimize
effort in such system. We also investigated the effect of time delay in the muscle, by
varying the time delay in the neural control as well as the activation time constant.
We solved optimal control problems for a one-degree-of-freedom pendulum
actuated by two identical antagonistic muscles, using forward shooting, to find
controller parameters that minimized muscular effort while the pendulum remained
upright in the presence of noise added to the moment at the base of the pendulum.
We compared a controller with and without feedforward control. Task precision was
defined by bounding the root mean square deviation from the upright position, while
different perturbation levels defined task difficulty. We found that effort was
minimized when the feedforward control was nonzero, even when feedforward
control was not necessary to perform the task, which indicates that co-contraction
can minimize effort in systems with uncertainty. We also found that the optimal level
of co-contraction increased with time delay, both when the activation time constant
was increased and when neural time delay was added. Furthermore, we found that for
controllers with a neural time delay, a different trajectory was optimal for a controller
with feedforward control than for one without, which indicates that simulation
trajectories are dependent on the controller architecture. Future movement
predictions should therefore account for uncertainty in dynamics and control, and
carefully choose the controller architecture. The ability of models to predict
co-contraction from effort or energy minimization has important clinical and sports
applications. If co-contraction is undesirable, one should aim to remove the cause of
co-contraction rather than the co-contraction itself.

Subjects Anatomy and Physiology, Kinesiology, Biomechanics
Keywords Antagonistic co-contraction, Co-activation, Optimal control, Muscle mechanics,
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INTRODUCTION

Understanding human movement is one of the key goals in biomechanics research. During
the last 60+ years, the energy optimality of movement has been shown in different
experimental and simulation work. Using experiments, Ralston showed that people
choose their walking speed to minimize the metabolic energy expenditure per distance
travelled in 1958 (Ralston, 1958). Since then, the minimization of energy expenditure in
movement has been confirmed for different other parameters, such as step frequency
(Zarrugh, Todd ¢ Ralston, 1974), step width (Donelan et al., 2004) and vertical movement
of the center of mass (Ortega ¢ Farley, 2005; Gordon, Ferris ¢ Kuo, 2009). Furthermore,
walking and running emerge as energy-optimal gaits at their respective speeds when
optimal simulations are created with simple walking models (Srinivasan ¢ Ruina, 2006).
Static optimization has revealed that muscle forces can be explained by minimizing an
objective related to effort (Crowninshield ¢ Brand, 1981). Simulations with complex
musculoskeletal models, where an objective related to energy or effort is minimized, have
also revealed a motion that looks very similar to walking (Ackermann ¢ Van den Bogert,
20105 Koelewijn, Dorschky ¢ Van den Bogert, 2018). Furthermore, energy or effort
minimization makes sense from an evolutionary perspective as well (Wall-Scheffler, 2012).

However, certain human behaviours seem to contradict the notion that movements
minimize energy or effort, a prime example being antagonistic co-contraction of muscles.
Antagonistic co-contraction is the activation of both agonist muscles, which support a
movement, and antagonist muscles, which oppose a movement, around a joint. It increases
the instantaneous muscle stiffness due to the nonlinear mechanical properties of the
muscle, and consequently prevents movement. Co-contraction does not produce external
forces or work while it requires effort and metabolic energy (Hogan, 1984), and therefore
co-contraction is often described as inefficient (Falconer ¢ Winter, 1985; Winter, 2005).
The benefit of co-contraction in human movement has been described as an increase in
joint stiffness and stability (Hogan, 1984; Hirokawa et al., 1991; Jiang ¢» Mirka, 2007; Selen,
Beek & van Dieén, 2005), a reduction of stress in the joint ligaments (Baratta et al., 1988),
and lower tibial shear force (Baratta et al., 1988).

