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A B S T R A C T

While the swift development and production of a COVID-19 vaccine has been a remarkable
success, it is equally crucial to ensure that the vaccine is allocated and distributed in a timely
and efficient manner. Prior research on pandemic supply chain has not fully incorporated the
underlying factors and constraints in designing a vaccine allocation model. This study proposes
an innovative vaccine allocation model to contain the spread of infectious diseases incorporating
key contributing factors to the risk of uninoculated people including susceptibility rate and
exposure risk. Analyses of the data collected from the state of Victoria in Australia show
that a vaccine allocation model can deliver a superior performance in minimizing the risk of
unvaccinated people when a multi-period approach is employed and augmenting operational
mechanisms including transshipment between medical centers, capacity sharing, and mobile
units being integrated into the vaccine allocation model.

. Introduction

An epidemic is defined as a widespread occurrence of an infectious disease within a population or a country, while a pandemic
s an epidemic that spreads beyond a population and a country’s borders. In a pandemic the countries’ health systems become
verloaded. Limited production, transport, and storage capacity of vaccines increase the complexity of the vaccine supply chain
hich may result in ineffective delivery of vaccines to the right place at the right time (Fineberg, 2014). As of August 2021,
orldwide 200 million COVID-19 cases and 4.3 million deaths have been reported (WHO, 2021a). In addition to such as a dramatic

oss of human lives, the pandemic has caused much economic devastation and social disruption as well (Ali and Alharbi, 2020; Lima
t al., 2020; Ozili and Arun, 2020; Carlsson-Szlezak et al., 2020). According to the International Monetary Fund (IMF, 2020), the
OVID-19 pandemic is the worst economic downturn since the Great Depression.

The World Health Organization (WHO, 2021c) defines vaccination as a simple, safe, and effective way to protect people against
armful disease before they come into contact with them. However, the world is now suffering from a shortfall of vaccine production
apacity and effective strategies for allocating and distributing vaccines. At the time of writing this article, less than 10 percent of
he world’s population have been fully vaccinated against COVID-19 (WHO, 2021a). With limited capacity of vaccine production
here will be a long way to go to inoculate the remaining 7.1 billion people. The above discussion emphasizes the vital role that
upply chains will play to mitigate the devastating effects of such pandemics.

Studies have been conducted to design an effective and efficient vaccine allocation and distribution network (Buccieri and Gaetz,
013; Abbasi et al., 2020; Chen et al., 2020; Goldstein et al., 2012; Mamani et al., 2013; Araz et al., 2012; Ramirez-Nafarrate et al.,
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2015; Emu et al., 2021; Enayati and Özaltın, 2020). In most studies, the underlying factors in allocation and distribution network are
considered individually. For example, a vital decision in vaccine allocation is prioritization of who is to be inoculated. Past studies
use aspects of susceptibility to infectious diseases such as age (Chen et al., 2020; Foy et al., 2021) and medical history (Rao and
Brandeau, 2021; Govindan et al., 2020) to prioritize individuals to receive a vaccine. As well as susceptibility, it is also important to
note that geographic characteristics play an important role in any vaccine allocation decision (Yarmand et al., 2014). For example,
areas with high population density have high levels of exposure to infectious diseases. Hence, due to the important role of both
susceptibility rate and exposure risk, they should be simultaneously integrated in any vaccine allocation modeling.

A significant amount of studies on vaccine allocation is based on a single-period model (Abbasi et al., 2020; Schulte and Pibernik,
016; Rao and Brandeau, 2021; Ekici et al., 2014). In a single-period allocation model, at the end of each period the excess vaccines
ould be returned to the distribution centers (DCs) if there is no unmet demand in medical centers (MCs) or transshipment capacity
etween MCs is already full. Furthermore, in a single-period allocation model the optimization decisions are based on each individual
eriod ignoring the demand and resource capacities in future periods. This would result in sub-optimal solutions. In multi-period
llocation model there is an opportunity to use the oversupplied vaccine to meet the demand of other MCs and achieve a more
ffective resource utilization rate than simply return them to the DCs. As highlighted recently by Choi (2021), examining risk in
multiple-period setting is more realistic and at the same time help researchers deal better with the dynamics of the COVID-19

andemic. This would help the model to further reduce any residual risk of the unvaccinated population and significantly decrease
he actual administrative horizon.

Another area which needs further research is the replenishment policy used in distribution centers as it can improve the vaccine
dministration process (Azadi et al., 2020). Abbasi et al. (2020) used a base-stock level policy in which a fixed level of vaccine
upply became available in each period. Based on this policy, the returned vaccine units to DC are disregarded in each period,
hereas we propose an allocation model in which the returned vaccines can be considered in future allocation decisions. In the

ingle-period vaccine allocation, particularly when supply would be greater than total demand, it is quite possible to have significant
mount of unmet demand in a number of medical centers while other MCs have excess vaccine supplies. Such a situation becomes
ore prevalent at the later stages of vaccine administration in which the likelihood of having MCs with zero or high demand
ould increase. This scenario leads to inefficiencies in the vaccine allocation model. To deal with such inefficiencies, cooperation
nd capacity sharing mechanism should be considered in a vaccine allocation model. Through such mechanisms under-utilized
Cs would be able to offer their capacities to the MCs experiencing high demand. The mechanism provides the opportunity

f redistributing the demand among eligible adjacent medical centers, which ultimately improves the allocation model’ overall
fficiency.

The spread of infectious deceases is dynamic and nonlinear in nature, because the infection rate is simply a product of the
umber of infected and uninfected people in a region. Consequently, the demand for vaccines in each period changes rapidly and
n such circumstances, health authorities aim to employ all possible means and strategies to enhance the efficiency of vaccination
perations. Research shows that mobile vaccination facilities can effectively cover larger regions compared to stationary vaccination
ites (Halper and Raghavan, 2011). The role of mobile vaccination units become more prominent in remote regions, dense urban
reas, and regions with highly dispersed populations (Halper and Raghavan, 2011; Muckstadt et al., 2021). While the majority
f research on vaccine distribution uses stationary vaccine distribution units, we argue that mobile units should be included in a
accine allocation model to diminish bottlenecks caused by the capacity constraints.

In this paper, the lack of a holistic approach to the vaccine supply chain motivates us to propose a more comprehensive vaccine
llocation model incorporating multi-period allocation, transshipment between MCs, capacity sharing and mobile units. We develop
mathematical model that minimizes the total risk of unvaccinated population taking into account both susceptibility rate and

xposure risk to categorize the priority groups. Various parameters including the availability of vaccine packs and pack sizes,
apacities of MCs, mobile units, and transshipment network are used for improving the allocation decisions.

The remainder of the paper is organized as follows. Section 2 provides a comprehensive review of relevant analyses on
accine allocation and distribution. Section 3 discusses how the proposed vaccine allocation systems work. Section 4 presents the
athematical model along with the solution approach which integrates a multi-period model with capacity sharing, cooperation

nd mobile units. The state of Victoria in Australia serves as the case study for this research in Section 5. Followed by the discussion
f the findings in Section 6, Section 7 concludes the paper and addresses future research opportunities.

. Literature review

While developing new vaccines in recent decades has been a significant achievement, vaccine supply chain-related issues such
s shipping, storing and distributing vaccines effectively continue to be major challenges for health authorities (Yang et al., 2021;
mu et al., 2021). Pandemics are different from a typical disruption in supply chains in terms of the scope (global vs local) and in
erms of dramatic shifts in demand and supply. Pandemic vaccine supply chains and typical vaccine supply chains share a number
f features; however, the main difference between the two is the fact that in a pandemic vaccine supply chain, governments procure
accines from manufacturers to ensure people have quick and equitable access to vaccines. As Duijzer et al. (2018) suggested, a
accine supply chain has four main components and these are product, production, allocation, and distribution. These components
old true in a pandemic vaccine supply chain as well. In the product stage the important questions to ask are: firstly, which vaccine
hould be selected?; and secondly, what is the combination of virus strains in a vaccine? (Wu et al., 2005; Robbins et al., 2014).
n production stage the quantity and the timing of the vaccine production are determined and this stage is also characterized by
2

accine pricing strategies (Kazaz et al., 2016; Cho and Tang, 2013; Eskandarzadeh et al., 2016) and supplier selection decisions (Niu
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et al., 2020; Federgruen and Yang, 2008). The production stage is a long process and yield uncertainties are inevitable which is the
main reason for insufficient vaccine supplies in the market.

The first two components of the vaccine supply chain proposed by Duijzer et al. (2018) are mainly the focus of health and
anufacturing domains, respectively. Our paper sits at the intersection of allocation and distribution components at the operational

evel given the fact that the proposed model incorporates allocation component. This is characterized by allocating vaccines to
edical centers and distribution component through capacity sharing and transshipment by mobile units. Due to the fact that many

ountries have already begun inoculating their citizens using approved vaccines, the need to optimally allocate and distribute the
roduced vaccines becomes an urgent necessity. Having said that, and due to the importance of these two components of the vaccines
upply chain, they are discussed separately in the following sections.

ABS-AJG 2021 ranking was used to extract high quality and high relevant journal articles (Chartered Association of Business
chools, 2021). ABS-AJG provides researchers with access to high quality research. All journals with the rankings 3, 4, and 4* on the
opics ‘Operations and Technology Management’ and ‘Operations Research and Management Science’ were identified. In addition
o the above list, the transportation research journals (Parts A, B, D and E) were included. This guarantees the focus is on the
op quality journals that cover logistics and transportation operations. In the next step, keywords, namely ‘vaccine’, ‘vaccination’,
pandemic’, and ’COVID-19’ were deployed to search relevant information in the title and article keywords for studies published in
he last 20 years (2002–2021) in Scopus database. The final chosen articles appear in Tables 1 and 2.

.1. Vaccine allocation

An optimal allocation strategy for a scarce vaccine is an effective way to contain a pandemic (Longini et al., 2004). The main
uestions in the allocation stage are who should be vaccinated and how the allocation should be done. These are difficult questions
o answer due to the inadequate and uncertain supply of vaccines especially in the case of an unexpected outbreak and the existence
f various competing priority groups. Since the supply of the vaccine is limited, it is critical for governments to prioritize and allocate
vaccine based on the vulnerability of certain populations groups (Tavana et al., 2021). Brandeau et al. (2003) posit that a range

f factors such as the infection prevalence and incidence, population size, and characteristics of prevention programs imposed by
overnments affect the optimal resource allocation in a pandemic. The allocation stage is quite unique in the vaccine supply chain.
nlike a typical supply chain, in an allocation stage of vaccine supply chain, end consumers do not pay for the product in most
ases so they wield little or no power in allocation-related decisions (Duijzer et al., 2018).

Allocation decisions are usually made at higher levels and while such decisions at global levels are based on contracts between
accine providers and governments or agreement between countries, allocation decisions within the countries’ borders are based
n stage and severity of an epidemic (Emu et al., 2021). What makes the allocation stage in the pandemic vaccine supply chain
ore complicated is the conflicting goals of the ethical issues such as equity and the effectiveness of vaccine allocations (Enayati

nd Özaltın, 2020). This seems to be inevitable considering two widely accepted policies to allocate vaccine in a pandemic supply
hain: pro-rata and prioritizing policies. In practice, the pro-rata policy is politically favorable because it is simple and minimizes any
ontroversy (Araz et al., 2012). For example, the current allocation policy used by the Centers for Disease Control and Prevention,
he US vaccine-dispensing body, during a flu epidemic is to use a pro-rata policy in which the vaccines are allocated based on
he size of a region’s population. In effect, vaccines might be allocated to regions with no demand while regions in need do not
eceive a vaccine (Larson and Teytelman, 2012). Despite the importance of equity in the pandemic vaccine supply chain (Delamonica
t al., 2005; Jean-Jacques and Bauchner, 2021), only very few studies which consider equity in a form of mathematical modeling.
his might be due to the challenges in dealing with equity such as the lack of a consensus on how equity is defined (Mitchell
t al., 2009), and how to measure it (Stone, 2002). In the second policy, state-level and/or local government prioritizes the vaccine
llocation among population subgroups. Despite the benefits of the pro-rata policy, research shows that prioritizing subgroups can
educe the spread of the pandemic more effectively (Araz et al., 2012; Matrajt et al., 2013). Nowadays, prioritization becomes
ore important in particular at the early stages of a pandemic outbreak as vaccine supply is quite limited during this period. For
vaccine prioritization system, various criteria are used to define subgroups such as age, degree of susceptibility, occupation, and

eographical location. For example, Lee et al. (2012) developed a mathematical model to evaluate age-specific vaccination strategies
or the 2009 H1N1 pandemic in Mexico. The key parameters in their model were mortality and contact rates, age distribution of the
opulation, age-specific vaccine efficacy, and hospitalization rates. According to their findings, the optimal strategy is to allocate
accines to young adults (20–39 yrs.) followed by school-age children. In a similar study, Medlock and Galvani (2009) found that
ptimal vaccine allocation is based on five outcome measures of deaths, economic costs, years of life lost, infections, and contingent
aluation. According to their results, the best strategy for vaccine allocation is to prioritize schoolchildren and adults (30 to 39
rs.). Tanner et al. (2008) used household parameters such as size and age to define subgroups. They found that these parameters
layed an important role in developing optimal vaccination allocation strategies.

Goldstein et al. (2012) use mixed factors of age and the degree of vulnerability to define priority groups. They investigate
he optimal vaccine allocation in two groups. The first group includes adults with high risk of mortality while the second group
ncludes school-age children due to their role in transmitting virus to their parent and consequently to the wider community. Their
nalysis shows that in case of a pandemic and in order to minimize the total number of mortalities, school-age children should be
iven the highest priority. In another study, Matrajt et al. (2010) use a mathematical model to allocate vaccine to two groups: one
roup with high transmission levels and the other group with high risk in two geographical regions of developed and developing
3

ountries. The results indicate that the optimal allocation strategy changes depending upon the status of a pandemic. They argue
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Prioritizing homeless individuals meets both utility
and equity principals. Such prioritization can
reduce the chance of infection to members of
society.

