
Journal of 
Preventive Medicine 
& Public Health

116 Copyright © 2022  The Korean Society for Preventive Medicine

J Prev Med Public Health 2022;55:116-124    •  https://doi.org/10.3961/jpmph.21.569

Application of Standardization for Causal Inference in 
Observational Studies: A Step-by-step Tutorial for  
Analysis Using R Software
Sangwon Lee, Woojoo Lee
Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Korea

Special Article

Epidemiological studies typically examine the causal effect of exposure on a health outcome. Standardization is one of the most straight-

forward methods for estimating causal estimands. However, compared to inverse probability weighting, there is a lack of user-centric 

explanations for implementing standardization to estimate causal estimands. This paper explains the standardization method using 

basic R functions only and how it is linked to the R package stdReg, which can be used to implement the same procedure. We provide 

a step-by-step tutorial for estimating causal risk differences, causal risk ratios, and causal odds ratios based on standardization. We 

also discuss how to carry out subgroup analysis in detail. 
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INTRODUCTION

Epidemiological studies often examine the causal relation-
ship between exposures and outcomes. Randomized controlled 
trials (RCTs) are a key method for investigating whether a treat-
ment causes an outcome of interest [1]. In an RCT, researchers 
recruit participants and randomly assign them to either a treat-
ment group or a control group. The results of an RCT are be-
lieved to show the causal effect of the treatment for individu-
als on the outcome. In other words, the estimated treatment 
effect from an RCT is considered to be unbiased since the ran-
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dom assignment of individuals to treatment and control groups 
is not affected by confounders.

Researchers often have difficulty conducting RCTs despite 
their well-known advantages, since they are generally costly, 
time-consuming, and prone to ethical issues. For example, phy-
sicians would not randomly assign some liver cancer patients 
to undergo liver transplantation and other liver cancer patients 
not to receive transplantation. Instead, physicians provide pa-
tients with the best treatment option that is most likely to ex-
tend their lifetime or cure their condition based on scientific 
evidence. In addition, if researchers want to conduct an exper-
imental study to determine the effect of a treatment on a dis-
ease, financial support and agreements with funders must be 
secured. 

An observational study is an alternative option for investi-
gating the effects of a treatment on an outcome. However, in 
observational studies, patients may be influenced by various 
confounders related to their treatment choices, which results 
in an estimate of the association rather than causation [2,3]. 
For example, a study on the simple correlation between coffee 
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drinking and the risk of thyroid cancer would not be able to 
examine the true effect of coffee drinking on thyroid cancer 
since the results would be potentially confounded by variables 
such as age, gender, and socioeconomic status. A high inci-
dence of thyroid cancer among coffee drinkers may be due to 
an imbalance in variables such as age and gender between 
the subjects. Even so, the causal effect of coffee drinking on 
the risk of thyroid cancer can still be inferred through an ob-
servational study if certain conditions are met. An advanced 
methodology known as “causal inference” can be used to esti-
mate causal effects in observational studies. Unlike conven-
tional analysis, causal inference defines the target parameter 
(i.e., the causal estimand) using counterfactual logic and iden-
tifies when the causal estimand can be estimated based on 
observational data [4]. 

Causal estimands may take various forms, including the risk 
difference, relative risk, or odds ratio. Standardization is a 
straightforward method for estimating those estimands, in 
addition to inverse probability weighting [4]. However, com-
pared to inverse probability weighting, there is a lack of user-
centric explanations on how standardization can be imple-
mented for estimating causal estimands. Recently, the R pack-
age stdReg was developed for implementing standardization, 
which allows general classes of models, including generalized 
linear models and Cox proportional hazards models as special 
cases [5]. This package substantially improves the process of 
conducting epidemiological studies, and it should be more 
actively promoted among epidemiologists and public health 
scientists interested in causal inference. In addition, research-
ers need to understand how the R package works in order to 
write an implementation code themselves when the R pack-
age is not directly applicable to their models of interest. There-
fore, this paper will explain the standardization method using 
basic R functions only and how it is linked to the R package 
stdReg. We provide a step-by-step tutorial for estimating caus-
al risk differences, causal risk ratios, and causal odds ratios us-
ing standardization. We also discuss how to carry out a sub-
group analysis in detail. 