In this paper, we aim to show that, surprisingly, co-contraction minimizes energy or
effort in practice, due to noise in the dynamics. Noise can be caused by external
uncertainty, such as due to wind, but noise is also present internally in sensory and motor
neurons (Bays & Wolpert, 2007). As a result, human control should constantly correct any
deviations caused by noise. These corrections can be done pro-actively or re-actively,
where a pro-active approach would be to use co-contraction, and the related increase in
joint stiffness, to prevent movements, while a re-active approach would be to correct for
disturbances through feedback. Human feedback control is known to have time delay
between the sensation and the correction (Carpenter, Allum ¢» Honegger, 1999), and
Hogan (1984) has also related the need for co-contraction to this time delay, since it makes
feedback control less efficient. Therefore, we also aim to investigate how the optimality of
co-contraction depends on the time delay in the system.
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To investigate the optimality of co-contraction, and its connection to time delay, we can
use tools from stochastic optimal control. Based on the knowledge that humans minimize
energy or effort, researchers have studied human movement using tools from optimal
control (He, Levine ¢ Loeb, 1989; Park, Horak ¢ Kuo, 2004; Ackermann & Van den Bogert,
2010). Then, the goal is to find the optimal input, which could be described by a control law
(He, Levine & Loeb, 1989; Park, Horak ¢ Kuo, 2004), or parameterized over time
(Ackermann & Van den Bogert, 2010), that minimizes an objective related to energy or
effort, while performing the desired task. However, commonly, the dynamics are described
using a deterministic model, which does not account for the internal or external noise
(Anderson & Pandy, 2001; Miller, Brandon ¢ Deluzio, 2013; Ackermann ¢ Van den Bogert,
20105 Koelewijn, Dorschky ¢ Van den Bogert, 2018). Also, human systems are often
linearized (He, Levine ¢» Loeb, 1989; Park, Horak ¢ Kuo, 2004), and e.g. linear quadratic
Gaussian control (Todorov, 2005) is used to find an optimal controller for the linear
system. Due to the certainty equivalence principle, the optimal controller and trajectory
for a linear deterministic system is the same as for its equivalent stochastic system
(Anderson & Moore, 1989), so with this approach noise does not need to be added to find
the optimal solution. As a consequence, co-contraction would never be optimal, since a
solution without co-contraction always requires less energy or effort without noise than
one with co-contraction. However, human dynamics, both of the skeleton and the muscles,
are nonlinear, while the internal noise is signal dependent and thus nonlinear as well,
meaning that the certainty equivalence principle does not hold for human movements.
Instead, to account for the noise, we should use stochastic optimal control while allowing
for the system to be nonlinear.

However, the solution to stochastic optimal control problems can only be estimated
using time-consuming approaches. When solving a stochastic optimal control approach
for nonlinear systems, the stochastic Hamilton-Jacobi-Bellmann equations should be
solved. However, these equations become intractable for high dimensions (Kappen, 2005).
Therefore, several methods have been developed that estimate the solution of optimal
control problems for nonlinear systems. The most commonly used approach is the Monte
Carlo method (Tiesler et al., 2012; Sandu, Sandu ¢ Ahmadian, 2006a). In this method, a
large number of forward simulations are performed, where the uncertain variables are
sampled from their distribution. Using the solution of each of the forward simulations, a
distribution of the outcome variables is provided. This method requires a large number
of simulations to obtain an accurate solution (Sandu, Sandu ¢ Ahmadian, 2006a).
Another approach is based on the theory of generalized polynomial chaos, which states
that a second order stochastic process can be approximated by a combination of stochastic
basis functions. When combined with a collocation method, this approach can solve
optimal control problems faster than a Monte Carlo method (Tiesler et al., 2012; Sandu,
Sandu & Ahmadian, 2006a, 2006b). We have recently developed such an approach to solve
stochastic optimal control problems for human gait based on sampling and direct
collocation (Koelewijn ¢ van den Bogert, 2020). However, this method still does not work
well for dynamics models with muscles, where the relationship between control and rigid
body dynamics is nonlinear.

Koelewijn and Van Den Bogert (2022), PeerdJ, DOI 10.7717/peerj.13085 3/21


http://dx.doi.org/10.7717/peerj.13085
https://peerj.com/

Peer/

Instead of using collocation, forward shooting could be an appropriate alternative to
investigate our hypothesis. Historically, optimal control problems of gait were solved
with forward shooting, but these problems required many computer hours to solve, and
often gait cycles were not periodic (Anderson & Pandy, 2001; Miller, Brandon ¢ Deluzio,
2013). Direct collocation reduced the optimization time to less than 1 h for three-
dimensional gait simulations (Falisse et al., 2019; Nitschke et al., 2020) and thereby
greatly enhanced the possibilities for gait simulations. Recently though, advances have also
been achieved using forward shooting, especially in combination with reflex models
(Ong et al., 2019; Koelewijn & Ijspeert, 2020), and nowadays this method, e.g. using the
software SCONE (Geijtenbeek, 2019), can also efficiently solve optimal control problems
with a predefined controller structure and a relatively smaller number of optimization
variables.

To test our hypothesis that co-contraction is optimal in a system with noise, and to
investigate the relation between co-contraction and time delay, we should therefore use a
nonlinear system with uncertainty. We will solve optimal control problems on the
simplest possible problem where co-contraction can occur: to find the optimal muscle
controls for a one degree of freedom pendulum, controlled by two muscles at the base, to
remain upright while noise is applied to the pendulum base. These problems will be solved
using forward shooting in SCONE. Similar to Crowninshield ¢» Brand (1981), we use
effort minimization as an objective. We use this problem to investigate if a control
strategy with more co-contraction requires less effort than a control strategy without
co-contraction for certain tasks in systems with uncertainty, even when a strategy without
co-contraction is possible. To do so, we will first visualize the effort landscape over different
co-contraction levels for an example problem to investigate if a control strategy with
co-contraction requires less effort than a strategy without co-contraction. Then, we will
perform a comparison of different tasks with varying precision and difficulty to investigate
in which conditions co-contraction is optimal. Next, we will examine the relationship
between co-contraction and time delay to investigate if co-contraction is indeed required
due to time delay in human feedback control, as suggested by Hogan (1984). Since time
delay is present both in the muscle and as a neural time delay between a sensory stimulus
and an action, we will investigate both the effect of increased neural time delay and the effect
of a longer activation time.