Two allocation policies, namely static and dynamic
were developed to minimize the number of
infections or deaths. Static policies could achieve
less infected cases (when younger groups are given
priority) and deaths (when older groups are given
priority). In dynamic policies, the priority should
be given to older groups and then to younger ones.

Positive association between school clinics
programs and two factors of a. children vaccine
coverage and b. increased proportion of
administered doses. Positive association between
the coverage for high-risk adults and the
shipments of vaccine to ‘‘general access’’ locations.

cal The analysis shows that in case of a pandemic and
to minimize the total number of mortalities the
school-age children should be given the highest
priority.

d The findings indicate that a proportionally fair
allocation of discretionary cache would maximize
the coverage of priority population in the
countries hence, maximizing geographic equity.

y
The authors suggest contractual mechanism to
reduce the inefficiencies in vaccine allocations

(continued on next page)
Table 1
Literature review on the allocation stage of the vaccine supply chain.

Authors Objectives Research
method

Priority
groups

Variables

Buccieri and
Gaetz (2013)

Using the utility principle and
the equity principle to allocate
the vaccine to certain people

Surveys and interviews Homeless and
Underhoused
Individuals

Epidemiology of the spread of diseas
demographic factors, fear of infection
lack of concern, access to
community-based clinics, access to a
regular doctor, promotional campaign

Chen et al.
(2020)

To find the optimal allocation
of COVID-19 vaccines to
multiple priority groups with
limited resources

Use of SAPHIRE
simulation model

Five priority groups Number of susceptible and exposed
individuals in each group, population
size, transmission rate

Davila-Payan
et al. (2014)

To investigate the factors
which affect the pandemic
vaccination coverage

Regression analysis High-risk adults and
children

State campaign information and state
characteristics, preparedness funding,
demographics, preventive behavior,
surveillance data, and providers

Goldstein
et al. (2012)

To prioritize allocation of
vaccine during a declining
epidemic

Optimization model Age and degree of
vulnerability

Mortality risk, vaccine efficacy, medi
conditions,

Huang et al.
(2017)

To allocate different types of
vaccine while maximizing
geographic equity across 189
Texas counties in the USA

Optimization model Five priority groups
(age, pregnant
women, infant
caregivers and
adults at high risk)

Information about priority groups an
geographical regions

Mamani
et al. (2013)

Inefficiency in the vaccine
allocation due to
interdependencies between
geographical regions

Mathematical model none Quantity of order and distribution in
one country, the number of secondar
infections in each country
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me
Considering the latest status of regional pandemic
waves can significantly reduce the number of
infections in the whole country

The proposed model is able to re-allocate
resources remaining from the previous allocations
which means better resource utilization.

es The reduction of vaccines doses and the attack
rate. Also, since stage II is based on the outcome
of stage I vaccination it is possible to more
efficiently redistribute vaccine doses after stage I.

The validation stage using data shows the
effectiveness of the proposed decision support
systems.

s
ed,

ld.

The attack rate wanes when both population and
vaccine inventory information are used. This leads
to a reduction in the amount of inventory left
over.

Among various variables, the start date of
vaccination has the highest impact. The
administration rate and the effectiveness of
vaccine did not have impact same as the start time
of vaccination. Also, the case hospitalization, case
fatality ratios, and clinical attack rate had the
highest influence

lout Prioritizing older individual would lead to the
highest reduction in deaths regardless of the
variables in the model such as vaccine efficacy,
target coverage etc.

Prioritizing young individuals to minimize new
infections and old individual to minimize death,
life years lost or QALYs

as
The proposed model allocates vaccines efficiently
and in the meantime prevents geographical zones
experiencing resource starvation.
Table 1 (continued).
Authors Objectives Research

method
Priority
groups

Variables

Teytelman
and Larson
(2013)

To allocate limited vaccine to
the US states to contain an
influenza outbreak

Heuristics none Consider pandemic status in
geographical regions based on real-ti
data in order to allocate vaccine

Uribe-
Sánchez
et al. (2011)

To help strategies cope with
influenza pandemic in four
regions in Florida, USA

Simulation-based
optimization model

none Morbidity, social distancing, and
mortality

Yarmand
et al. (2014)

To contain the epidemic in
multiple locations

Two-stage stochastic
linear program (2-SLP)

Geographical
regions

Population of region, attack rate, dos
of vaccine

Govindan
et al. (2020)

To develop a decision support
system to classify community
members and mitigate the
epidemic outbreaks

Fuzzy inference system
(FIS)

Four groups based
on age, pre-existing
diseases, risk level
of their immune
system

Age, pre-existing diseases, fever,
tiredness, and dry cough

Li et al.
(2018)

To compare vaccine allocation
strategies based two sets of
information

Agent-based simulation none Individuals with certain states such a
being susceptible, exposed, hospitaliz
etc. Three levels of populations:
community, peer groups and househo

Biggerstaff
et al. (2015)

To assess the impact of
different vaccine plan in
influenza pandemic

Simulation-based
scenarios

Priority is given to
the individuals who
received the first
dose

Vaccination coverage, clinical attack
rates, case hospitalization ratios, case
fatality ratios, , various starts of
vaccination programs, vaccine
effectiveness, and dose administration
rate

Foy et al.
(2021)

To compare vaccine allocation
strategies based on age
priority groups and
non-pharmaceutical
interventions

Mathematical
Simulation

Eight priority
groups 0–10, 10–20,
[ . . . ] 60–70, 70
years

Vaccine efficacy, target coverage, rol
speed, immunity types

Rao and
Brandeau
(2021)

To control infectious disease,
and minimize deaths, new
infections, life years lost or
QALYs

SIR (Susceptible,
Infectious, or
Recovered) model

Two priority groups
⟨65 with low
morbidity and⟩ = 65
with high morbidity

Infection duration, infection severity,
infected fatality ratio, death rate,
expected life years lost

Roy et al.
(2021)

To disseminate vaccines
among zones

linear optimization
model

Geographical zones Infection ratio, population density,
susceptible count and infection ratio
well as transportation costs
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The proposed heuristics show optimal routes for
mobile facilities especially when demand changes
over time.

While the proposed model generates output
comparable to other similar approaches it is also
able to explore a range of alternatives in case the
resources are not sufficient to meet the
performance objectives.

In case vaccines are unavailable at late stage of
pandemic it is recommended to prioritize those
areas that are expected to have the latest waves of
transmission.

Challenges and the benefits of RealOpt tools are
discussed.

The proposed models were validated using real
data.

The optimal schedule using mobile facility could
significantly outperforms random scheduling.

The efficiency of the proposed model was shown
using real data.

The group-specific transmission dynamics such as
geographic location and age play an important
role in the optimal allocation of influenza vaccine.

Vaccines must be administered well before the
pandemic reaches its peak. In allocating vaccine,
factors such as stage of pandemic in geographical
regions should be taken into account.

(continued on next page)
Table 2
Literature review on the distribution stage of vaccine supply chain.

Authors Objectives Research
method

Variables Stationary
or Mobile DC

Halper and
Raghavan
(2011)

To maximize the service
provided by mobile facilities

Routing problem Demand service by each route,
cumulative rate of demand

Mobile

Ramirez-
Nafarrate
et al. (2015)

To minimize the waiting time
and travel distance to optimize
the vaccine distribution

Genetic algorithm Arrival rate to the point-of-dispensing
sites (PODs), number of servers and
census track assigned to POD

Stationary

Araz et al.
(2012)

Geographic prioritization of
distributing pandemic
influenza vaccines

Mathematical model Mortality rate, social contact, infectious
and incubation periods, transmission
probability and location

unknown

Lee et al.
(2013)

To identify the vaccine
optimal location for vaccine
distribution centers using
RealOpt tool

SEPAIR six-stage model Use of six stage of SEPAIR model:
susceptible; exposed; infectious;
asymptomatic; symptomatic; recovered

Stationary

Aaby et al.
(2006)

To optimize the allocation of
vaccine distribution centers

Simulation models,
capacity-planning and
queuing models

Arrival rate, time spent for vaccination,
MC capacity, served residents, staff
number

Stationary

Rachaniotis
et al. (2012)

To minimize the total; number
of infections

Scheduling problem Number of susceptible and infected
individuals, processing time, size of
subpopulation

Mobile

Emu et al.
(2021)

To select optimal distribution
centers considering two
factors of priority and distance

Optimization model
(PD-VDM)

Total population to be vaccinated,
number of DCs, DC capacities, priority
levels

Stationary

Enayati and
Özaltın
(2020)

To optimally distribute the
vaccine in heterogeneous
population

Non-linear optimization
problem

Contact rate, group size, infectiousness
of infected individuals, infectiousness of
exposed individuals, recovery rate,
vaccine coverage

Stationary

Larson and
Teytelman
(2012)

To analyze the effect of timing
on the vaccine distribution

Mathematical model Susceptibility, infectivity, and activity
levels

Stationary
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It is shown how the proposed model is considered
in an anthrax emergency.

The results indicate that the optimal allocation
strategy changes depend on the status of the
pandemic. They argue that children as a high
transmission group should be given the highest
priority during the early stages of the pandemic.
This would help to break the transmission cycle
early on. However, the priority group will shift to
the high transmission group once too many people
have already been infected.

Both capital and operating costs were reduced by
eliminating redundancies in locations’ personnel,
equipment, and routes.

The proposed approach outperforms the existing
methods with higher levels of flexibility

Test problems served to assess the performance of
the proposed model.

The impact of transportation cost on social
responsibility of staff and total cost of the model.
Table 2 (continued).
Authors Objectives Research

method
Variables Stationary

or Mobile DC

Dessouky
et al. (2013)

To optimize the facility
location and vehicle routing
decisions in large-scale
disaster relief

Mathematical modeling Population size, distance, number of
facilities and vehicle, vehicle capacity

Stationary

Matrajt et al.
(2013)

To optimize vaccine
distribution in a group of
cities

Mathematical model Illness attack rate, recovery rate, fraction
of symptomatic, contact rates, vaccine
efficacies, probability of transmission

unknown

Brown et al.
(2014)

To explore redesigning the
vaccine supply chain in Benin
through adding freezer and
refrigerators to the chain

HERMES simulation
model

Labour, storage, transportation, and
building costs

Stationary

Ceselli et al.
(2014)

To optimize the distribution of
vaccine

Mathematical problem:
Generalized Location
and Distribution
Problem

Types and number of vehicles, distance
between nodes, capacity and number of
distribution center

Mixed

Gamchi et al.
(2021)

To minimize the social cost
and the cost of vehicles used
in controlling the spread of
infectious decease

vehicle routing problem Number of susceptible, infected and
recovered individuals, transmission fate,
distance, vehicle capacity, vaccine doses

Stationary

Goodarzian
et al. (2021)

To design a
sustainable-resilience health
care network during the
COVID-19 pandemic

Mathematical problem:
MILP

Quantity of transported medicines,
inventory level

Unknown
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that children constituting a high transmission group should be given the highest priority at the early stage of a pandemic. This
would help to break the likelihood of transmission at the initial stages of a pandemic. However, the priority group will shift to
the high transmission group once too many people have already been affected. Buccieri and Gaetz (2013) combined the utility and
equity principles in allocating vaccines. Utility principle states that resources should be utilized in order to provide the maximum
health benefits to society; hence, emergency and health care workers should be given high priority because of their crucial role in
ensuring that society functions as smoothly as possible. Based on age and pre-existing disease, Govindan et al. (2020) consider four
priority groups with different risk levels of immune systems. A decision support system was proposed to manage the vaccine demand
and reduce the number of infected people. Persad et al. (2020) argue that three groups of individuals should be given priority in
vaccine allocations: people in high-risk occupations; health care workers; and people with high-risk conditions. They argue that the
vaccine allocation needs to recognize ethical principles such as preventing harm and inoculating disadvantaged people. Deo et al.
(2020) consider equity and fairness in allocating the COVID-19 vaccine. They propose a multi-parameters framework for vaccine
distribution to prioritize vaccine allocation based on age, co-morbidities, profession, and income. McMorrow et al. (2019) use a range
of risk factors to allocate influenza vaccine in low- and middle-income countries. The risk factors include morbidity and mortality
rates, and prevalence of risk conditions for each country. According to their results, the highest rate of averted hospitalization per
100,000 belong to inoculated and the highest rate of averted deaths concerned adults with HIV, pregnant women, and individual
with tuberculosis. The highest rate of averted death belonged to individuals who were 65 years of age or older.

Mamani et al. (2013) highlight the inefficiencies in the vaccine allocation and these are due to the interdependent risk of infection
cross borders. They argue that the vaccine decisions such as the quantity of order and distribution in one country influence the size
f the outbreak in other countries. To reduce such inefficiencies, they suggest contractual mechanisms and their results confirm that
he contract prevents millions of influenza cases. They also show that a lack of coordination would lead to excess vaccines in some
egions but shortages in others. Using measures of mortality, morbidity, and social distancing, Uribe-Sánchez et al. (2011) develop
simulation-based optimization model to generate mitigation strategies for the influenza pandemic in four regions in Florida,
SA. The proposed model is able to re-allocate resources remaining from the previous allocations which results in greater resource
tilization. Teytelman and Larson (2013) developed several heuristics for allocating limited vaccine to states in the US to contain an
nfluenza outbreak. Rather than relying on the traditional deployment of a vaccine based on the size of the resident population, they
onsidered pandemic status in each region based on real-time data in order to allocate vaccine. Their findings show that considering
he latest status of regional pandemic waves in emergency planning can significantly reduce the number of infections throughout
he whole country. Based on a two-stage vaccination policy Yarmand et al. (2014) developed a two-stage stochastic linear program
2-SLP) for an allocation vaccine problem with an ultimate aim of containing the epidemic in multiple locations. The policy resulted
n the reduction of vaccines doses and attack rate. Also, since stage II is based on the outcome of stage I vaccination, it is possible
o more efficiently redistribute vaccine doses after stage I. Huang et al. (2017) developed a model to optimize the allocation of
ifferent types of vaccine to five priority groups (i.e., 0–3 year-old infants, people aged between 4–24, pregnant women, infant
aregivers and adults at high risk) while maximizing geographic equity. This is referred to as the provision of the same proportions
f each vaccine type across 189 counties in Texas. The findings indicate that a proportionally fair allocation of discretionary cache
ould maximize two things: the coverage of priority populations in the countries and geographic equity. Davila-Payan et al. (2014)

nvestigate the factors which affect the pandemic vaccination coverage within two groups of high-risk adults and children. Using a
ultivariate linear regression, they found that the venue of vaccinations and providers have a positive association with the coverage

ate in both groups.
With the aim to allocate the COVID-19 vaccine to different priority groups, Chen et al. (2020) used a SAPHIRE model with the

pidemic data from New York City. They developed two allocation policies, namely static and dynamic and these minimize the
umber of infections or number of deaths. According to their findings, the static polices could achieve less infected cases (when
ounger groups are given priority) and death (when older groups are given priority). They recommend that in dynamic policies
uring the early days of a pandemic, the priority should be given to older groups and then to younger ones. Table 1 summarizes
he literature on various allocation models for the vaccine supply chain.