REVISITING THEORY

Potential Outcome and Causal Estimand
Consider 2 random variables. One is the dichotomously mea-

sured treatment variable T (1: treatment, 0: no treatment), and 
the other is the dichotomously measured outcome variable Y 

(1: event, 0: no event). YT=1 and YT=0 are defined as the outcome 
variables that would be observed under treatments T=1 and 
T=0, respectively, and they are referred to as the potential out-
comes [4]. For simplicity, we will use YT=1=Y 1 and YT=0=Y 0.

The population causal effect of treatment exists if Pr[Y 1=1]≠ 
Pr[Y 0=1], with Pr representing the probability [4]. A measure-
ment of a causal effect answers the question, “What is the out-
come if everyone is treated or untreated?” Meanwhile, a mea-
surement of an association answers the question, “What is the 
difference between the treated group and the untreated group?” 
The causal effect is determined by measuring the effect of 
treatment on the same population, whereas the associational 
effect is determined by measuring the effect of the treatment 
on 2 different subpopulations.

The causal effect can be represented by several measures 
such as the causal risk difference, causal risk ratio, or causal odds 
ratio (Table 1). The causal risk difference is often referred to as 
the average treatment effect (ATE). The causal treatment effect 
is usually identified from RCTs rather than observational stud-
ies since the participants in observational studies are not ran-
domly assigned to treatment groups. In order to confirm this, 
the reasons why measures of association from RCTs indicate 
causation must be understood.

Randomized Experiments and Causal Effects
If researchers randomly assign individuals to receive treat-

ment T, then the potential outcome should be independent of 
the treatment T, which is expressed as Y 1┴ T and Y 0┴ T. This 
means that the potential outcome Y t would be equally distrib-
uted in both treatment and non-treatment groups. Thus, the 
subjects in both the treatment and non-treatment groups are 
considered exchangeable.

In many cases, the potential outcome is naturally linked to 
the observed outcome Y as Y=Y 1 for the treatment group and 
Y=Y 0 for the control group. This condition is known as consis-
tency in the literature on causal inference [4]. In our binary case, 
the consistency suggests Y=Y 1×1(T=1)+Y 0×1(T=0), with 1( ) 

Table 1. Measures of causation and association

Name Measures of causation Measures of association

Risk difference Pr[Y 1=1]−Pr[Y 0=1] Pr[Y=1|T=1]–Pr[Y=1|T=0]

Risk ratio Pr[Y 1=1]
Pr[Y 0=1]

Pr[Y=1|T=1]
Pr[Y=1|T=0]

Odds ratio Pr[Y 1=1]/Pr[Y 1=0]
Pr[Y 0=1]/Pr[Y 0=0]

Pr[Y=1|T=1]/Pr[Y=0|T=1]
Pr[Y=1|T=0]/Pr[Y=0|T=0]
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representing the indicator function that results in 1 when the 
event in the parentheses is true. Note that, although Y 1┴ T and 
Y 0┴ T, Y is not independent of T in general. Under randomized 
assignment and the consistency condition, the probability that 
Y t=1 is equal to the probability of an observed outcome for 
individuals who receive treatment T=t, since Pr[Y=1|T=t]=  
Pr[Y t=1|T=t]=Pr[Y t=1]. Therefore, the measure of association 
from an RCT becomes the corresponding causal measure.