METHODS

We developed a one degree of freedom pendulum model, operated via two muscle-tendon
units (MTUs) in OpenSim (Seth et al., 2018) (Fig. 1). The pendulum was modelled as a
point mass of 1 kg, located 50 cm from a revolute joint, which connected the pendulum
to the ground. We set the default value of its degree of freedom to 7, or the upright
position, which we defined as the angle 6 = 0. Gravity was pointing downwards.

We attached identical MTUs on both sides of the revolute joint to operate the pendulum.
These MTUs were attached to the ground with a £10 cm offset, and attached to the
pendulum at 10 cm above the joint. The MTUs were modelled as “Thelen2003Muscle”
(Thelen, 2003) with identical parameters (Table 1). The optimal fiber length and tendon
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Figure 1 Pendulum used in this study. The pendulum has one rotational degree of freedom at the base,
and is operated by two identical muscle-tendon units (MTUs). The MTUs are modeled as “The-

len2003Muscle” (Thelen, 2003).

Full-size K&l DOI: 10.7717/peer;j.13085/fig-1

Table 1 Default muscle model parameters.

Parameter

Value and unit

Maximum isometric force
Maximum shortening velocity

Maximum force during lengthening

Optimal fiber length

Activation time constant

Deactivation time constant

Tendon slack length

Pennation angle at optimal

Tendon strain at isometric force
Passive muscle strain at isometric force
Active force-length shape factor
Passive force-length shape factor

Force-velocity shape factor

F,.. = 2,000 N
VeB(max) = 10 lepopn/s
Gmax = 1.8 Frx
legopn = 7 cm

Toer = 10 ms

Tieact = 40 ms

ZSEE,slack =8 cm
Gope = 0.2 rad
eSEE,iso =0.033

epeE,iso = 0.6

K, =05
Kpas =4
Ar=0.3

slack length were chosen such that the muscle was approximately slack in the upright

position.

Controller model

We designed two controllers to determine the MTU input from the pendulum angle and
angular velocity. To compare the effect of co-contraction, one controller had feedforward
control and feedback control, while the other only had feedback control. In the first

controller, we created a constant feedforward stimulation, which represents co-contraction

for a static task. We created feedback control using proportional-derivative control, which
penalized any deviation from the upright position and any angular velocity. Since the
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problem is symmetric, the feedforward control was the same for both MTUs, while the
feedback control had an opposite sign between the MTUs. Therefore, the full input for
muscle i, u;, was calculated as follows for the controller with feedforward and feedback
control:

ui(t) = Uy + (Kp@(t — At) + KDCO(t — At)), (1)

where 1, denotes the feedforward control, Kp the position feedback gain, K, the derivative
feedback gain, w the angular velocity of the pendulum, and At the neural time delay.

The second controller was exactly the same, but we set the feedforward control to 0.01,
the minimum muscle activation that is allowed in OpenSim and SCONE, such that only
feedback control was used:

u;(t) = 0.01 £ (Kpb(t — At) + Kpw(t — At)). (2)

Optimal control problem and simulations

We solved optimal control problems to optimize controller parameters for different
tasks. The goal was to find the control parameters that minimized muscular effort during
a 20 s simulation while remaining close to the upright position position, under the
influence of perturbations added to the base of the pendulum, since we aim to show that
co-contraction minimizes energy or effort in systems with uncertainty. We defined the
precision of the tasks using a maximum root mean square (RMS) deviation from the
upright position over the full simulation. We chose this task description instead of
bounding the maximum deviation to ensure that co-contraction was not required due to
one large perturbation that could not be overcome by the muscles otherwise. We also
defined a fall, which ended the simulation, when the joint angle deviated more than 1 rad
from the upright position. All simulations started from the upright position and zero
angular velocity. This yields the following optimization description:

For dynamic system X = f(x(t), u(t)) (3)

with initial conditions 0(0) =0, w(0) =0, (4)

) = - ' t)? t)*dt (5)

minimize J(u(t)) = - . ur(t)” + ua(t)

1 /T

subject to Orums = T O(t)zdt < OrmS max (6)
1=0

T > 20, (7)

where f(x(t), u(t)) describe the dynamics, derived with OpenSim (Seth et al., 2018), T the
duration of the simulation, Oryss the RMS deviation of the angle, and Orpss max the
maximum RMS deviation, or the desired task precision.
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We used SCONE (Geijtenbeek, 2019) to solve these optimal control problems via
forward shooting. Since SCONE does not allow for constraints, we constructed an
objective, Jscong to ensure that effort was minimized, while our constraints were met.
To do so, we added two objective terms to the objective of minimizing effort, such that the
RMS deviation was penalized once it was larger than maximum RMS deviation, and
another penalty was added when a simulation finished in less than 20 s.