.2. Vaccine distribution

The distribution decisions determine how the vaccine should be delivered to the patient (end consumer) and revolve around the
esign of the supply chain and logistical decisions at the operational level. For example, this refers to the locations and capacities
f medical centers, routing and scheduling for mobile facilities, staffing, and temperature-control logistics. However, a study by De
oeck et al. (2020) shows that research on vaccine distribution has been mainly done on strategic decisions. A vaccine supply
hain is a multi-layered supply chain with many decision nodes and firms which makes the distribution in the vaccine supply
hain more complicated (Duijzer et al., 2018). Reviewing the literature shows that reducing decision levels can curtail the overall
osts and increase the availability of vaccines (Brown et al., 2014). For example, Assi et al. (2013) employed HERMES software
Highly Extensible Resource for Modeling Supply Chains) to model Niger’s vaccine supply chain to compare the existing four-tier
central, regional, district, and integrated health center levels) with a modified three-tier structure (removing the regional level).
hey showed that by removing the regional level vaccine availability increased quite significantly and reduced supply chain logistics
osts. In another study, Goodarzian et al. (2021) proposed a COVID-19 MILP model for a sustainable and resilient health care
etwork that could, under conditions of uncertainty, incorporate major components of a supply chain. Their emphasize the impact
f transportation costs on social responsibility of staff and total cost of the model. Masoumi et al. (2012) developed a supply chain
8

etwork model for a perishable product which yielded equilibrium product supply chain flows and equilibrium product demands. Saif
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and Elhedhli (2016) devised a cold supply chain model for vaccine to minimize the total cost of the cold supply chain and global
warming impact which included refrigerant gas leakage and CO2 emissions. They discovered that the global warming effect could be
significantly reduced with a small increase – and in some cases virtually no increase – in cost. Biggerstaff et al. (2015) put together
a model to investigate the impact of various scenarios on the number of hospitalizations and deaths in an influenza pandemic. These
scenarios include vaccination coverage, different vaccination programs, number of vaccine doses administered per week, and levels
of vaccine effectiveness. Their results show that the start of vaccination program (before a pandemic) has the highest impact on both
the number hospitalization and deaths. In a similar study, Enayati and Özaltın (2020) proposed a non-linear optimization problem
and how an influenza vaccine should be distributed. They showed that the group-specific transmission dynamics such as geographic
location and age play an important role in the optimal distribution of influenza vaccine units.

Using a mixed-method of interviews and survey method, Privett and Gonsalvez (2014) show that the lack of coordination
mong different actors, layers, and functions of pandemic vaccine supply chain is the first challenge that senior managers of health
harmaceutical supply chain face. To a great extent, the issue is due to conflicting priorities of different actors (Yadav, 2010) and too
any global health systems that are not well structured and informal alliances governed in health supply chain (Fidler, 2007; Sridhar

nd Batniji, 2008). Effective and real time communication between vaccine providers and health authorities plays an important role
n improving coordination. Fitzgerald et al. (2016) emphasized good coordination between public health programs and pharmacies
or successful vaccine distribution plans in 53 US jurisdictions. Though a significant proportion of all 53 jurisdictions (88.7%)
ncluded pharmacies in the pandemic vaccination programs, the authors argue that formalized agreement need to be established
etween public health departments and pharmacies to: firstly, enhance vaccine distribution plans; and secondly, maximize the
tilization of pharmacies during a pandemic.

Arifoğlu and Tang (2021) proposed an incentive program to coordinate a pandemic vaccine supply chain for both sides of demand
nd supply. On the demand side, there exist individuals who behave on a self-interested basis to participate in vaccination programs.
n the supply side, there are vaccine manufacturers who aim to maximize their profits with some levels of uncertainty. The authors

how how on the demand side incentive programs create a negative incentive to control the demand in case of limited vaccine
upply and vice versa. On the supply side, the incentive programs subsidize the manufacturers to supply vaccine in large amounts
ut penalizes them for failing to do so. Lydon et al. (2015) assess the coordination efforts in the vaccine supply chain at a higher level
nd propose outsourcing some logistics operations to the private sector. Their analysis shows the theoretical benefits of outsourcing.
sing the mixed integer programming (MIP), Yang et al. (2021) suggested a new algorithm to formulate the distribution network
esign for childhood vaccines in four African countries. The proposed MIP-based disaggregation-and-merging algorithm is able to
ield optimal solutions when the network is small and the minimum cost is verifiable. For large problems that cannot be solved
y MIP commercial software, the algorithm yields a reasonable solution requiring only very short computation time. Matrajt et al.
2013) used a airline transportation network to optimally distribute limited doses of a vaccine within a network of 16 South Asian
ities. They combined a mathematical model with a genetic algorithm to minimize the infection attack rate. Under their proposed
accination strategy, the attack rate dropped significantly. Also, they found those strategies which involved cooperation among cities
n distributing vaccines resulted in lower attack rate (17% lower) compared to the strategies solely based on equal distribution of
accines in the cities.

Using two factors of priority and distance, Emu et al. (2021) propose a clustering-based solution to optimally distribute the
vailable COVID-19 vaccines. They compare their proposed model with three different models which included either one or no
ptimization constraints. The model provides an optimal solution that has the flexibility to consider different demographic variables.

While vaccines are traditionally administered in medical centers, using mobile units for vaccination has been considered for
wo main reasons. The first is the geographical dispersion of the population to be vaccinated. Using mobile vaccination units play

vital role in geographically dispersed populations and especially in rural and remote areas (Muckstadt et al., 2021; Yang and
ajgopal, 2021). The second reason is the resource and capacity limitation (i.e., number of medical centers, vaccine supply) in
accine allocation and distribution. We argue that using mobile units can enhance the capacity of vaccine administration. In fact,
eviewing the literature shows that using mobile units for vaccination is favored mainly because it provides access to remote/rural
reas and convenience for many people (Turcotte et al., 2021). For example, examining the factors relating to vaccine, Liao et al.
2020) found that using mobile units is a convenient alternative which can significantly increase the vaccination probability and
romote vaccination uptake. Referring to extra supply, a medical center is able to serve a limited number of neighboring medical
enters in proximity using mobile facilities. Halper and Raghavan (2011) employed a routing problem to meet the demand in
odes of a network using mobile facilities. Abbasi et al. (2020) reported the significant impact of medical centers’ capacity on the
ransmission of a virus in a community, and hence they proposed employing a mobile unit to provide more support for those medical
enters where high demand was evident. Table 2 summarizes the extant literature on the distribution stage of the vaccine supply
hain.

. Operationalization and contributions

By August 2021, there were 110 vaccines in clinical development according to WHO (2021b). While countries around the world
ave already started inoculating their population, new cases of COVID-19 are rising globally as new variants circulate widely. Hence,
here is an urgent need to optimally allocate and distribute the produced vaccines to curb the disease’s spread. To address this need,
e propose the vaccine allocation system shown in Fig. 1.

The system commences by estimating the number of people willing to be vaccinated in the catchment area of each medical
9

enter. Individuals are required to complete a form on an online booking system (OBS) providing demographic information on their
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Fig. 1. Vaccine allocation operational process.

age, gender, occupation, and pre-existing health conditions. In the next step, a susceptibility rate is computed for each priority
group based on the data collected through OBS. We define susceptibility rate as a state of physical well-being that is in danger of
deteriorating due to an infectious disease. The susceptibility rate serves to categorize all eligible individuals into priority groups. In
computing the susceptibility rate various parameters may be used including age, occupation, and pre-existing health condition (Chen
et al., 2020; Goldstein et al., 2012; Huang et al., 2017; Govindan et al., 2020). This stage would lead to clustering the population
into a number of priority groups ranging from the least susceptible group to extremely susceptible group. Categorization of priority
groups forms the first input into the allocation decision stage. Meanwhile, the literature shows that geographical locations with
higher population density are at higher risk of exposure to infectious diseases, hence, people who are living in these regions should
be given greater priority to be vaccinated in order to contain the pandemic. As the second input to the allocation decision stage
in the proposed allocation system, exposure risk is defined as the probability of community transmission. This is calculated as the
ratio of demand in a catchment area to the total demand for the same priory group in all catchment areas. The characteristics of
the supply chain also play important roles in any vaccine allocation modeling which form the third data input to the allocation
decision stage. The procured vaccines are shipped and stored in distribution centers (source nodes) in capital cities. The available
vaccine pack distributed to source nodes along with the size of the vaccine pack are important factors that can shape the optimal
allocation decision. Research shows that the size of the vaccine packages wields a significant impact on the duration of vaccine
administration and the number of transshipped vaccines (Abbasi et al., 2020). Then using specialized vehicles, cold storage boxes
containing vaccines are sent to medical centers (sink nodes) to vaccinate individuals. Medical centers might be over- or under-
supplied. For this reason, vaccine transshipment between medical centers is included in the proposed model to effectively meet the
needs of all medical centers.

Using three data inputs discussed above and applying a mathematical model, the allocation decisions stage aims to simultaneously
optimize three sets of mechanisms: (i) direct allocation of vaccines from DC; (ii) indirect allocation through transshipment among
MCs; and (iii) mechanisms to return unused vaccines to the DC to ultimately minimize the total weighted risk of unvaccinated
populations.

This study makes the following contributions within the domain of the pandemic supply chain.

Proposing a multi-period capacity allocation model: It is obvious that allocation decisions for an ideal vaccine allocation model should
be made throughout the entire planning horizon. However, the current computational power is unable to cope with the complexity
of a vaccine allocation model even for a short planning horizon (e.g., 60 days) of a mid-size city. At the other extreme, a single-period
model is the most simplified approach to address the actual problem which results in an unsatisfactory solution because demand and
resource capacities are ignored in future periods. As a theoretical contribution, this study proposes a multi-period vaccine allocation
model as well as a novel solution approach which is flexible enough to be used with any computational power. This would help the
10
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Table 3
Notations and definitions.

Notation Definition

Sets and indices
ℛ The set of priority groups, ℛ = {1, 2,… , 𝑅}.
𝒟 The set of demand points (medical centers), 𝒟 = {1, 2,… , 𝐷}.

Parameters
𝑃 The number of vaccine units in each package (lot size).
𝑑𝑡
𝑖𝑗 The number of unvaccinated people in priority group 𝑗 ∈ ℛ who are booked to receive the vaccine in medical center 𝑖 ∈ 𝒟 in

period 𝑡.
𝜆𝑗 The weight of a priority group 𝑗 ∈ ℛ. Priority groups with higher weight receive priority for getting the vaccine (∑𝑅

𝑗=1 𝜆𝑗 = 1) .
𝐶𝑖 The capacity of a medical center 𝑖 ∈ 𝒟 to administer the vaccine per period of time.
𝑀 A big number.
𝜖 A very small number (e.g., 0.00001).
𝛾 The minimum difference between the weights of each pair of priority groups: 𝛾 = 𝑚𝑖𝑛(𝜆𝑗−1 − 𝜆𝑗 ).
𝛿𝑖𝑗 The travel time between medical centers 𝑖 ∈ 𝒟 and 𝑗 ∈ 𝒟 ⧵ {𝑖}. �̇� = 𝑚𝑎𝑥(𝛿𝑖𝑗 ).
𝒦 The total available travel time for vehicles to transship vaccines between medical centers per day assuming that each vehicle

works 8 h per day. For example if there are 5 vehicles available in the transshipment network, 𝒦 = 5 × 8 = 40.
𝜂𝑖𝑗 This binary variable becomes 1 for at most 𝑚 number of medical centers with non-zero demand which are at the closest distance

from medical center 𝑖 ∈ 𝒟 and they are linked for transshipment of vaccines. 𝑗 ∈ 𝒟 is the index of those medical centers.

Decision variables
𝛼𝑡
𝑖 The number of vaccine packages allocated to demand points (i.e., medical centers) 𝑖 ∈ 𝒟 in period 𝑡.

�̇�𝑡
𝑖𝑗 The number of unvaccinated people in priority group 𝑗 ∈ ℛ in medical center 𝑖 ∈ 𝒟 in period 𝑡.

𝑆 𝑡 The number of vaccine packages which are available in each time period (𝑡) in the DC given that DC receives the Q vaccine
packs from the federal government in each period 𝑡.

𝑥𝑡𝑖𝑗 The number of vaccine units administered to unvaccinated people at medical center 𝑖 ∈ 𝒟 who are in priority group 𝑗 ∈ ℛ at
period 𝑡.