Randomization can be undertaken according to the specific 
characteristics of individuals, and this approach is referred to 
as a conditional randomized experiment. For example, doctors 
may want to measure the causal effect of regular vitamin C 
supplement consumption (vitamin C=1, placebo pill=0) on 
the probability of developing of lung cancer (lung cancer =1, 
no event=0). They can choose to recruit random participants 
depending on their smoking status (smoker =1, ex-smoker =2, 
non-smoker =3). In this case, the potential outcome would be 
equally distributed between a group of smokers who take vi-
tamin C supplements and a group of smokers who take a pla-
cebo pill. The vitamin C and placebo pill groups are no longer 
exchangeable, but they are exchangeable within each stratum 
for smoking status. This result from the conditional random-
ized experiment implies that Pr[Y=1|T=t, C=c]=Pr[Y t=1|T=t, 
C=c]=Pr[Y t=1|C=c], with C representing smoking status. In 
the above equation, the key condition maintained from the 
conditional randomized experiment is Y t┴ T |C, which is referred 
to as “conditional exchangeability” in the causal inference liter-
ature [4]. The conditional probability Pr[Y t=1|C=c] provides 
all of the necessary quantities for evaluating the causal mea-
sures described in Table 1 since Pr[Y t=1]=∑c Pr[Y t=1|C=c] 
Pr[C=c]. This connection is called standardization, which is ex-
plained below in more detail.

Identification
Valid causal inferences from observational studies can be 

made if the study mimics a conditional randomized experi-
ment. In other words, within subpopulations with the same 
set of confounders C, if an observational study is similar to an 
RCT, the causal effect from observational data can be inferred. 
In this case, the primary condition needed for making a valid 
causal estimate based on an observational study is the condi-
tional exchangeability Y t┴ T |C. If the conditional exchange-
ability from an observational study is maintained, the causal 
effect of the treatment can be identified from observed data 
using Pr[Y=1|T=t, C=c]=Pr[Y t=1|T=t, C=c]=Pr[Y t=1|C=c] 

in the same manner as in a conditional RCT. However, since 
the potential outcome is not fully observed in an observation-
al study, the conditional exchangeability for each researcher’s 
application cannot be confirmed. Therefore, expert knowl-
edge is needed to confirm whether the conditional exchange-
ability is plausible.

Expert knowledge is commonly believed to be most easily 
communicated using simple visual representations. A direct 
acyclic graph (DAG) is one of the most intuitive methods for 
graphically depicting the causal relationship between treat-
ments, potential outcomes, and covariates. A DAG depicts the 
direction of the effect of each variable on target variables and 
helps to determine if covariates C need to be adjusted as well 
as identifies potential biases such as selection bias, collider 
bias, and confounding bias [4,6-8]. Shrier and Platt [8] elabo-
rated on the specific steps for building a DAG. Fortunately, 
there is software for selecting the confounder set C based on 
causal DAGs. For practical information, researchers can visit 
http://www.dagitty.net/.

In addition to the conditional exchangeability and the con-
sistency conditions, the probability of being assigned to either 
treatment group according to the values for covariate C must 
be greater than 0. In other words, Pr[T=t|C=c]>0 for all values 
in c with Pr[C=c]>0. Positivity guarantees that the causal ef-
fect can be assessed within the subpopulation if C=c. If the 
positivity condition is violated in some cases in which C=c, the 
subpopulation with C=c can be removed from the target pop-
ulation for evaluating the causal estimand of interest. Positivi-
ty can be violated in 2 ways: structural violations and random 
violations [4,9]. Structural violations can occur if the treatment 
cannot be assigned to individuals under certain conditions. 
For example, when doctors assign treatment Y to individuals 
with C=1, the positivity has been structurally violated. Random 
violation can occur if the 0 event of treatment randomly oc-
curs within the strata of treatment and covariates when the 
probability within the population is not actually 0.