These objectives were added in such a way that they were equal to 0 when the
constraints were met, and nonzero otherwise, such that, for valid solutions, the objective is
purely effort minimization. The ratio between the objectives weights was chosen such
that the constraints were met in a sensible order. The stimulation time should be met first,
and therefore had the highest weight. In this way, when the simulation time constraint is
not met, the objective gradient of the objective is highest for a change in simulation
time. Once the simulation time constraint is met, the contribution of this objective is 0.
Next, the optimization should ensure that the RMS deviation is below the maximum.
Therefore, this objective has the second highest weight. When both constraints are met,
their objectives do not contribute anymore. Then, the optimization will finally focus only
on minimizing effort. Therefore, the weight was lowest for this objective. Note that the
weight ratio between the three objectives should not affect the final result, and was chosen
such that the optimization was successful in meeting the constraints.

Therefore, we created the following objective to achieve the desired behaviour:

Jscone(x(t), u(t)) = J(u(t)) (8)
100 + 100rpms  if Orpss > Oraas,max
+ { 0 otherwise ©)
100020 — T) if T<20s.
+ { 0 otherwise. (10)

During forward shooting, perturbations were added to the moment at the base of the
pendulum. We ensured that the same perturbations were added each iteration by fixing
the random seed. The perturbations were added as external moment to the pendulum
each 0.1 s, starting at = 0 s. The random moment was drawn from a uniform distribution
with a given maximum amplitude, representing the task difficulty. We repeated each
problem with 3 random seeds to account for variation due to the variability of the problem,
and investigated the problem for which the optimal objective was lowest. All files used in
SCONE, including the OpenSim model file, can be found in Koelewijn (2021).

Analysis

We performed analysis to investigate if co-contraction minimizes effort in systems with
uncertainty, and to investigate the relationship between optimality of co-contraction and
time delay. Table 2 summarizes the experiments and the parameters used for each.

To show that co-contraction minimizes effort, it is sufficient to show one example where
co-contraction minimizes effort. Therefore, we did not aim to replicate any specific
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Table 2 Overview of the experiments. Parameters used in each of the experiments to investigate if co-contraction minimizes effort, and how this
optimality related to time delay.

Experiment Precision Difficulty Neural time delay Activation time constant
Effort landscape 5 deg 100 Nm 10 ms 10 ms

Varying precision and difficulty 2,3,4,5deg 75, 100, 125, 150 Nm 0 ms 10 ms

Neural time delay 5 deg 100 Nm 5, 10, 15, 20, 25 ms 10 ms

Activation time 5 deg 100 Nm 0 ms 10, 30, 50, 70, 90 ms

biological situation and instead investigate a representative hypothetical problem. Since
our problem was hypothetical, we have chosen different ranges of task precision, task
difficulty, neural time delay, and activation time constants that illustrated the trends that
we found.

Effort landscape over different co-contraction levels

To investigate the effect of co-contraction on effort, we first visualized the effort landscape
of feedforward control by solving optimizations with fixed levels of feedforward control.
We use a maximum RMS deviation of 5 deg, a maximum perturbation amplitude of
100 Nm, and a time delay of 10 ms. Then, we solved optimizations with the feedforward
control, u,, fixed between 0.02 and 0.22 with increments of 0.02 to investigate how the
effort objective, J(u(t)) changes with the feedforward control. We also solved an
optimization where the feedforward control is optimized, and compared this result to the
solutions with fixed feedforward control.

A comparison of different tasks with varying precision and difficulty
To investigate the relationship between task precision and task difficulty, we solved
optimizations for the controller with feedforward control for a range of tasks by varying
the maximum RMS deviation (task precision) between 2 and 5 deg, with increments of
1 deg, and by varying the maximum perturbation amplitude (task difficulty) between 75
and 150 Nm, with increments of 25 Nm. Here, the neural time delay was equal to 0 ms.
First, we discarded the tasks for which the combination of precision and difficulty

could not be solved, meaning that the simulations did not last the full 20 s or the RMS
deviation was larger than the maximum. Then, we selected the tasks for which the optimal
feedforward control was larger than 0.01, the minimum activation, and investigated if the
largest activation was close to 1. If this was the case, feedforward control is optimal not
because of effort minimization, but it is required to perform the task, because the MTU
strength is insufficient. Finally, for the tasks where the optimal feedforward control

was larger than 0.01 and the maximum activation was not close to 1, we also solved
optimizations for the controller without feedforward control. We compared these
solutions to those with feedforward control for the tasks where both simulations lasted the
full 20 s and where the RMS deviation was equal to or below the maximum. For those
simulations, we compared the objective value, so the required effort, the feedback gains,
and the co-contraction index (CCI) between the two simulations. We calculated the CCI as
follows (Falconer ¢ Winter, 1985):
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z( JEw(nde + [° uz(t)dt)

CCI = .
S wi(t) + up(t)dt

) (11)

where [t;, t,] is the time period where the activation in MTU 1 is lower than in MTU 2, and
(12, t3] denotes the time period where the stimulation in MTU 2 is lower than in MTU 1.