𝑦𝑡𝑖𝑗 The number of vaccine units transshipped from medical center 𝑖 ∈ 𝒟 to medical center 𝑗 ≠ 𝑖 ∈ 𝒟 in period 𝑡.
𝑧𝑡𝑖𝑗 The binary decision variables to define if a transshipment from medical center 𝑖 ∈ 𝒟 to medical 𝑗 ≠ 𝑖 ∈ 𝒟 has taken place in

period 𝑡.
𝜚𝑡𝑖 The number of unused vaccine units in medical center 𝑖 ∈ 𝒟 which are returned to the DC due to no capacity or demand in

period 𝑡.
𝜉𝑖𝑛,𝑡𝑖 , 𝜉𝑜𝑢𝑡,𝑡𝑖 The binary decision variables to determine transshipment (in or out) in medical center 𝑖 in period 𝑡.

model to further reduce the residual risk of unvaccinated people compared to the single-period approach. Furthermore, the actual
administrating horizon is expected to be significantly decreased.

Replenishment policy: In a similar study, Abbasi et al. (2020) used a base-stock level policy in which a fixed level of vaccine supply
ecame available in each period. The proposed model in this paper employs a (T,Q) inventory replenishment policy for DC. Such
policy is more realistic and suitable for Australia because its federal government considers a daily or weekly quantity of vaccine

or all five states and territories regardless of the number of returned vaccines in the previous period. Moreover, the returned
accine units are disregarded in the single-period model whereas they are added to the capacity of the next period in the proposed
ulti-period allocation model.

mbedding capacity sharing and cooperation mechanisms: It is quite likely that capacity of medical centers would be the most restrictive
constraint in the administering process. Such situations become more prevalent at the later stages of vaccine administration in which
the chance of having MCs with no or high demand would increase. This would lead to inefficiencies in the vaccine allocation model.
To deal with such problems, as a practical contribution, a cooperation and capacity sharing mechanism is included in the proposed
model. Through such mechanisms under-utilized MCs would be able to offer their capacities to the MCs with high demand. The
mechanism provides the opportunity for demand to be redistributed among eligible adjacent medical centers, which ultimately
improves the overall efficiency of the allocation model.

Embedding mobile units: Health authorities aim to employ all possible means and strategies to enhance the efficiency of vaccination
operations. The role of mobile vaccination units becomes more prominent given the geographical distribution of the popula-
tion (Muckstadt et al., 2021; Halper and Raghavan, 2011). However, as shown in Table 2, the majority of research on vaccine
distribution uses stationary vaccine distribution units. As a practical contribution, mobile units are included in the proposed model
here to diminish the bottlenecks caused by the capacity constraints.

4. Mathematical model and solution approach

In this section, to address the aforementioned requirements of a vaccine distribution network in a pandemic, we propose a
vaccine allocation model in which the decisions are made over multiple periods. We also improve the efficiency of the proposed
model by using the capacity sharing mechanism and employing the mobile units. Table 3 presents the notations which are used in
the multi-period allocation model.

In any pandemic, one of the important aims for health authorities is to vaccinate the whole populace within a target horizon. For
11

the majority of countries dealing with a sudden pandemic outbreak, although the vaccine allocation policies may not be the same,
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Fig. 2. Schematic overview of vaccine distribution network.

having excellent operational efficiency and service levels (e.g., coverage) supersedes any attempts to minimizing cost inefficiencies
regarding the vaccine distribution network. Therefore, the key objective of the proposed allocation model is to effectively distribute
the vaccines, whereby the most vulnerable population categories with a higher susceptibility rate receive more attention. In addition
to considering the higher priority for the high-risk groups, it is crucial to factor in the exposure risk as one of the underlying reasons
that influences the degree of community transmission. In other words, for the same risk group, a larger population in an area leads
to higher risk of exposure, so the system should give higher priority for allocating the vaccine to this category.

The schematic overview of a vaccine distribution network is presented in Fig. 2. In the single-period model designed by Abbasi
et al. (2020), the distribution center (DC) is assumed to employ the base-stock policy whereby in each period the base-stock level of
𝑆 becomes available to be distributed among the vaccine administering sites. However, we assume a (T,Q) inventory replenishment
policy for DC as it is more realistic for the vaccine allocation model. For example, the Australian federal government generally
considers a daily/weekly fixed quantity of vaccine for each state. Therefore, irrespective of the number of vaccine units which may
be returned from medical centers to the DC in the previous period (𝜚𝑡−1𝑖 ), DC still receives the same number of vaccine packs from
the federal government on a timely basis.

Depending on the government decision at the state level, hospitals, medical centers, or even general practitioners may be
nominated to vaccinate individuals. In this study, we assume that 𝑖 number of medical centers are assigned to administer the
accines. Note that each medical center has a limited capacity (𝐶𝑖) to provide the administering services. For each medical center 𝑖,
he catchment area determines the assigned demand (𝐷𝑖). In the Case Study section, we delineate the mechanism that we consider
o select the catchment area for each medical center.

Given that vaccines are distributed in packs with the pack size of 𝑃 , each medical center 𝑖 receives 𝑃 ×𝛼𝑡𝑖 vaccine units in period
. However, since this value (𝑃 × 𝛼𝑡𝑖) is not necessarily divisible by the demand of medical center 𝑖, an effective allocation model
hould encapsulate a mechanism to re-distribute the remaining of vaccine units in each period to further decrease the total risk of
nvaccinated population. As depicted in Fig. 2, the proposed allocation model includes a transshipment mechanism among medical
enters to distribute the remaining vaccine units to other centers located in close vicinity and their demand has not been fully met
n the same period. In this sense, if the travel time between the medical centers 𝑖 and 1 would be 𝛿𝑖1, the number of transshipped
accine units between these centers is denoted as 𝑦𝑖1.

Based on the stated requirements, we are now able to define the problem as how to develop an effective vaccine allocation
echanism whereby: (i) citizens receive the vaccine based on their exposure risk and susceptibility rating; (ii) the model supports
istributing the vaccines in packs; (iii) transshipment strategy improves the operational efficiency of the distribution network, while
ot exceeding the transshipment capacity of the network; (iv) capacity of medical centers for administering the vaccines to residents
iving in a reasonable range of proximity from the medical centers is not exceeded; and (v) allocation decisions are made for a multi-
eriod time window to deliver the highest operational efficiency. Next, the proposed mathematical model which is an extension of
he study of Abbasi et al. (2020) is presented to address the aforementioned requirements.

min
∑

𝑡∈𝒯
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)(�̇�𝑡𝑖𝑗 − 𝑥𝑡𝑖𝑗 ) + 𝜖

∑

𝑡∈𝒯
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∑

𝑖∈𝒟
𝜚𝑡𝑖 (1)

𝑆.𝑡 ∶
∑

𝑗∈ℛ
𝑥𝑡𝑖𝑗 = 𝑃 𝛼𝑡𝑖 +

∑

𝑗∈𝒟⧵{𝑖}
(𝑦𝑡𝑗𝑖 − 𝑦𝑡𝑖𝑗 ) + (𝜚𝑡−1𝑖 − 𝜚𝑡𝑖), ∀𝑖 ∈ 𝒟 , 𝑡 ∈ 𝒯 (2)

�̇�𝑡𝑖𝑗 = 𝑑𝑡𝑖𝑗 +
𝑡−1
∑

𝜏=1
(𝑑𝜏𝑖𝑗 − 𝑥𝜏𝑖𝑗 ), ∀𝑖 ∈ 𝒟 , 𝑗 ∈ ℛ, 𝑡 ∈ 𝒯 ⧵ {1} (3)

𝑃𝑆𝑡 = 𝑃𝑄 +
∑

𝜚𝑡−1𝑖 , ∀𝑡 ∈ 𝒯 ⧵ {1} (4)
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∑

𝑖∈𝒟
𝛼𝑡𝑖 ≤ 𝑆𝑡, ∀𝑡 ∈ 𝒯 (5)

∑

𝑗∈ℛ
𝑥𝑡𝑖𝑗 ≤ 𝐶𝑖, ∀𝑖 ∈ 𝒟 , 𝑡 ∈ 𝒯 (6)

∑

𝑖∈𝒟

∑

𝑗∈𝒟⧵{𝑖}
𝑧𝑡𝑖𝑗𝛿𝑖𝑗 ≤ 𝒦 , ∀𝑡 ∈ 𝒯 (7)

∑

𝑗∈𝒟
𝑧𝑡𝑖𝑗 ≤ 𝑀𝜏𝑜𝑢𝑡,𝑡𝑖 , ∀𝑖 ∈ 𝒟 , 𝑡 ∈ 𝒯 (8)

∑

𝑗∈𝒟
𝑧𝑡𝑗𝑖 ≤ 𝑀𝜏 𝑖𝑛,𝑡𝑖 , ∀𝑖 ∈ 𝒟 , 𝑡 ∈ 𝒯 (9)

𝜏𝑜𝑢𝑡,𝑡𝑖 + 𝜏 𝑖𝑛,𝑡𝑖 ≤ 1, ∀𝑖 ∈ 𝒟 , 𝑡 ∈ 𝒯 (10)

𝑧𝑡𝑖𝑗 ≤ 𝜂𝑖𝑗 , ∀𝑖 ∈ 𝒟 , 𝑗 ∈ 𝒟 ⧵ {𝑖}, 𝑡 ∈ 𝒯 (11)

𝑥𝑡𝑖𝑗 ⩽ �̇�𝑡𝑖𝑗 , ∀𝑖 ∈ 𝒟 , 𝑗 ∈ ℛ, 𝑡 ∈ 𝒯 (12)

𝑦𝑡𝑖𝑗 ≤ 𝑀𝑧𝑡𝑖𝑗 , ∀𝑖 ∈ 𝒟 , 𝑗 ∈ 𝒟 ⧵ {𝑖}, 𝑡 ∈ 𝒯 (13)

𝛼𝑡𝑖 , 𝑥
𝑡
𝑖𝑗 , 𝜚

𝑡
𝑖 ∈ Z0+, ∀𝑖 ∈ 𝒟 ,∀𝑗 ∈ ℛ, 𝑡 ∈ 𝒯 (14)

𝑦𝑡𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝒟 , 𝑗 ∈ 𝒟 ⧵ {𝑖}, 𝑡 ∈ 𝒯 (15)

𝑧𝑡𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝒟 , 𝑗 ∈ 𝒟 ⧵ {𝑖}, 𝑡 ∈ 𝒯 (16)

𝜉𝑖𝑛,𝑡𝑖 , 𝜉𝑜𝑢𝑡,𝑡𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝒟 , 𝑡 ∈ 𝒯 (17)

𝜚0𝑖 = 0, ∀𝑖 ∈ 𝒟 (18)

�̇�1𝑖𝑗 = 𝑑1𝑖𝑗 , ∀𝑖 ∈ 𝒟 , 𝑗 ∈ ℛ (19)

𝑆1 = 𝑆 (20)

Objective Function: The objective function has three main components to manage the following three key operations of the
allocation model:

Minimizing the weighted risk of unvaccinated population (∑𝑡∈𝒯
∑

𝑖∈𝒟
∑

𝑗∈ℛ(𝜆𝑗 + 𝛾
𝑑𝑡𝑖𝑗

∑

𝑙∈𝒟 𝑑𝑡𝑙𝑗
)(�̇�𝑡𝑖𝑗 − 𝑥𝑡𝑖𝑗 )):

In each period (𝑡), the term (�̇�𝑡𝑖𝑗 − 𝑥𝑡𝑖𝑗 ) signifies the number of unvaccinated people. The core function of the objective function
or the vaccine allocation model is to minimize this term by allocating the vaccine packs directly from the DC as much as possible.
owever, to design an equitable allocation model, the weighted risk of unvaccinated population should also be considered. The
esigned weighting factor has two key elements: (i) susceptibility (𝜆𝑗), and exposure risk (

𝑑𝑡𝑖𝑗
∑

𝑙∈𝒟 𝑑𝑡𝑙𝑗
). As explained earlier, depending

on a number of parameters including age, occupation, etc. a risk group with higher weight should get more priority to receive the
vaccine. Therefore, 𝜆𝑗 signifies the susceptibility of each risk cluster and it refers to the weight of priority groups. In the Case Study
section, a basic method to determine the values of 𝜆𝑗 is provided.

Also the term (
𝑑𝑡𝑖𝑗

∑

𝑙∈𝒟 𝑑𝑡𝑙𝑗
) is the probability of the community transmission. In a densely populated catchment area, it is more likely

that people get exposed to infectious diseases. Therefore, the exposure risk of each priority group can be measured by the quotient
of the demand of a particular catchment area and the total demand of all catchment areas for the same priority group. Given that
the susceptibility factor of a risk priority group exerts a more significant influence in reducing the total risk of unvaccinated people
compared to the exposure risk, we have incorporated a primacy coefficient (𝛾 = min𝑗∈ℛ(𝜆𝑗−1 − 𝜆𝑗 )) to ensure that priority groups
with higher weight of susceptibility receive greater attention to get vaccinated, and then the weight of exposure risk is taken into
onsideration. Note that the whole term of ∑𝑡∈𝒯

∑

𝑖∈𝒟
∑

𝑗∈ℛ(𝜆𝑗 + 𝛾
𝑑𝑡𝑖𝑗

∑

𝑙∈𝒟 𝑑𝑡𝑙𝑗
)(�̇�𝑡𝑖𝑗 − 𝑥𝑡𝑖𝑗 ) is an indication of Residual Risk in the vaccine

llocation model.

ransshipment mechanism (𝜖∑𝑡∈𝒯
∑

𝑖∈𝒟
∑

𝑗∈𝒟⧵{𝑖} 𝛿𝑖𝑗𝑦
𝑡
𝑖𝑗):

Although reducing the residual risk of unvaccinated people through the direct shipment of vaccine units from the DC seems
o be the most effective method, embedding the transshipment mechanism in the allocation model can assist to further minimize
he residual risk. This mechanism is triggered by two events. First, if there is no demand for what remains of a vaccine pack in a
articular medical center, the excess vaccine units can be re-distributed to centers in close proximity to further minimize the total
esidual risk of unvaccinated people. Second, if in a medical center there are unvaccinated people belonging to the higher priority
roups, vaccine units can be shipped from other medical centers when no demand exists for these groups. Given that 𝛿𝑖𝑗 is the travel
ime between medical centers, the model seeks transshipment opportunities where the least travel time is possible.