Standardization
An epidemiological study usually aims to establish evidence 

for implementing public health interventions. For example, if 
the ATE of vitamin C on lung cancer incidence suggests a pre-
ventive effect, campaigns to promote vitamin C intake should 
be recommended. Standardization is a method for estimating 
the causal estimand of treatment T on outcome Y in a condition-
al RCT. The probability of the potential outcome is the weight-
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ed average of the probability of the potential outcome accord-
ing to the values for covariate C weighted by the proportion of 
the population in C=c for all subjects in c (Pr[Y t=1]=∑c Pr[Y t=  
1|C=c] Pr[C=c]). The probability of the potential outcome can 
be replaced with the observed outcome according to the con-
ditional exchangeability and consistency: Pr[Y t=1]=∑c Pr[Y=1| 
T=t, C=c] Pr[C=c]. Table 2 shows the method of estimating 
causal estimands based on standardization.

Using the standardization method, once Pr[Y=1|T=t, C=c] 
is evaluated, the causal estimand can be straightforwardly 
computed since Pr[C=c] can simply be replaced with 1/n, with 
n representing the sample size. Pr[Y=1|T=t, C=c] can be ob-
tained using logistic regression analysis with Y as a response 
variable and T and C as the covariates. For different types of Y, 
other generalized linear models or machine learning tech-
niques may be used.

The causal effect of treatment in specific subgroups offers 
important evidence for determining the target populations of 
public health interventions. In these cases, standardization can 
be applied to each level of the variable S which classifies the 
subgroup of interest, in which S contains s groups. For example, 
if the conditional exchangeability of the subgroup remains 

S=1, the ATE of treatment T on Y for the subgroup S=1 can  
be estimated using ∑c Pr [Y=1|T=1, C=c, S=1] Pr[C=c|S=1]– 
∑c Pr[Y=1|T=0, C=c, S=1] Pr[C=c|S=1] (Table 3). 

There are 2 methods for estimating the causal effects on sub-
groups using standardization. The first method is to fit a re-
gression model and evaluate the estimand of the dataset sep-
arated by variable S in each subset. Therefore, variable S would 
be excluded from the regression model. The second method is 
to fit a regression model including interaction terms with the 
variable S using the whole dataset and compute the estimand 
for each subgroup. The choice of the estimation method de-
pends on the sample size of each subgroup. If the sample size 
of each subgroup is small, then the second method would be 
preferable since the regression model may not guarantee sta-
bility of the fitted model for a small sample size. However, if 
the sample size is large enough in each subgroup, the first 
method would be preferred since it would provide a more 
flexible method for estimating the causal effect of a subgroup 
since different models can be fitted for each subgroup. There-
fore, the bias-variance tradeoff must be considered when se-
lecting the method for estimating the causal estimands of in-
dividual subgroups. The estimate using the second method 
usually results in a more biased but less fluctuating treatment 
effect estimate than the first method, whereas the first meth-
od usually results in a less biased but more volatile treatment 
effect estimate.

LIVER CANCER TREATMENT EXAMPLES

This section provides a step-by-step tutorial on how to per-
form the analysis using the standardization method. The goal 
in the example is to estimate the average causal effect of ini-
tial liver cancer treatment modality on 3-year survival. We used 
synthetic data that was generated based on Liver Stage Data 

Table 2. Standardization method for the causal estimand of 
treatment

Name Causal estimand Standardization method

Risk difference Pr[Y 1=1]–Pr[Y 0=1]   ∑c Pr[Y=1|T=1,C=c] Pr[C=c]– 
∑c Pr[Y=1|T=0,C=c] Pr[C=c] 

Risk ratio Pr[Y 1=1]
Pr[Y 0=1]

∑c Pr[Y=1|T=1,C=c] Pr[C=c]
∑c Pr[Y=1|T=0,C=c] Pr[C=c]

Odds ratio Pr[Y 1=1]/Pr[Y 1=0]
Pr[Y 0=1]/Pr[Y 0=0]

∑c Pr[Y=1|T=1,C=c] Pr[C=c]
∑c Pr[Y=0|T=1,C=c] Pr[C=c]
∑c Pr[Y=1|T=0,C=c] Pr[C=c]
∑c Pr[Y=0|T=0,C=c] Pr[C=c]