The effect of increased neural time delay

To investigate the relationship between time delay and co-contraction, we first investigated
the effect of increased neural time delay. We used the task with maximum RMS
deviation of 5 degrees, and a maximum perturbation amplitude of 100 Nm. We solved
optimizations for both controllers with neural time delays between 5 ms and 25 ms, with
increments of 5 ms. We investigated how the feedforward control developed with
increasing neural time delay. Then we compared the solutions for the controller with
and without feedforward control input using the objective, the CCI, and the controller
gains as described before. Again, we only compared solutions for which the simulations
lasted the full 20 s and the desired task precision was met. We also compared the
optimal trajectories of the pendulum angle, muscle activation, muscle length, and muscle
force for the controller with feedforward control to these optimal trajectories without
feedforward control to investigate how these variables changed between both solutions.

The effect of a longer activation time

To investigate the relationship between time delay and co-contraction, we also investigated
the effect of the muscle activation time using the same task as for the neural time delay.
We solved optimizations for both controllers with activation time constants ranging
between 0.01 and 0.09 with increments of 0.02, while setting the neural time delay to 0 ms.
Our analysis was very similar to the neural time delay; we investigated how the feedforward
control developed with increasing activation time constant. Then we again compared
the solutions for the controller with and without feedforward control using the objective,
CCI, and controller gains as described before, selecting only those solutions for which the
simulations lasted the full 20 s and the desired task precision was achieved. We also
compared the simulation outcomes between the two controllers, as well as to the
simulation outcomes of the controller with neural time delay.

RESULTS

Effort landscape over different co-contraction levels

We found that for the example task, the effort objective is not minimized without any
feedforward input, but when the feedforward input is equal to just below 0.18 (Fig. 2).
The effort landscape of the feedforward control seems quadratic, since the required effort
increased both when more or less feedforward control was used. These results show that
even when it is possible to have no co-contraction, it requires less effort to have
feedforward control and thus co-contract both muscles.
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Figure 2 Effort objective as a function of the feedforward input. The blue dots show the optimal
solutions found with prescribed feedforward input. The red star shows the optimal solution when
feedforward input was optimized. Full-size K&l DOT: 10.7717/peer;j.13085/fig-2

Table 3 Optimal feedforward controls for tasks with different precision and difficulty. Bold font
indicate the tasks for which co-contraction was optimal without requiring maximum activation. A dash
indicates that the desired task precision was not achieved, meaning that the constraint on the root mean
square (RMS) deviation was not met.

Required precision (deg) Maximum perturbation amplitude (Nm)

75 100 125 150
2 0.010 0.056 - -
3 0.010 0.010 0.084 -
4 0.010 0.010 0.046 0.210
5 0.010 0.010 0.017 0.133

A comparison of different tasks with varying precision and difficulty
We found that co-contraction was optimal for a subset of the tested tasks with a sufficiently
high precision, defined by the maximum RMS deviation, and difficulty, defined by the
maximum perturbation amplitude (Table 3). Though all tasks could be simulated for the
full simulation time of 20 s, it was not possible to meet the desired precision for all tasks.
If this was the case, no optimal feedforward control was reported as the optimization
was not considered successful. Furthermore, for the maximum perturbation amplitude of
150 Nm, we found that co-contraction was required because the maximum activation was
reached (a > 0.995). However, for the four cells with bold font in Table 3, we found
co-contraction was an optimal control strategy, with the maximum activation below 0.93.
We found that for two of the four highlighted tasks, it was possible to also use the
controller with only feedback control, which required more effort, while for the other two
tasks, the required precision was not achieved without feedforward control (Table 4).
For the tasks with a maximum perturbation amplitude of 125 Nm, and a required
precision of 4 or 5 degrees, we found that the objective was smaller for the optimal solution
with co-contraction than for the optimal solution without co-contraction, while for the
other two solutions, the actual RMS deviation was larger than the maximum, so the desired
task precision was not achieved. When comparing the controllers with and without
feedforward control, we find that the position and derivative gains of the optimal
controller are smaller with feedforward control than without, and that this difference
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Table 4 Comparison of the RMS deviation, objective, feedback gains, and co-contraction index
(CCI) of the optimal solutions with and without co-contraction for the highlighted tasks. The
objective (required effort) is given for all tasks that achieved the required precision. The position and
derivative gain, as well as the CCI, are only reported for the tasks which achieved the required precision
with and without feedforward control.