As direct shipping of the vaccine packs from the DC to medical centers and also transshipping the vaccines among medical
enters are both included in the objective function, there is a need for another primacy coefficient to ensure that the direct shipping
f vaccine packs receives higher priority compared to the transshipment mechanism. This coefficient (𝜖 ≤ 𝑚𝑖𝑛(𝜆𝑗 ) where �̇� = 𝑚𝑎𝑥(𝛿 ))
13
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is adopted from Abbasi et al. (2020). Any given value for the 𝜖 which satisfies this condition causes the first component of the
bjective function (direct shipping) to receive higher priority compared to the second component (transshipment).

eturn mechanism (𝜖�̇�∑𝑡∈𝒯
∑

𝑖∈𝒟 𝜚𝑡𝑖):
For a small portion of vaccine units in a given period, it is possible that no viable option would be available to administer the

accine. For example, assume that there are remaining vaccines in a medical center and there is no other medical center located in
lose vicinity with unmet demand. Another example would be the situation in which the capacity of medical centers is full and no
ransshipment capacity is available in the network. For these situations, we need a complementary mechanism to return the unused
accines to the DC at the end of each period.

For each period 𝑡, a medical center 𝑖 may return 𝜚𝑡𝑖 number of vaccine units to the DC. Note that the returning mechanism should
be triggered when there is no opportunity to further decrease the residual risk through the direct shipping vaccine packs from the
DC or transshipping the vaccines among the medical centers. Therefore, the primacy coefficient of 𝜖�̇� ensures that the vaccines are
returned to the DC if none of the developed allocation mechanisms can be used.

Constraints: Constraints (2) guarantee that in each period, the total number of vaccine units that can be administered in a medical
center equals the number of vaccines received from the DC, plus the balance of the transshipped vaccines to/from all other medical
centers, plus the difference between the number of returning vaccines to DC in periods 𝑡 − 1 and 𝑡. This is one of the benefits of
the multi-period design of a vaccine allocation model because the decision on number of returning vaccines are made over multiple
period. Thus, it is likely that the model will be able to identify an opportunity to allocate a vaccine unit rather than returning it to
the DC. Constraints (3) ensure that the actual demand of each period (�̇�𝑡𝑖𝑗) for each priority group in a medical center includes the
estimated demand of the current period and the accumulated unmet demand of previous periods.

Constraints (4) limit the total available vaccine units in the DC for each period 𝑡 to be the number of vaccine units that the DC
receives from the federal government in period 𝑡 plus the accumulated total number of returning vaccine units from all medical
centers over the previous periods. Constraints (5) ensure that no more than the available vaccine packs in the DC can be allocated
to the medical centers. Constraints (6) limit the number of vaccine units administered in each period in a medical center to the
capacity of the same medical center. Constraints (7) prevent the total capacity of transshipment network to be exceeded, taking to
account the total available vehicles and the travel time between the medical centers.

Constraints (8)–(10) ensure that each medical center acts as either a sender or receiver in the transshipment network. Constraints
(11) limit the transshipment mechanism so that it is available for at most 𝑚 number of medical centers with non-zero demand
which are at the closest distance from a particular medical center. Constraints (12) guarantee that for each period, no more than
a medical center’s demand can be allocated from the DC. Constraints (13) specify that transshipment of vaccines only takes place
when the corresponding route is available for transshipment. Constraints (14)–(17) define the domain of variables where the set of
non-negative integers is denoted as Z0+. Constraints (18)–(20) specify the initial value of 𝜚0𝑖 , �̇�

1
𝑖𝑗 , and 𝑆1.

4.1. Solution approach

In a single-period setting, allocation decisions in each period are made in isolation from other periods. Although the single-
period model provides a basis for a vaccines allocation model during a pandemic, we have identified a number of opportunities for
improvement which result in a superior response plan. Details of the identified initiatives are explained in the following sections.

4.1.1. Solving a multi-period model
It would be more realistic to make the allocation decisions for each time period by considering the demand and available

capacities of future periods. Therefore, we have developed a multi-period allocation model to address the myopic issues of the
single-period model which leads to sub-optimal results. The issue in designing and implementing a multi-period allocation model is
related to limitations in computational power. To clarify this issue, let us assume that the time needed to administer vaccines to a
population is 60 days which is called Planning Horizon (PH). The current available computational power is unable to solve such a
multi-period model for the entire planning horizon of a mid-size state such as Victoria. To address this issue, we have consulted a
number of leading consulting companies which are active in providing solutions for large problems in the supply chain area. This
led us to the following solution approach for the multi-period vaccine allocation model.

As depicted in Fig. 3, by conducting a pilot test, first, we need to establish the maximum Multi-Period Window (MPW) which
can be solved using the available computational power. For example, in our case study, we have noted that MPW is 14 which
means that our computational power (Intel Xeon CPU E5-2680 V3 @2.5 GHz and 64 GB RAM) is able to solve the multi-period
problem with a maximum MPW of 14 days within a reasonable solution time. To strike a balance between myopic and hyperopic
policies, we consider the following procedure. For one half of the MPW (e.g., 7 days), allocation decisions are made on a daily
basis. Subsequently, to ensure that the profile of future demand is not ignored, mean of demand for the subsequent 𝑀𝑃𝑊

2 periods is
onsidered for the period 𝑀𝑃𝑊

2 +1. This process continues until estimated demands for the second half of MPW are obtained. Using
this method enables the model to consider both current and future demand profiles in allocation decisions for the current period.
When allocations are made for the entire MPW period, we retain the results for the first 𝑀𝑃𝑊

2 and discard those of the second
period. Then, the algorithm restarts for the next 𝑀𝑃𝑊

2 periods. When the algorithm progresses, if there are not enough number of
𝑀𝑃𝑊

2 periods available to the end of PH, the algorithm adjusts the second part of MPW for the remaining periods.
Since PH is not necessarily divisible by the 𝑀𝑃𝑊

2 , having a number of remaining days at the end of phase (I) is possible. Note
that allocations may not be completed at the end of PH and it may be extended for a number of periods to ensure that the entire
14



Transportation Research Part E 161 (2022) 102689M. Fadaki et al.
Fig. 3. Schematic overview of solution approach for solving the multi-period vaccine allocation problem with MPW.

population is indeed vaccinated. In this case, to make a decision as to whether a single-period or a multi-period model should
be employed, the algorithm considers two crucial factors: (a) the remaining number of periods, and (b) the magnitude of unmet
demand. In phase (II), if there is still an opportunity to solve the model in the multi-period mode, the algorithm continues in the
multi-period setting. This process continues until phase (III) in which the algorithm shifts to the single-period setting and completes
the allocation process until the value of unmet demand becomes zero.

4.1.2. Augmented multi-period model (capacity sharing and cooperation)
For the majority of vaccine allocation models, demand is generally higher than supply for the first stage of administering vaccines

where many people book to receive the vaccine as soon as possible. However, this trend is reversed at a turning point during the
administering horizon. From the turning point onward, in particular during the last third of the administering process, there are
many medical centers with no demand whereas others are overwhelmingly busy with high capacity utilization rates. To improve
the efficiency of the proposed multi-period model, we incorporate a capacity sharing and cooperation mechanism whereby medical
centers with low utilization rates share their under-utilized capacities to the other medical centers which are struggling to cope with
the demand. The details of the capacity sharing algorithm are provided in Algorithm 1.

Based on the capacity sharing algorithm, first we identify all medical centers with demand higher than their capacity. Assume that
medical center 𝑟 is one of them. In the local transshipment network (i.e., 𝜂𝑟𝑗 = 1, ∀𝑗 ∈ 𝒟 ) of medical center 𝑟, the algorithm searches
for all medical centers in that network where not more than 50% of their capacity is utilized. The capacity sharing mechanism is one
of the main contributions of this study. The proposed percentage is simply an assumption used to determine whether a medical center
is deemed to be under-utilized or over-utilized. Depending on if a medical center is considered over-utilized or under-utilized the
sharing capacity mechanism might or might not be triggered. It remains at the discretion of the health care authority to determine
the percentage based on circumstances they may face. The proposed model is capable of solving the problem using any other
percentages. After identifying the under and over-utilized medical centers, the excess demand of the medical center 𝑟 is randomly
redistributed to these medical centers. The random selection process is a non-uniform random sampling where the probability of
using a particular medical center for the capacity sharing with medical center 𝑟 is computed based on the extent that its capacity is
under-utilized.

4.1.3. Mobile units
In managing the emergency operations, as highlighted in the Literature Review section, using mobile units may assist to improve

the supply network’s efficiency. During a pandemic, any delay in vaccinating the entire population results in endangering public
health as well as postponing the full recovery of the economy. Therefore, all methods which may expedite the vaccine administering
process should be taken into consideration. We integrate a mobile unit network into the current multi-period allocation model to
decrease the daily unmet demand and residual risk of unvaccinated population. We assume that 𝑚 number of mobile units are
available, each with 𝐶𝑚 capacity. In each period, based on the demand and capacity of each medical center, the utilization rate is
computed. Medical centers are sorted according to their capacity utilization rate and then mobile units are assigned to the 𝑚 number
of medical centers with the highest utilization rate. This dynamic capacity adjusting algorithm tries to improve the optimization
model by alleviating the bottlenecks which are caused by the capacity constraints.

5. A case study: State of Victoria, Australia

Though scholars have researched various impacts of COVID-19 on the supply chain, most published articles are opinion-based and
lack an empirical focus (Chowdhury et al., 2021). In this study, the proposed model for COVID-19 vaccine allocation is applied to the
state of Victoria in order to evaluate the effectiveness of the model. Victoria is a state in the south-east of Australia with an estimated
population of 7 million by 2022 (Australian Bureau of Statistics, 2020). The majority of Victoria’s population concentrated in the
central south part of the state, particularly the metropolitan region of Greater Melbourne. Melbourne has more than three-quarters
of the Victorian population and is the second largest city in Australia. This study assumes that the target horizon of vaccinating
the population by the Victorian government is approximately two months. The most updated information regarding the number
and location of medical centers in the state has been extracted from the Department of Health, Victoria (Department of Health and
Human Services, 2020). Fig. 4 shows the spatial distribution of 325 medical centers (i.e., demand points) in Victoria.
15
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Algorithm 1: Augmented Multi-period Algorithm
Input: Input parameters are sets, parameters, and variables as listed in Table 3.

Input: 𝑑𝑖𝑗
utput: 𝑑𝑢𝑝𝑑

𝑖𝑗

Initialization

𝑐1 … 𝑐6 ← 0 initialize the counters.

𝑑𝑖 ← ∅ initialize a vector of sum of demand medical centers with the size 𝑖 ∈ 𝒟 for all risk priority groups.

𝑢𝑟 ← ∅ initialize a vector of utilization rate of medical centers with the size 𝑖 ∈ 𝒟 .

𝑖 ←
∑

𝑗∈ℛ
𝑑𝑖𝑗 , ∀𝑖 ∈ 𝒟

𝑟𝑖 =
𝑑𝑖
𝐶𝑖
, ∀𝑖 ∈ 𝒟

hile 𝑐1 < 𝑖 do

if 𝑑𝑖[𝑐1] > 𝐶𝑖[𝑐1] then
𝑑𝑟𝑒𝑚
𝑖𝑗 ← {0⃗𝑗}

𝐶𝑟𝑒𝑚
𝑖 ← 𝐶𝑖[𝑐1]

for 𝑐2 ← (𝑗 − 1) to 0 by −1 do

if 𝑑𝑖𝑗 [𝑐1 , 𝑐2] < 𝐶𝑟𝑒𝑚
𝑖 then

𝑑𝑟𝑒𝑚
𝑖𝑗 [𝑐2] ← 𝑑𝑖𝑗 [𝑐1 , 𝑐2]

𝐶𝑟𝑒𝑚
𝑖 ← 𝐶𝑟𝑒𝑚

𝑖 − 𝑑𝑖𝑗 [𝑐1 , 𝑐2]

else
𝑑𝑟𝑒𝑚
𝑖𝑗 [𝑐2] ← 𝐶𝑟𝑒𝑚

𝑖

𝐶𝑟𝑒𝑚
𝑖 ← 0

𝑑𝑒𝑥𝑠𝑠
𝑖𝑗 ← {0⃗𝑗}

𝑑𝑒𝑥𝑠𝑠
𝑖𝑗 ← 𝑑𝑖𝑗 [𝑐1 , ∶] − 𝑑𝑟𝑒𝑚

𝑖𝑗

𝑐𝑎𝑑𝑗 ← {𝐼𝑛𝑑𝑒𝑥(𝜂𝑖𝑗 [𝑐1]) ∣ 𝜂𝑖𝑗 [𝑐1] = 1}[0]

𝑐𝑎𝑑𝑗<50 ← {𝑐𝑎𝑑𝑗 ∣ 𝑢𝑟[𝑐𝑎𝑑𝑗 ] < 0.5}

𝑢𝑟𝑎𝑑𝑗 ← {𝑢𝑟[𝑐3] ∣ 𝑐3 ∈ 𝑐𝑎𝑑𝑗<50}

sort 𝑐𝑎𝑑𝑗<50 ascending based on the utilization rate

𝑝𝑟𝑜𝑏𝑠𝑒𝑙𝑒𝑐𝑡 ← −1 × 𝑆𝑜𝑟𝑡(−1 × [{1⃗} − 𝑢𝑟𝑎𝑑𝑗 ])