Table 3. Standardization for the causal effect in subgroups

Name Causal estimand for subgroups Standardization for subgroups

Risk difference Pr[Y 1=1|S=s]−Pr[Y 0=1|S=s]    ∑c Pr[Y=1|T=1,C=c,S=s] Pr[C=c|S=s]−
∑c Pr[Y=1|T=0,C=c,S=s] Pr[C=c|S=s] 

Risk ratio Pr[Y 1=1|S=s]
Pr[Y 0=1|S=s]

∑c Pr[Y=1|T=1,C=c,S=s] Pr[C=c|S=s]
∑c Pr[Y=1|T=0,C=c,S=s] Pr[C=c|S=s]

Odds ratio Pr[Y 1=1|S=s]/Pr[Y 1=0|S=s]
Pr[Y 0=1|S=s]/Pr[Y 0=0|S=s]

∑c Pr[Y=1|T=1,C=c,S=s] Pr[C=c|S=s]
∑c Pr[Y=0|T=1,C=c,S=s] Pr[C=c|S=s]
∑c Pr[Y=1|T=0,C=c,S=s] Pr[C=c|S=s]
∑c Pr[Y=0|T=0,C=c,S=s] Pr[C=c|S=s]
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(LSD) from Korea. The LSD is a sample cohort composed of 
randomly selected liver cancer patients registered in the Kore-
an Central Cancer Registry between 2008 and 2016 [10]. The 
LSD includes 10% of newly registered liver cancer patients in 
Korea, and synthetic data (liver_syn_data1) were generated in 
this study using the synthpop package in R 4.0.5. The syn func-
tion enabled the generation of synthetic data that mimicked 
the LSD [11], allowing it to be made available to the public 
without confidentiality concerns. 

Our study design was based on that of a previous study by 
Kim et al. [12] that compared the effect of radiofrequency ab-
lation to surgical resection for hepatocellular carcinoma on 
survival. In this example, the effect of surgical resection and 
local ablation therapy on 3-year survival was compared based 
on standardization. Figure 1 shows the DAG for the causal re-
lationships of all relevant variables for helping to determine 
the set of confounders used in standardization. DAGitty, which 
is the program used to create the DAGs in this study, offers sev-
eral sets of confounders that can be adjusted for estimating 
the causal effect by exploiting Pearl’s backdoor criterion [13,14]. 
Therefore, the variables included in our study were age, ascites 
status (yes or no), Model for End-Stage Liver Disease (MELD) 
score, platelet count (0-50, 50-100, 100-150, >150 103/μL), so-
dium level (0-135, 135-145, >145 mmol/L), alpha-fetoprotein 
(AFP) level (0-200, 200-400, >400 ng/mL), Child-Pugh classifi-

Figure 1. Directed acyclic graph for presenting the relationship between variables. AFP, alpha-fetoprotein; MELD, Model for End-
Stage Liver Disease; CPC, Child-Pugh classification; BCLC, Barcelona Clinic Liver Cancer.

cation (A, B, C, U), and Barcelona Clinic Liver Cancer (BCLC) 
stage (0, A, B, C, D). We set a dichotomous variable (1=death, 
0=survived) as the outcome. In addition, the causal estimands 
of treatment according to individuals’ BCLC stage were explored. 
Therefore, we considered using fitted models that included 
the interaction term between treatment and the BCLC stage 
variable. The final model was selected and consisted of vari-
ables with p-values of less than 0.05.

This tutorial depicts 2 methods for estimating the causal ef-
fect of the treatment based on standardization using R soft-
ware 4.0.5. One method used basic R functions only, while the 
other used the stdReg package in R. Hernán and Robins [4] in-
troduced methods for estimating the ATE using basic R func-
tions in cases when the outcome variable is a continuous mea-
surement. Here, we show how causal estimands such as risk 
difference, risk ratio, and odds ratios were estimated for our 
dichotomous outcome. The stdReg package provides user-
friendly functions for estimating the causal estimand based on 
standardization. We show how to compute the estimands us-
ing the stdGlm function and compare the package result with 
that of the first method.