Maximum perturbation amplitude 100 125 125 125
Required precision (deg) 2.0 3.0 4.0 5.0
RMS deviation (deg) No feedforward control 2.7 3.6 4.0 5.0
With feedforward control 2.0 3.0 4.0 5.0
Objective No feedforward control - - 0.1005  0.0893
With feedforward control 0.0839  0.1244  0.1001 0.0892
Position gain No feedforward control - - 4.113 2.975
With feedforward control - - 3.864 2.920
Derivative gain No feedforward control - - 0.251 0.220
With feedforward control - - 0.232 0.219
CCI No feedforward control - - 0.77% 0.98%
With feedforward control - - 2.84% 2.87%
2 04
o
RS .
2 03F .
)
§ o2r .
o
2
o 9 . . .
0 5 10 15 20 25

Time Delay (ms)

Figure 3 Optimal feedforward control as a function of neural time delay.
Full-size K&l DOT: 10.7717/peerj.13085/fig-3

increases when the level of the optimal feedforward control increases. Furthermore, the
CCl is about four times higher with feedforward control than without, and it increases with
the level of the optimal feedforward control. However, the amount of co-contraction is still
small, since the CCI was 2.8% for the results with co-contraction.

The effect of increased neural time delay

We found that the optimal feedforward control increased with an increasing neural
time delay in the control (Fig. 3), and that the controller with feedforward control yielded
lower objectives, and thus lower effort, than the controller without feedforward control
(Table 5). The minimum feedforward control of 0.01 was optimal without neural time
delay. The optimal feedforward control then increased in a somewhat linear fashion
with the neural time delay, and co-contraction was optimal for all nonzero time delays.
With a time delay of 10 ms or less, it was also possible to meet the required task precision
without feedforward control (Table 5), and the objective was higher without feedforward
control than with feedforward control. The difference in the objective with and without
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Table 5 Comparison of the RMS, objective, feedback gains, and CCI of the optimal solutions with
and without co-contraction with different neural time delays. The objective (required effort) is given
for all tasks that achieved the required precision. The position and derivative gain, as well as the CCI, are
only reported for the tasks which achieved the required precision with and without feedforward control.

Time delay (ms) 0 5 10 15 20 25
RMS deviation (deg)  No feedforward control 5.0 5.0 5.0 6.3 8.0 10.4
With feedforward control 5.0 5.0 5.0 5.0 5.0 5.0
Objective No feedforward control 0.0499 0.0670 0.120 - - -
With feedforward control  0.0499 0.0641 0.0957 0.134 0.171 0.207
Position gain No feedforward control 2134 2432 2784 - - -
With feedforward control — 2.134 2.098 1.730 - - -
Derivative gain No feedforward control 0.187  0.178 0225 - - -
With feedforward control  0.187 0.160 0.145 - - -
CCI No feedforward control 1.36% 1.50% 1.19% - - -

With feedforward control  1.36%  9.88% 29.9% - - -

feedforward control increased for larger time delays, when optimal feedforward control
was larger as well. Similar to the comparison of tasks without neural time delay (Table 4),
we found that the optimal position and derivative gain were lower with feedforward
control than without feedforward control. Furthermore, the CCI was consistently higher
for the simulation with feedforward control, and increased to 29.9% for a time delay of
10 ms, while without feedforward control, the CCI remained close to 1%.

A comparison of the joint angles, muscle activation, contractile element length, and
muscle force during a simulation with and without co-contraction reveals small differences
that indicate a different strategy is used by the controllers with and without feedforward
control (Fig. 4). The pendulum angle in the simulation with feedforward control is
slightly closer to zero (upright) than for the simulation without feedforward control
(Fig. 4A, e.g. around 8 s). This strategy allows for larger deviations for large perturbations,
e.g. at 9.8 s. Furthermore, in the simulation with feedforward control, the activation peaks
are lower, while during periods with low activation, the activation is higher than in the
simulation without feedforward control (Fig. 4B). The contractile element length is
generally smaller for the simulation with feedforward control than for the simulation
without feedforward control (Fig. 4C). Consequently, peak muscle forces are also lower in
the simulation with feedforward control than in the simulation without feedforward
control, but the difference between the peaks is smaller for the muscle force than for the
activation. Furthermore, activation peaks, and therefore muscle force peaks are slightly
delayed in the simulation with feedforward control compared to the simulation without
feedforward control (Figs. 4B and 4D).

The effect of a longer activation time

We found that the optimal feedforward control increased with an increasing activation
time constant (Fig. 5), and that the controller with feedforward control led to lower
objectives, and thus lower effort, than the controller without feedforward control. Similar
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Figure 4 Comparison of optimization results with and without feedforward control, for a neural
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Full-size K&l DOT: 10.7717/peerj.13085/fig-4

N

=
-

.