𝑝𝑟𝑜𝑏𝑠𝑒𝑙𝑒𝑐𝑡 ←
𝑝𝑟𝑜𝑏𝑠𝑒𝑙𝑒𝑐𝑡

∑

𝑝𝑟𝑜𝑏𝑠𝑒𝑙𝑒𝑐𝑡

while ∑

𝑗∈ℛ
𝑑𝑒𝑥𝑠𝑠
𝑖𝑗 ! = 0 & 𝑙𝑒𝑛(𝑐𝑎𝑑𝑗<50)! = 0 do

𝑛𝑏𝑟 ← 𝑅𝑎𝑛𝑑𝑜𝑚.𝐶ℎ𝑜𝑖𝑐𝑒(𝑐𝑎𝑑𝑗<50 , 1, 𝑝𝑟𝑜𝑏 = 𝑝𝑟𝑜𝑏𝑠𝑒𝑙𝑒𝑐𝑡)

while ∑

𝑐4∈ℛ
𝑑𝑖𝑗 [𝑛𝑏𝑟, 𝑐4] < 𝐶𝑖[𝑛𝑏𝑟] &

∑

𝑑𝑒𝑥𝑠𝑠
𝑖𝑗 ! = 0 do

for 𝑐5 ← (𝑗 − 1) to 0 by −1 do

if 𝑑𝑒𝑥𝑠𝑠
𝑖𝑗 [𝑐5]! = 0 then
𝑑𝑒𝑥𝑠𝑠
𝑖𝑗 [𝑐5] = 𝑑𝑒𝑥𝑠𝑠

𝑖𝑗 [𝑐5] − 1

𝑑𝑖𝑗 [𝑐1 , 𝑐5] = 𝑑𝑖𝑗 [𝑐1 , 𝑐5] − 1

𝑑𝑖𝑗 [𝑛𝑏𝑟, 𝑐5] = 𝑑𝑖𝑗 [𝑛𝑏𝑟, 𝑐5] + 1

𝑖𝑛𝑑𝑒𝑥𝑑𝑒𝑙 ← {𝐼𝑛𝑑𝑒𝑥(𝑐𝑎𝑑𝑗<50) ∣ 𝑐
𝑎𝑑𝑗
<50 = 𝑛𝑏𝑟}

update 𝑐𝑎𝑑𝑗<50 ← {𝐷𝑒𝑙(𝑐𝑎𝑑𝑗 [𝑐6]) ∣ 𝑐6 ∈ 𝑖𝑛𝑑𝑒𝑥𝑑𝑒𝑙}

update 𝑝𝑟𝑜𝑏𝑠𝑒𝑙𝑒𝑐𝑡 ← {𝐷𝑒𝑙(𝑝𝑟𝑜𝑏𝑠𝑒𝑙𝑒𝑐𝑡[𝑐7]) ∣ 𝑐7 ∈ 𝑖𝑛𝑑𝑒𝑥𝑑𝑒𝑙}

𝑝𝑟𝑜𝑏𝑠𝑒𝑙𝑒𝑐𝑡 ←
𝑝𝑟𝑜𝑏𝑠𝑒𝑙𝑒𝑐𝑡

∑

𝑝𝑟𝑜𝑏𝑠𝑒𝑙𝑒𝑐𝑡

𝑐1 = 𝑐1 + 1

𝑑𝑢𝑝𝑑
𝑖𝑗 ← 𝑑𝑖𝑗
eturn 𝑑𝑢𝑝𝑑

𝑖𝑗

As explained in the Mathematical Model and Solution Approach section, by estimating the susceptibility rate of people during
pandemic, the risk clusters (priority groups) are defined. These clusters facilitate the process of assigning the eligible population

nto appropriate priority groups. Since forming the priority groups by using any multiple-criteria decision-making is a trivial task,
n the current study we consider the age of applicants as a single criterion. Consequently, to estimate the susceptibility rate of
ictoria’s population, we use the number of deaths in each priority group and the population of the corresponding priority group.
herefore, the Victorian populace is categorized into five priority groups (ℛ) using the age as the clustering criterion. Fig. 5
epicts a comparison between the population of the state in 2021 (Australian Bureau of Statistics, 2020) and the number of
16
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Fig. 4. Spatial distribution of the 325 medical centers in Victoria and their assigned demand.

Fig. 5. Victoria’s population and number of COVID-19-related deaths by priority group in 2021.

COVID-19-related deaths based on the priority groups until June 2021 in Victoria (Department of Health Australia, 2021) which
indicates the susceptibility rate in each priority group.

In the next stage, the following parameters are determined: an estimation of the number of registered applicants to receive
the vaccine (𝑑𝑖𝑗) in medical center 𝑖 ∈ 𝒟 for the priority group 𝑗 ∈ ℛ; and also, the geospatial information of medical
centers (Department of Health and Human Services, 2020) to estimate the travel time between medical centers (𝛿𝑖𝑗). To estimate
these parameters we use the Australian Statistical Geography Standard (ASGS) (Australian Bureau of Statistics, 2016). ASGS
comprises the following main levels: Mesh Block (𝑀𝐵) which is designed as building blocks and as the smallest defined geographical
area; Statistical Area Level 1 (𝑆𝐴1) with the population of between 200 and 800 people; Statistical Area Level 2 (𝑆𝐴2) which reflects
functional areas as the representative of communities with both social and economic interactions together and with the population of
between 3000 and 25,000 people; Statistical Area Level 3 (𝑆𝐴3) which focuses on regional areas with similar regional characteristics,
labor markets, and administrative boundaries, and with the population of between 30,000 and 130,000 people; Statistical Area Level
4 (𝑆𝐴4) with a population above 100,000 persons; and finally, State and Territory (𝑆∕𝑇 ), and Australia (𝐴𝑈𝑆). Each level directly
aggregates to its immediate higher level.

Note that the spatial distribution of the population of each priority group is determined based on the geospatial information
of Mesh Blocks of Victoria (Barbieri and Jorm, 2019), Lat and Long of 𝑆𝐴2s, population of each 𝑆𝐴2 by priority groups (Victoria
State Government Planning, 2019). To assign the population of 𝑆𝐴2s to medical centers as an estimation of demand, the following
parameters are considered: set of 𝑆𝐴2s (𝒜 ), Lat and Long of 𝑀𝐵𝑠, Lat and Long of medical centers, and population of each 𝑆𝐴2
by age group, 𝛽𝑖𝑗 as the distance between the centroid of each 𝑆𝐴2 (∀𝑗 ∈ 𝒜 ) and each medical center (∀𝑖 ∈ 𝒟 ), and 𝑝𝑗 as the total
population of each 𝑆𝐴2 which is aggregated by age groups (∀𝑗 ∈ 𝒜 ). The outputs are 𝜃𝑖𝑗 ’s and 𝛽𝑖𝑗 ’s.

This process includes two key sub-processes. In the first sub-process, to estimate 𝜌𝑗 , first, Lats and Longs of centroid of 𝑆𝐴2s are
obtained using the mean of Lats and Longs of MBs. Second, 𝛽 is estimated by measuring the travel time between the centroid of
17
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each 𝑆𝐴2 and each medical center. Third, 𝜌𝑗 is computed as the total population of each 𝑆𝐴2 which is aggregated from all priority
groups located in the same area. In the second sub-process, the estimated 𝜌𝑗 and 𝛽𝑖𝑗 are considered to be the inputs of an assignment
model so that the values of 𝜃𝑖𝑗 can be obtained. This determines the population of all 𝑆𝐴2s assigned to each medical center. The
assignment model identifies the values of 𝑑𝑖𝑗 by summing the population of all 𝑆𝐴2s assigned to medical center 𝑖 for each priority
group 𝑗.

Details of the assignment model are as follows: the total travel time between 𝑆𝐴2s and medical centers is minimized in the
objective function (Eq. (5.1)); Constraints 5.2 ensure that only one medical center is assigned to each 𝑆𝐴2; Constraints 5.3 state
that at least one 𝑆𝐴2 should be assigned to a medical center; and Constraints 5.4 impede assigning of only one 𝑆𝐴2 with zero
population to a medical center.

The final step is to randomly distribute the demand (𝑑𝑖𝑗) for a vaccine over the planning horizon of 60 days. We use Dirichlet
distribution to randomly generate 60 weights between 0 and 1 given that the sum of these weights is equal to 1. It is expected that
the likelihood of having more bookings at the earlier stages of the planning horizon is higher than the later stages of administering
period. Hence, multiplying 60 Dirichlet random values which are sorted in descending order by 𝑑𝑖𝑗 results the daily number of
unvaccinated people in risk cluster 𝑗 ∈ ℛ who registered to receive the vaccine in medical center 𝑖 ∈ 𝒟 .

min
∑

𝑖∈𝒟

∑

𝑗∈𝒜
𝛽𝑖𝑗 𝜃𝑖𝑗 (5.1)

𝑆. 𝑡 ∶
∑

𝑖∈𝒟
𝜃𝑖𝑗 = 1, ∀𝑗 ∈ 𝒜 (5.2)

∑

𝑗∈𝒜
𝜃𝑖𝑗 ≥ 1, ∀𝑖 ∈ 𝒟 (5.3)

∑

𝑗∈𝒜
𝜃𝑖𝑗 𝜌𝑗 ≥ 1, ∀𝑖 ∈ 𝒟 (5.4)

𝜃𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝒟 , ∀𝑗 ∈ 𝒜 (5.5)

To compare results of this study in terms of risk of unvaccinated population with the single-period allocation model (Abbasi
et al., 2020), the following identical settings are employed:

Since state of Victoria serves as the case study, identical sets of medical centers (𝒟 ) and priority groups (ℛ) are considered.
Similarly, 𝑑𝑖𝑗 as the total demand for unvaccinated people in priority group 𝑗 ∈ ℛ who are booked to receive the vaccine in medical
center 𝑖 ∈ 𝒟 is estimated using the method explained earlier. Moreover, by having the Lat and Long of each medical center extracted
from the Geo-location API of the Google Cloud platform (Department of Health and Human Services, 2020), duration of travel time
between each pair of medical centers (𝛿𝑖𝑗) is estimated for Victoria. With respect to 𝑀 as a big number, considering the values of
other parameters, value of 105 is selected.

Within the local transshipment network of any particular medical center, the maximum number of medical centers in its vicinity
that can transship the vaccines is considered to be 𝑚 = 10. Planning horizon is also set to be 60 days.

The daily capacity of medical centers (𝐶𝑖) for administering the vaccines can significantly vary according to the resources
each medical center has available. Furthermore, proportionate to the total population of 𝑆𝐴2s assigned to each medical center,
a state-level government can readily expand the capacity of a medical center for administering more vaccines per each period.
Therefore, since the capacity of a medical center for administering the vaccine during a pandemic can be very flexible, using random
values seems to be reasonable. However, to generate random numbers which mimic a pandemic’s situation, given that the average
demand of medical center 𝑖 for each day of planning horizon is

∑

𝑗∈ℛ 𝑑𝑖𝑗
60 , we consider Uniform random values with the lower limit

of 0.8
60

∑

𝑗∈ℛ 𝑑𝑖𝑗 and upper limit of 1.2
60

∑

𝑗∈ℛ 𝑑𝑖𝑗 for 𝐶𝑖.
To estimate the weight of priority groups (𝜆𝑗), the quotient for the number of COVID-19-related deaths in Victoria and the popula-

tion of the state (refer to Fig. 5) is obtained for each age group and then results are normalized to 100%. The estimated weights of pri-
ority groups for five age groups of 0–49, 50–59, 60–69, 70–79, and above 80 are 𝜆𝑗 = {0.00053243, 0.00728099, 0.02144653, 0.12265288,
0.84808718}, respectively. Next, 𝛾 as the minimum difference between the weights of each pair of priority groups is estimated.

The common penalty coefficient for the transshipment and vaccine returns is set to be 𝜖 = 6𝑒 − 8. This parameter is required to
ensure that the transshipment mechanism is triggered only when there is no further opportunity to allocate vaccines directly from
the DC. The value of 𝜖 depends on the pack size (𝑃 ). As Abbasi et al. (2020) stated, it means the demand point needs to return 𝑃 −1
units to DC, given that 𝑃 is greater than 1. The value of 𝜖 is selected in a way that the condition (𝜖 ≤ 𝑚𝑖𝑛(𝜆𝑗 )

�̇�(𝑃−1) where �̇� = 𝑚𝑎𝑥(𝛿𝑖𝑗 )) is
atisfied. 𝑃 = 1 indicates that no transshipment is required. Sending a vaccine pack to a demand point that needs only one vaccine
nit and there is not any transshipment possibility to other medical centers is obviously better than keeping the vaccine pack in the
C.

Capacity of transshipment network is also estimated as 𝒦 = ⌊

𝑖
3 × 5 × 60⌋ = 32,499 minutes. This estimation is undertaken

considering that here are 325 medical centers in the state of Victoria and we assumed that each vehicle with 5 operating hours a
day can transship the vaccines among 3 demand points. It means for every 3 medical centers we can allocate one vehicle.

To estimate the daily available vaccine packs in DC, the following formula is used: 𝑄 = ⌊

∑

𝑖∈𝒟
∑

𝑗∈ℛ 𝑑𝑖𝑗
planning horizon×𝑃 ⌋ = 9, 597 packs. Note

that the total population of the state is equal to the total demand intending to be vaccinated during the planning horizon. Moreover,
each pack of vaccine contains 𝑃 number of vaccine units.
18
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Fig. 6. Cumulative unmet demand.

To solve the proposed multi-period model in this study, a computer with the following specifications is utilized: 64 GB RAM and
Intel Xeon CPU E5-2680 V3 @2.5 GHz. The multi-period window is also considered as 𝑀𝑃𝑊 = 14 which reflects our maximum
computational power to solve the model in a reasonable amount of time. The model is implemented in Python version 3.8.0.
Moreover, for the optimization process CPLEX 20.1 optimizer is used. Additionally, the relative MIP gap tolerance is set to 1e-4
to command CPLEX to stop the optimization process as soon as a feasible integer solution is identified. The following sections
describe the results of the multi-period vaccine allocation model.