In the first method, a function for implementing the stan-
dardization for the causal estimands was created, and then 
bootstrapping was performed to calculate each estimand’s 
95% confidence interval. The standardization function consist-
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Next, the standardization function was applied to the boot 
function to perform bootstrapping with 1000 replications. The 
results of bootstrapping were used to construct 2 versions of 
the 95% confidence interval. The first version was referred to as 
the “normal-based confidence interval,” which used the stan-
dard error computed from the bootstrapped estimates. The 
second version used the 2.5% and 97.5% percentiles of the 
bootstrapped estimates as the left and right limits of the 95% 
confidence interval, respectively. In this tutorial, we report the 
first confidence interval in Tables 4 and 5 for brevity.

# [2] Generate confidence intervals
# [2]-1. Calculate the 95% confidence interval

set.seed(1234)
results <- boot(data= liver_syn_data1, statistic=  

standardization, R=1,000, parallel=“multicore”)
se <- c(sd(results$t[, 1]), sd(results$t[, 2]), 

# Load libraries
library (readxl)
library (dplyr)
library (boot)
library (stdReg)

# Import liver synthetic data
liver_syn_data1 <- read.csv (‘~/liver_syn_data.csv’)

# [1] Build function for standardization
standardization <- function( data, indices ) {
liver_syn_data0 <- data[indices, ]
# [1]-1. data expansion

# original
liver_syn_data0$data.class <- ‘ori’

# 2nd copy
liver_syn_data2 <- liver_syn_data0 %>%
mutate (data.class= ‘T0’, Treatment=0, death=NA)

# 3rd copy
liver_syn_data3 <- liver_syn_data0 %>%
mutate (data.class= ‘T1’, Treatment=1, death=NA)

# Combine all data
onesample <- rbind ( liver_syn_data0, liver_syn_

data2, liver_syn_data3)

ed of 4 parts. First, 2 datasets were duplicated by adding an in-
dex variable, and the copies of the datasets were combined. 
The first dataset was a copy of the original dataset (liver_syn_
data0), and the second dataset (liver_syn_data2) included 
data on individuals that were identical to the original but with 
the treatment and death outcomes set to 0 and null, respec-
tively. The third dataset (liver_syn_data3) included data on in-
dividuals that were identical to the original, but the treatment 
and death outcomes were set to 1 and null, respectively. The 
outcome variables in the 2 duplicated datasets were set as 
“NA” so that they would be ignored in the fitting step. Second, 
we fitted a logistic regression model in which the binary out-
come was death within 3 years after the initial treatment pre-
scription. Third, the probability of the event was calculated 
based on the fitted model. Therefore, the standardized proba-
bilities of death were estimated for when all liver cancer pa-
tients underwent surgical resection and when all liver cancer 
patients underwent local ablation therapy. Finally, causal esti-
mands such as risk difference, relative ratio, and odds ratio 
were computed.

# [1]-2. Fit the model
fit1 <-glm (death ~ Treatment * i_bclc+age+Liver_

Cancer_Cause+MELD+cpc_cat+platelet_cat+ 
Sodium_level+AFP_level+Ascites_status, family=  
‘binomial’, data=onesample)

# Confounders in the dataset (i_bclc: BCLC stage; age: Age; 
Liver_Cancer_Cause: cause of liver cancer; MELD: MELD 
score; cpc_cat: child pugh classification; platelet_cat: 
Platelet count; Sodium_level: sodium level, AFP_level:  
alpha-fetoprotein; Ascites_status: ascites status)
# [1]-3. Predict the outcome Y

onesample$predicted.meanY 1 <- predict.glm (fit1, 
onesample, type=“response”)