<o
w

e
N

Optimal Open-loop Input
=
(NS}

(=)
lo

10 30 50 70 90
Activation Time Constant (ms)

Figure 5 Optimal feedforward control as a function of activation time constant.
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to the neural time delay (Fig. 3), the optimal feedforward control increased somewhat
linearly with the activation time constant. For the activation time constant of 0.03, it
was possible to meet the desired task precision also without co-contraction. This solution
had a higher objective (0.0934 vs. 0.0879) without feedforward control. The CCI was
nonzero for both solution, and lower without feedforward control than with (0.94% vs.
14.1%).
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Figure 6 Comparison of optimization results with and without feedforward control, for an
activation time constant of 30 ms. Pendulum angle (A), activation (B), contractile element length
(C), and muscle force (D) for the solution with feedforward control (blue) and without (red) are plotted
for 5 s of the 20 s simulations. A solid line is used for muscle 1 (M1) and a dashed line for muscle 2 (M2)
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Contrary to what was found for the neural time delay, we did not find a different
strategy between both controllers when increasing the activation time constant, and we
saw smaller differences in the pendulum angle, muscle activation, contractile element
length, and muscle force when comparing controllers with different activation time
constants than for the neural time delay (Fig. 6). The pendulum angle was very similar and
the peak deviation at 9.8 s comparable between both controllers (Fig. 6A). Both controllers
also yielded very similar contractile element lengths, though the controller with
feedforward control generally had slightly smaller extremes than the controller without
feedforward control (Fig. 6C). Similar to Fig. 4B, we observed smaller activation peaks
and larger activation during periods where activation is low for the controller with
feedforward control than for the controller without feedforward control (Fig. 6B), which
led to similar small differences in muscle force (Fig. 6D), which again were smaller than
observed in Fig. 4D.

DISCUSSION

We investigated the relationship between co-contraction and effort minimization, and
found that for certain tasks in systems with uncertainty, co-contraction minimizes effort.
This co-contraction is created by applying a non-zero feedforward control to an
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antagonistic MTU pair. To show this, we solved optimal control problems for different
tasks using controllers with and without feedforward control on a one degree of freedom
pendulum while minimizing effort. We found different reasons that yielded an optimal
feedforward control larger than the minimum muscle activation of 0.01. In some cases,
co-contraction was necessary because otherwise the MTUs where not strong enough to
successfully perform the task. Then, the optimization was not able to find any feedback
control gains to perform the task without co-contraction. However, in other cases, it was
possible to also perform the task without feedforward control, but this required more
effort. We also found that without feedforward control, the CCI was equal to around 1%
for all tasks, meaning that the level of co-contraction is negligible. With feedforward
control, it increased to 2.8% without time delay, to 14% with a larger activation constant,
and to 30% with neural time delay for the tasks that could also be controlled without
feedforward control. These results indicate that effort is minimized when an antagonistic
muscle pair co-contracts, and that this co-contraction is especially optimal in muscles
with time delay, either in the activation constant or through neural time delay. Therefore,
we conclude that having feedforward control, and thus co-contraction, can minimize effort
in environments with uncertainty, even when this co-contraction is not necessary.

We also investigated the relationship between time delay and co-contraction. To do
so, we varied the activation time constant, and introduced a neural time delay in the
control. For both, the amount of optimal feedforward control increased with an increase
in time delay or time constant. In many cases, nonzero feedforward control was necessary
to be able to solve the task. However, again, we found that certain tasks were solvable
with and without feedforward control and that the combination of feedforward and
tfeedback control, and thus antagonistic co-contraction, required less effort than only
feedback control. We also found that with neural time delay, a different strategy was used
with feedforward control than without, which changed the the optimal trajectory, while
this change in strategy was not observed when the activation time constant was increased.

Our results show that co-contraction, contrary to what is often thought (Falconer ¢
Winter, 1985; Winter, 2005), is not inefficient, and that it is not chosen out of necessity
(Hogan, 1984; Berret & Jean, 2020), but also because it minimizes effort of movement in
systems with uncertainty. Previous experimental work also showed already that
uncertainty is taken into account when making movement decisions (Kim ¢ Collins,
2015; Hiley ¢» Yeadon, 2013; Donelan et al., 2004), and our results confirm this in
simulation as well. De Luca & Mambrito (1987) previously showed that co-contraction was
observed in environments with uncertainty, and our work explains this observation by
showing that this co-contraction likely minimized muscular effort.

Our results have implications for predictive simulations of gait and other human
movements, which are currently not sufficiently accurate for many applications. Instead of
modeling dynamics deterministically, stochastic optimal control should be used to predict
movements taking into account uncertainty. Currently, predictive simulations require a
hand-crafted objective (Falisse et al., 2019) or a tracking term (Koelewijn & Van den
Bogert, 2016) to be sufficiently accurate. It should be investigated if simulation accuracy
might be improved by including uncertainty, without the aforementioned additional
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objectives or tracking term. For example, by taking into account uncertainty, a predictive
gait simulation with a lower-leg prosthesis model could predict the co-contraction that is
observed in experiments in the upper leg on the prosthesis side, which is currently not
possible (Koelewijn ¢» Van den Bogert, 2016). Then, predictive simulations could be
used to improve prosthesis design, to find a design that is stable enough to not require
co-contraction to minimize effort, because this co-contraction increases metabolic cost in
gait of persons with a transtibial amputation (Waters & Mulroy, 1999).