5.1. Cumulative unmet demand

The cumulative unmet demand for period 𝑡 is an indication of ∑𝑖∈𝒟
∑

𝑗∈ℛ 𝑑𝑡𝑖𝑗 +
∑𝑡−1

𝜏=1
∑

𝑖∈𝒟
∑

𝑗∈ℛ(𝑑𝜏𝑖𝑗 −𝑥𝜏𝑖𝑗 ) where for each period,
the accumulated unmet demand of all previous periods (∑𝑡−1

𝜏=1
∑

𝑖∈𝒟
∑

𝑗∈ℛ(𝑑𝜏𝑖𝑗 − 𝑥𝜏𝑖𝑗 )) is added to the demand of the current period.
According to the settings of this experiment, ∑𝑖∈𝒟

∑

𝑗∈ℛ 𝑑𝑡𝑖𝑗 is a decreasing function in period 𝑡 as demand for receiving vaccines
is higher than available supply at the earlier stages of the planning horizon. This is due to the fact that most people are willing to
receive the vaccine as soon as possible. Given that there is a cap on the available vaccine supply, the cumulative unmet demand
reveals an increasing trend at the beginning of the administering horizon until a turning point is reached where supply catches up
the demand.

Fig. 6 compares the cumulative unmet demand of the single-period and the augmented multi-period allocation models given
that the planning horizon is considered to be 60 days. Results indicate that: (i) the rate of deduction in cumulative unmet demand
for the augmented multi-period model is higher than the single-period counterpart; and (ii) length of administering horizon for the
single-period model is significantly greater than the augmented multi-period model. In other words, using the multi-period model
leads to vaccinating the Victorian population in 69 days (surplus = 9 days) while employing the single-period model results in an
extended administering horizon to 90 days (surplus = 30 days).

The main reasons behind such a significant improvement are three-fold. First, allocation decisions are made over multiple period
in the augmented multi-period model which outperforms the sub-optimal decisions of the single-period allocation model. Second,
unlike the single-period model, the improved inventory policy of the DC in the proposed multi-period allocation model provides an
opportunity to use the oversupplied vaccine units to achieve more effective resource utilization rather than ignoring them in the
next period. Third, at the end of the administering period where the system experiences an unbalanced utilization rate for medical
centers, capacity sharing mechanism boosts the operational efficiency of the augmented multi-period model.

During a pandemic, governments try to strike a balance between saving the lives and livelihoods of the population using all
available resources. In Australia, the federal government has decided to open the national borders once the majority of the population
is vaccinated. It is undeniable that the bulk of economic growth depends on easing the country and state-level restrictions as well as
lifting the border closures throughout the country. The shortened administering horizon and decreasing the number of unvaccinated
people provide an opportunity to save more lives and/or the livelihoods of the population in the most effective manner.

5.2. Residual risk

In this study, the residual risk is computed by ∑

𝑡∈𝒯
∑

𝑖∈𝒟
∑

𝑗∈ℛ(𝜆𝑗 + 𝛾
𝑑
′ 𝑡
𝑖𝑗

∑

𝑙∈𝒟 𝑑′ 𝑡𝑙𝑗
)(𝑑′𝑡

𝑖𝑗 − 𝑥𝑡𝑖𝑗 ) which is the first component of the

bjective function for a particular period. In this formula, 𝑑′𝑡
𝑖𝑗 is the demand of current period and the cumulative unmet demand

f all previous periods (∑𝑖∈𝒟
∑

𝑗∈ℛ 𝑑𝑡𝑖𝑗 +
∑𝑡−1

𝜏=1
∑

𝑖∈𝒟
∑

𝑗∈ℛ(𝑑𝜏𝑖𝑗 − 𝑥𝜏𝑖𝑗 )). Residual risk is a pivotal factor which indicates the weighted
isk of the people in each period who have not yet been vaccinated. To estimate the weighted risk of the unvaccinated population,
19

usceptibility rate and exposure risk are incorporated into the measurement system. Fig. 7 illustrates a comparison between the
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Fig. 7. Residual risk.

residual risk of the augmented multi-period model and the single-period counterpart for the state of Victoria. Results show that
the residual risk using the augmented multi-period allocation model is significantly lower than the results of the single-period
model throughout the administering horizon. Further, similar to the cumulative unmet demand, the augmented multi-period model
provides a superior performance in terms of vaccinating the whole population in a shorter period of time.

Consequently, it can be observed that the capacity sharing, cooperation among medical centers, making the allocation decisions
over multiple periods, and employing an improved inventory policy for the DC all play significant roles in achieving superior results
in terms of minimizing the residual risk and vaccinating people more quickly. Note that lower residual risk of the unvaccinated
population provides various benefits to not only individual citizens but also to the whole population in terms of controlling
community transmission. It is also obvious that although minimizing the cumulative unmet demand is crucial for a country/state,
the major health-related consequences of a pandemic (e.g., death rate) are closely dependent on the residual risk of the unvaccinated
population. Decreasing the residual risk as well as diminishing the cumulative unmet demand are concurrent benefits that a
government may achieve through employing the proposed augmented multi-period allocation model.

5.3. Transshipment

Transshipment is one of the mechanisms which can improve the operational efficiency of a distribution network particularly when
the capacity of a service provider is limited in a supply network’s nodes. In the proposed allocation model, given that vaccines are
distributed in packs, any mismatch between the exact value of demand in a medical center and the number of units that it receives
from the DC can be eased by using the transshipment mechanism. Doing so results in further reduction in the residual risk of the
unvaccinated population.

As explained earlier, the residual risk of unvaccinated people is closely linked to the death rate resulting from a pandemic. There
is no doubt that all mechanisms which may be effective to reduce the residual risk should be incorporated into the allocation model.
It is also undeniable that when vaccines are distributed in packs, since there is no guarantee that the demand of a medical center in
a period would be divisible to the number of receiving packs, it is quite likely that some medical centers would be in an over-supply
position while others experience shortages. Consequently, when direct allocation of vaccines from the DC is not available in a
period, if an allocation model can boost the transshipment mechanism in a network, the unmet demand of unvaccinated people can
be further reduced. In addition, transshipment mechanism can provide an opportunity to decrease the residual risk by shipping the
vaccine units from a demand point with less risky cases to the medical center(s) in which people belonging to the high-risk priority
groups wait to be vaccinated.

Fig. 8 presents a comparison between the total number of transshipments among the medical centers for the single-period
and augmented multi-period allocation models. It can be observed that the total number of transshipped vaccine units using the
augmented multi-period model is significantly higher than the single-period allocation model. This is one of the key reasons behind
the further decline in the residual risk which was discussed in the previous section.

To understand why the transshipment mechanism provides a superior performance in the augmented multi-period model, a
couple of technical factors should be considered. First, identifying the transshipment opportunity in a single-period model is
linked to the over and under-supplied demand nodes as well as prioritizing high-risk groups for a single period only. In contrast,
when allocation and transshipment decisions are made concurrently for multiple periods, it is more possible to identify further
opportunities to reduce the residual risk by employing the transshipment mechanism. Second, direct allocation of vaccine units
from the DC can be adjusted by incorporating the transshipment mechanism. Assume that a demand point needs 100 units, the
pack size is 12, and the capacity of a medical center is higher than demand. It is obvious that DC may consider dispatching either 8
or 9 packs to this demand point. However, one of these decisions provides the least residual risk. Focusing only on a single period
20

may undermine the opportunity of further transshipment in the network. Third, returning the vaccine units to the DC is an inevitable
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Fig. 8. Transshipment of vaccines among medical centers.

ut undesired mechanism in the allocation model. The number of transshipped units is higher in the augmented multi-period model
ince it is more likely to identify a transshipment opportunity than returning the vaccines to the DC when allocation decisions are
ade over multiple periods.

It is necessary to highlight that the designed return process is a complementary mechanism which is not desirable, in particular
or the single-period model that is proposed in the aforementioned article. One of the merits of the developed multi-period model
s that the number of returned vaccines to the DC can be used in the subsequent periods to further minimize the risk posed by the
nvaccinated population, whereas if a base-stock policy is considered for the single-period model, the returned items are lost. Based
n coefficients of the three components of objective function, since cost of returning a vaccine unit is higher than transshipment,
nd cost of transshipment is higher than using a vaccine unit in the medical center which actually receives the vaccine pack, the
hance of returning the vaccine unit to the DC is very low. Note that for the developed vaccine allocation model, cost does not
efer to the monetary value and it is the penalty that is formulated to prioritize the three components of objective function. To
nderstand the likelihood of returns, we have measured the total number of returns over the administering horizon. Results show
hat in total 113,559 vaccine units were returned to the DC over the administering horizon. It confirms that a very small proportion
1.6%) of the total allocated vaccine units have been returned to the DC.

.4. Multi-period window (MPW)

In the previous sections, the logic behind developing a multi-period allocation model has been discussed. There is a limitation in
omputational power to design and implement a multi-period model. Due to this restriction, the MPW is selected as 14 which reflects
he maximum time window that our computational power is able to solve the proposed multi-period allocation model. However,
iven that emergency response units may not have access to our hardware, it is crucial to understand that if less computational
ower is available (i.e., lower MPW), how the optimal solution is impacted.

Fig. 9(a) illustrates the total cumulative unmet demand for MPW of 6, 10, and 14 days. Moreover, Fig. 9(b) represents the total
esidual risk for the same MPWs. The results show that by decreasing the MPW, the output of the allocation model in terms of both
otal cumulative unmet demand and total residual risk is aggravated. For this reason, it is essential for the emergency response
lanning units to use the most powerful computational power in hand to deliver the most effective allocation of vaccines to the
edical centers. Note that although increasing the MPW results in an improved optimal solution, the computational time required

or solving the model also increases. The trade-off between using the higher MPW and maximum reasonable computational time
hould also be considered by decision-making units.

.5. Mobile units

Various capacity constraints are involved when making decisions about allocation. In the proposed model, the daily available
accine packs in the DC, capacity of medical centers, and transshipment network are taken into account. Although both vaccine
upply and capacity of medical centers are exogenous variables to the allocation model, there is an opportunity to incorporate an
ugmenting mechanism to alleviate the restrictions regarding the capacity of the medical centers.

Basically, a state-level government can consider the option of employing a number of mobile units in the vaccine administering
rocess during a pandemic. These mobile units can enhance the operational efficiency of the allocation model by providing extra
nd flexible administering capacity. To explore how well this opportunity improves matters, we incorporate a mobile unit network
n which each unit has an administering capacity of 500 vaccines per day.

Fig. 10(a) shows the cumulative unmet demand with and without engaging 10 mobile units to provide assistance to medical
21

enters with the highest utilization rate in each period. In this analysis, the multi-period window is considered as 14 days. It can



Transportation Research Part E 161 (2022) 102689M. Fadaki et al.

b
a
f
b
L
b

o
m
t
i

w
d
i
m
p
m
h
t

Fig. 9. Comparing the cumulative unmet demand and residual risk for multi-period windows of 6, 10, and 14 days.

Fig. 10. Comparing the cumulative unmet demand and residual risk for administering network with and without mobile units.

e observed that incorporating mobile units leads to a decline in the cumulative unmet demand after the first ten days of the
dministering horizon. The reason for the ineffectiveness of mobile units in the earlier stage of the administering process is that:
irstly, during this stage vaccine supply is significantly less than the demand; and secondly, the capacity of medical centers is not
inding. In other words, extra capacity of mobile units would be redundant when the supply chain suffers from vaccine shortages.
ater, when a sufficient number of vaccine units are available, capacity constraints of over-utilized medical centers can be alleviated
y employing the mobile units.

In addition to reducing the cumulative unmet demand, Fig. 10(b) highlights an improvement in diminishing the residual risk
f unvaccinated people when mobile units are employed. Note that engaging mobile units provides two benefits to the allocation
odel: (i) the total capacity of administering process increases; and (ii) since this extra capacity is flexible and can be assigned to

he medical centers with the highest utilization rate, the marginal benefit of increasing one unit of capacity through mobile units
s higher than increasing the same amount of capacity to the current medical centers.

To further investigate the efficiency of using mobile units, another experiment is designed in which 20 mobile units are employed
here MPW is 10 days. To understand the reason behind designing this experiment, suppose the emergency response unit of the state
oes have access to a top-of-the-range hardware with high computational power. The question here is when the computational power
s moderate (MPW=10), would adding more mobile units (20) be able to make up for the inefficiencies resulting from using the
ulti-period model with moderate MPW (lower computational power)? Figs. 11(a) and 11(b) confirm what we have observed in the
revious experiment as using a dynamic capacity adjusting algorithm (i.e., adding mobile units) is able to improve the optimization
odel. It does this by alleviating the bottlenecks caused by the capacity constraints of medical centers. Moreover, in the case of
aving less computational power, adding more mobile units may be deemed a complementary strategy to hit a set target regarding
22

he rate of deduction in the cumulative unmet demand and/or the residual risk of the unvaccinated population.
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Fig. 11. Comparing the cumulative unmet demand and residual risk for administering network with and without mobile units.

Table 4
Comparing administering period, solving time, and total residual risk for various problem sizes with/without employing the
mobile units.

Size Augmented
mechanism

Administering
period

Sol. time
(hh:mm)

Total residual
risk

𝑖 = 325, 𝑃𝑜𝑝 = 6, 861, 925, 𝑄 = 9, 597 1 69 02:08 6.75E4
𝑖 = 200, 𝑃𝑜𝑝 = 4, 647, 940, 𝑄 = 6, 455 1 69 01:32 4.53E4
𝑖 = 100, 𝑃𝑜𝑝 = 2, 430, 979, 𝑄 = 3, 376 1 67 01:06 2.47E4
𝑖 = 325, 𝑃𝑜𝑝 = 6, 861, 925, 𝑄 = 9, 597 1, 2 61 01:52 6.16E4

1: Capacity sharing mechanism.
2: Mobile units.

.6. Solving time

To investigate how size of the problem may impact the solving time and key operational outputs, three problem sizes are created:
mall (population = 2,430,979), medium (population = 4,647,940), and large (population = 6,861,925). These states have 100, 200,
nd 325 medical centers, respectively. Proportionate to the population, the daily available packs of vaccine for small, medium, and
arge states are estimated to be 3376, 6455, and 9597, respectively. To make a fair comparison, all other parameters are the same
n these experiments. Note that the travel time between the medical centers and their respective capacities are selected from the
riginal experiment for the medical centers.

Results show that the solving times are 01:06, 01:32, and 02:08 for small, medium, and large problems, respectively ( Table 4).
onfirmed here is that the solving time is in a reasonable range to provides an opportunity for the emergency units to plan for vaccine
llocations prior to the administering period. Note that since the proposed solution approach breaks down the administering period
nto shorter periods, any problem size can be addressed using the developed method. To compare the results, the total residual risk
hich is the sum of residual risk of all days over the administering horizon (the area under the curve of the residual risk) and the

ength of administering period are considered. As expected, the total residual risk and the length of administering period are lower
or smaller problem sizes. Furthermore, it can be observed that employing mobile units for the original problem size leads to lower
otal residual risk (6.16E4) and a shorter administering period (61 days). (See Table 4.)

. Discussion and policy implications

Global pandemics such as COVID-19 show that the key solution to overcoming the challenges of immunizing the population is
o build quick emergency response and the fastest possible vaccination process according to the (National Governors Association
enter for Best Practices, 2020). DHL (2020) asserts there are critical challenges that governments face with respect to medical
upplies during a pandemic such as demand identification and forecasting, sourcing, procurement, inbound logistics, allocation,
nd distribution. In this regard, vaccine allocation has been identified as one of the most critical stages in an emergency response
lan especially for countries with several levels of government (e.g., federal, state and local), such as Australia (DHL, 2020). This
atter along with the severe impacts of the COVID-19 pandemic has motivated us to develop an effective vaccine allocation model

n order to minimize the risk of unvaccinated population within the shortest possible administering period. Since the ultimate aim
f a vaccine allocation decision support system is to effectively allocate vaccines in such a way that the risk of severity and fatality
23
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of a pandemic is minimized, in the proposed model the susceptibility rate and exposure risk factors are encapsulated to prioritize
the most vulnerable people in the community.

Recently, a vaccine allocation model is suggested by Abbasi et al. (2020) for the COVID-19 pandemic. We have improved their
tudy by proposing a multi-period vaccine allocation model along with several complementary mechanisms including capacity
haring, cooperation and employing mobile units to further minimize the risk posed by the unvaccinated population and shorten
he administering horizon.

From the theoretical perspective, the most accurate vaccine allocation model should consider the entire length of the planned
dministering horizon for making the right allocation decisions. For example, if the Victoria’s government plans to vaccinate the
opulation in 60 days, a multi-period allocation model with a window of 60 can be the most effective. As a theoretical contribution,
e have designed a multi-period allocation model which works with any time window. However, the practical challenge is that
epending on the available computational power, the model can be solved for a limited number of periods in a reasonable amount
f time. This challenge led us to develop an innovate algorithm to solve the multi-period model for any number of periods that
he available computational power could cope with, and then systematically transferring the results to the subsequent allocation
ecisions for the entire length of the administering horizon. The finalized algorithm is the key contribution of this study to solution
ethodology whereby a multi-period vaccine allocation model can be solved using any computational power. We have shown that
sing higher computational power (i.e., the allocation model with more concurrent allocation decisions) will produce more accurate
esults.

A review of the literature shows how transshipment is able to improve the efficiency of a distribution network (Dennis et al.,
011). Although the direct benefit of a multi-period model is to make allocation decisions over multiple periods, as a theoretical
ontribution, we have shown that the level of transshipment is boosted when a multi-period allocation model in employed. This
s particularly crucial for the vaccine allocation model as vaccines are distributed in packs with a specific pack size. Therefore,
mergency planning units are recommended to use both the multi-period vaccine allocation model and transshipment mechanism
n their decision support system. Similarly, capacity sharing and cooperation mechanism have been widely used to improve a
istribution network’s efficiency (Seok and Nof, 2014). Nonetheless, it is crucial to understand how this complementary mechanism
an be used in the vaccine allocation model. Our analysis showed that at roughly the second half of the administering horizon,
ome medical centers were in the over-utilized position whereas others employed less than fifty percent of their capacity. These
mbalanced utilization rates definitely result in undesirable outcomes such as longer administering horizon and greater risk of having
n unvaccinated population. So, to boost the operational efficiency of the allocation model, we have embedded a capacity sharing
echanism which dynamically reduces the difference between the highest over-utilized demand nodes and the lowest under-utilized
edical centers. The practical implication of empowering the allocation model with the capacity sharing mechanism is that; firstly,

he capacity of all service providers (i.e., medical centers) are used in the most efficient way; and secondly, the emergency response
nits would be able to meet the target administering horizon with higher probability. It is obvious that our proposed mechanism
lso results in immunizing the population faster which in turn leads to various health-related and economic benefits.

We have also investigated how the Australian government distributes vaccine packs. A specific number of vaccine packs is
llocated from the federal government to the states and territories based on their population. It is safe to assume that the inventory
f distribution center for each state is replenished to a certain level on a regular basis. Given that a number of vaccine units are
eturned to the DC in each period, we have amended the single-period model whereby in our proposed model the returned vaccines
re added to the replenished stock of the next period. This contribution significantly improves the performance of our vaccine
llocation model since the returned vaccines may be actually allocated in the subsequent period.

During a pandemic, it is expected that governments and health authorities marshal all available resources to expedite the vaccine
dministering process and enhance its efficiency. The bottlenecks, however, may perform a hidden role of restricting the vaccine
dministering process. One key impediment in the vaccine allocation process is the capacity of medical centers to administer the
accines. From a practical angle, increasing the current capacity of a medical center is challenging. Further, it is not an easy task
o predict which medical center will be over-utilized in each period. Therefore, a flexible supporting capacity is required which
an be transferred between the medical centers in each period. To overcome this challenge, we have developed a mobile unit
etwork as an ameliorating mechanism to further boost the operational efficiency of the administering network. The results of our
nalysis confirmed that using such a network would help to significantly decrease the cumulative unmet demand and residual risk
f the unvaccinated population. The managerial implication of this finding is that when bottlenecks in the administering process are
dentified to be the capacity of medical centers, emergency response planning units may consider employing a mobile unit network
o improve the whole vaccination process.

From the theoretical perspective, the proposed multi-period model can effectively allocate the vaccine packs during a pandemic.
oreover, we have shown that using a higher time window results in the model performing better. The developed algorithm provides

n opportunity to use the multi-period model when the available computational power is limited and solving the model for the entire
ength of planning horizon is not feasible. However, from a practical viewpoint, it is worth clarifying whether using the mobile unit
etwork can make up for the inefficiencies that are resulting from low to moderate levels of computational power. Although it is not
feature-for-feature comparison, the results provide a recommendation to emergency planning decision-makers as the mobile unit
etwork is capable of covering some parts, if not all, of the sub-optimal allocation decisions which are made when the multi-period
odel is solved for lower length MPW. This recommendation is more effective when the key bottleneck in the administering process
24

s linked to the capacity of medical centers.
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6.1. Managerial implications

In this section, we summarize the benefits that emergency response units and logistics operations managers can reap from the
esults of this study. Firstly, it is obvious that during a pandemic, shortening the administering period length and achieving the least
ossible risk of an unvaccinated population are the key targets of all government-level and state-level authorities given the associated
ealth and economic advantages. The developed multi-period model can help achieve these goals as allocation, transshipment, and
eturn decisions are made over multiple periods. Secondly, the designed solution approach whereby a multi-period vaccine allocation
odel can be solved using any computational power further improves the effectiveness of the proposed decision support system,

nd it can be easily embedded into any online platform for allocation decision processes. Thirdly, flexibility is a key success factor
or a vaccine allocation model as emergency response units may encounter various unforeseen circumstances. The designed capacity
haring mechanism and incorporating the mobile units into the administering fleet not only results in shrinking the length of the
dministering period, but they also provide powerful tools for logistics operations managers to make fine-tuned adjustments to
chieve the highest possible efficiency from the distribution and administering networks. Fourthly, the proposed vaccine allocation
odel enables the returned vaccine units to be used in subsequent periods which is vital to maximize the vaccination rate as one of

he key objectives of logistics operations managers. It is worth highlighting that the above-mentioned managerial implications are
ot limited to the COVID-19 pandemic and logistics operations managers. Emergency response planning decision-makers can also
eap the benefits of the proposed model during any global pandemic.

. Conclusions and future research

In any pandemic outbreak, health authorities strive to administer a vaccination to the whole population within the shortest
ossible time in order to contain the spread of the virus. To achieve this goal, many research studies have attempted to design an
ffective and efficient vaccine supply chain. Reviewing the extant literature reveals that a significant number of studies have tried
o separately explore the allocation and distribution components of the vaccine supply chain. We showed that combining these two
omponents into a comprehensive model can effectively mitigate the risk involved in such pandemics. The main objective of the
roposed vaccine allocation model in this study is to effectively distribute and allocate the vaccines among demand points, whereby
he vulnerable people with high susceptibility rates are given high priority. Moreover, to minimize community transmission of the
irus, the proposed vaccine allocation model can give higher priority to those who are residing in geographical areas with higher
opulation densities which would ultimately result in mitigating the exposure risk.

The proposed vaccine allocation process starts with an estimation of the population in the catchment area of each demand point.
hen, those who are willing to be vaccinated will register via an online booking system. Based on the data collected through this
ystem, the susceptibility rate of the applicants will be computed for each priority group. Categorization of priority groups forms the
irst input to the allocation decision stage. The second input is the estimate of the exposure risk which is defined as the probability
f the disease transmission within a community. The available vaccine pack distributed to DCs along with the size of vaccine pack
re the next inputs to the allocation decision stage. The proposed model will allocate the vaccine to the medical centers taking into
ccount transshipment and return mechanisms. Due to uncertainties surrounding the allocation decisions, the medical centers might
e over or under-supplied. Therefore, the vaccine transshipment between medical centers is considered in the proposed model to
ffectively meet the need of all medical centers. Using the above inputs and applying a mathematical model, the vaccine allocation
odel is capable of concurrently optimize direct vaccine allocation from DC, indirect vaccine allocation through transshipment, and

he mechanisms to return unused vaccine to the DC, which ultimately result in minimizing the risk of unvaccinated population in
he shortest administration horizon.

The augmented multi-period vaccine allocation model proposed in this study would yield the following results. Firstly, by
mploying this model, the cumulative unmet demand during the target horizon is always lower compared to a single period
odel. Having less cumulative unmet demand results in lower residual risk of unvaccinated people which decreases the risk of

ommunity transmission of the virus. Secondly, employing the proposed model shortens the length of the vaccination administering
orizon. This is mainly due to employing the capacity sharing and cooperation as a complementary mechanism which provides the
pportunity to redistribute the oversupplied vaccines among eligible medical centers. It does this by considering the total available
ravel time for vehicles to facilitate the transshipment of vaccines among those medical centers. In fact, the proposed vaccine
llocation model allows the emergency response planning units to redistribute the oversupplied vaccines and achieve more effective
esource utilization. Furthermore, this study incorporates mobile units to the multi-period vaccine allocation model which provides
dditional support to medical centers with high utilization rate in each period. Mobile units also provide extra and flexible capacity
o the vaccination system which remarkably enhances the operational efficiency of the proposed allocation model. Consequently,
sing mobile units enable the governments to lessen the bottlenecks caused by the capacity limitations during the vaccination
dministrating horizon. In summary, this study provides both theoretical contributions and practical implications which facilitate
he decision makers in incorporating logistics aspects of vaccine allocation mechanisms and to manage the administering efforts to
e more effective and productive in the overall vaccine allocation process.

Our proposed model shows the important role of transshipment mechanism in achieving a more effective and efficient vaccine
upply chain. While almost all of the research focus on direct vaccine allocation from a distribution center, we explained the
ignificant role that indirect allocation can play in vaccine supply chain. Such indirect vaccine allocation is possible through
ncorporating transshipment mechanisms in the proposed model. As a result, our research showed that the unmet demand of the
25

nvaccinated population can be further reduced through the inclusion of the transshipment mechanisms in which the utilization
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of excess vaccine is maximized. Our findings in this research agreed with Choi (2021) who posits that the risk involved in COVID-
19 can be better managed using a multi-period planning approach. Our proposed model shows a reduced risk of unvaccinated
population compared to a single-period model proposed by Abbasi et al. (2020). Our proposed model is applicable in other contexts.
In any pandemic allocation problems, the main aim is to inoculate people as soon as possible to curb the destructive impacts of
the pandemic. Researchers consider other objectives such as cost, equity or total number of infections. There is no doubt the input
parameters would differ in other contexts depending on many variables such as demand, vaccine supply, available resources such
as number of mobile units, the number and capacity of medical centers, etc.

In general, the distribution problem in the vaccine supply chain can be viewed under pandemic or non-pandemic circumstances.
uch scenarios will have a direct impact on the structure of the objective function. When there is no outbreak of a new disease
non-pandemic situation), the objective function is formulated to minimize the total vaccine supply chain cost including fixed costs
e.g., new administering centers) and/or variable costs (e.g., transporting the vaccine units). Conversely, in a pandemic situation
hen the lives of people are at stake and all economic factors are linked to vaccinating the populace at early as possible, the
bjective function is formulated to minimize the risk of having an unvaccinated population. For example, Yang and Rajgopal (2021)
roposed a multi-period allocation model within the context of a non-pandemic vaccine supply chain. They use an approach known
s outreach to increase the immunization rates among geographically dispersed and nomadic populations in low- and middle-income
ountries. The proposed allocation model in their study is revised for each period based on the changes in population and the travel
ime between locations. This is based on the premise that the population might change due to reasons like seasonal migrations or
hanges in travel time because of natural disaster. In comparison, in the current study, a vaccine supply network is designed to
ackle a pandemic. The allocation model is revised for each period based on the vaccine demand in the current and future periods.
ue to the novelties in the approach and the context of our study, there are some limitations which can be further investigated in

uture research.
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