Our results also highlight the care that should be taken when selecting parameters of
the musculoskeletal system and the neural control algorithm. When we included neural
time delay, a different trajectory was optimal for the controller with feedforward control
than for the controller without feedforward control. This suggests that the choice of
controller architecture could affect the results. Furthermore, we observed large differences
in optimal feedforward control, and thus co-contraction level, when changing the
activation time constant in a realistic range, since 10 ms is the default in OpenSim, while
others use 35 ms (e.g. Lai et al., 2018). This suggests that optimization results are also
highly dependent on the choice of musculoskeletal parameters.

Co-contraction of muscles is used as an indicator of impaired control (Hortobdgyi ¢
DeVita, 2000). However, our work shows that co-contraction does not necessarily indicate
impaired function. Instead, co-contraction might be the most optimal control strategy
for e.g. the elderly population, who have decreased strength and for whom falls could have
dire consequences, such as fractures (Winter, 1995) or even death (Kannus et al., 1999).
We showed that with decreasing maximum isometric force, thus decreasing strength,
co-contraction becomes optimal, since it is not possible to perform the task otherwise.
The task difficulty was represented by the maximum perturbation amplitude and by the
task precision, because difficult tasks require one to remain close to the desired position, so
to be more precise. By varying the task precision and difficulty, we also showed that the
optimal and expected level of co-contraction increases with the task difficulty and
precision. Elderly people might display more co-contraction due to the decrease in
strength. Furthermore, they are more precise to avoid falls, and thus might aim to stay
closer to the intended trajectory than younger people, which might further increase the
amount of co-contraction.

We chose to use a simple model of uncertainty, by adding a perturbing moment to the
base of the pendulum. However, in reality, uncertainty is more complex, and can be
present internally or externally. Internal noise means uncertainty in the neural control,
both in sensing (Bays ¢ Wolpert, 2007) and stimulation, while external noise could be
due to many sources, such as wind or uneven ground. We repeated the problem with
internal noise added to the joint angle, to model sensory noise, or to the input, to model
noise in stimulation. The solution was trivial with sensory noise, because the noise was
removed from the system when the feedback gains were zero, such that no control at all is
required. When input noise was added, it was again optimal to have non-zero feedforward
control.

We also ensured that different muscle model parameters did not affect the results.
We identified the maximum isometric force and the tendon slack length as main
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parameters that could influence the result. The maximum isometric force was set
somewhat arbitrarily in combination with the task difficulty and precision. For the

same difficulty and precision, a higher maximum isometric force would yield that overall
muscle activation could be reduced, until eventually no co-contraction was required,
while a lower maximum isometric force would increase the amount of co-contraction
required, until eventually the task could not be solved anymore. Furthermore, we tested the
effect of the tendon slack length. Currently, the tendon is slack at a smaller than optimal
fiber length. Therefore, we tested the scenario where the tendon was exactly slack at
optimal fiber length and the scenario where the tendon was already active at optimal
fiber length by repeating one task for both scenarios. We found that the result was very
similar for all three scenarios, meaning that the optimality of co-contraction was not due to
the choice of tendon slack length.

We assumed symmetry in control, and therefore only optimized for one feedforward
control, which was applied to both muscles. Alternatively, we could have optimized
parameters for both muscles separately. However, the problem is entirely symmetric
otherwise, which means that the control should also be symmetric, and any asymmetry
in the control would be caused by the specific noise sample used in the simulation.
Furthermore, during preliminary simulations we found that the feedforward control, as
well as the position and derivative feedback gain converged to the same value for both
muscles when optimized separately, while this approach required a longer simulation time.
Therefore, we chose to simplify and speed up our pipeline and implement a single
controller for both muscles.

System uncertainty was modelled with uniform noise to bound the maximum possible
perturbation. If the perturbation moment was drawn from a normal distribution, it
would be possible that the noise at a certain time instance is very large. Then, the optimal
solution could have included co-contraction just to overcome this perturbation while still
meeting the task constraint, while the muscles would not be strong enough otherwise,
which would have affected our conclusion. Uniform noise is bounded and therefore its
maximum is known.

CONCLUSION

In conclusion, we showed that co-contraction minimizes effort for certain tasks in
uncertain environment, even when co-contraction is not necessary. This means that
observations of co-contraction in human movements do not necessarily disqualify the
minimal energy or effort theory. Furthermore, the optimal amount of co-contraction
increases with the task difficulty and precision, as well as with the activation time constant
and the neural time delay. We also found that for controllers with neural time delay,
the optimal trajectory was dependent on the controller used, which means that care should
be taken when designing controller architecture. Co-contraction is often thought of as
inefficient and therefore avoided as much as possible. However, this work shows that
co-contraction is not inefficient, but the combination of proactive and reactive control
requires less effort than only reactive control. Therefore, training and rehabilitation should
focus on removing the cause of co-contraction to increase movement efficiency, instead of
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removing co-contraction itself. Furthermore, optimal control problems of human gait
should account for the nonlinearity of the human body and the system uncertainty to be
able to create accurate movement simulations.
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