Y1T1=mean( onesample$predicted.meanY1 
[onesample$data.class= = ‘T1’])

Y1T0=mean( onesample$predicted.meanY1 
[onesample$data.class= = ‘T0’])

# [1]-4. Calculate the causal estimands
ATE=Y1T1 - Y1T0 #Risk difference
RR=Y1T1/Y1T0 #Relative ratio
OR= (Y1T1/(1-Y1T1))/(Y1T0/(1-Y1T0)) #Odds ratio
return(c(ATE, RR, OR))}
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The same causal estimands can also be computed using the 
stdReg package. The steps for applying the function in the 
stdReg package for estimating the estimands were simpler 
than the previous method. First, we fitted the same logistic re-
gression model and applied the fitted model to the stdGlm 
function. The function required specifying the name of the ex-
posure variable and the levels of exposure. Since the exposure 
of interest was the “treatment” variable, we set X=”treatment” 
and x= (0, 1, 1) in the stdGlm function. Each value within the 
parenthesis of the x argument indicated the minimum value, 
maximum value, and the unit of increment in order. Next, the 
estimates for the causal estimands using the summary func-
tion were presented. The summary function enabled estima-
tion of the causal estimand with the standard error and 95% 
confidence interval by setting the contrast and reference op-
tions. 

The causal estimates from the standardization function and 
stdGlm function are compared in Table 4. The estimates and 
their 95% confidence intervals from the 2 methods were the 
same. 

Sensitivity analyses are generally performed to assess the 
robustness of findings in a study [15]. Although the set of con-
founders is selected from the DAG, various outcome models 
based on the same sets of confounders are possible by consid-
ering, for example, their interaction terms, and the causal esti-
mates from different models are expected to reflect consistent 
results as long as they are close to the true model. For exam-
ple, the fitted model for the standardization in our tutorial in-
cluded the interaction term between the treatment and BCLC 
stage. If the fitted model properly controls the confounding 
effects, including additional interaction terms between the 
treatment and the other variables, the causal estimates should 

# [3] Standardization using the stdReg package
fit1 <-glm (death ~ Treatment * i_bclc+age+Liver_ 

Cancer_Cause+MELD+cpc_cat+platelet_cat+ 
Sodium_level+AFP_level+Ascites_status, family=  
‘binomial’, data= liver_syn_data1)

fit.std <- stdGlm (fit=fit1, data= liver_syn_data1, 
X=“Treatment”, x=  seq (0,1,1))

summary (fit.std, contrast= ‘difference’, reference=0) 
#Risk difference

summary (fit.std, contrast= ‘ratio’, reference=0)  
#Relative ratio

summary (fit.std, transform= ‘odds’, contrast=“ratio”,  
reference=0) #Odds ratio

Table 4. Comparison of standardization results

Estimand Standardization function stdGlm function

Risk difference 0.02 (-0.01, 0.05) 0.02 (-0.01, 0.05)

Relative risk 1.11 (0.94, 1.27) 1.11 (0.95, 1.27)

Odds ratio 1.13 (0.93, 1.34) 1.13 (0.93, 1.33)

Values are presented as estimate (95% confidence interval).

Table 5. Results of sensitivity analyses based on different 
models

Estimand Model 11 Model 22 Model 33

Risk difference 0.02 (-0.01, 0.04) 0.02 (-0.01, 0.04) 0.02 (-0.01, 0.04)

Relative risk 1.09 (0.94, 1.25) 1.10 (0.94, 1.25) 1.10 (0.94, 1.25)

Odds ratio 1.12 (0.92, 1.32) 1.12 (0.92, 1.32) 1.12 (0.92, 1.32)

Values are presented as estimate (95% confidence interval).
BCLC, Barcelona Clinic Liver Cancer. 
1Interaction term between treatment, BCLC stage, and alpha-fetoprotein 
level and other confounders are included in the model.
2Interaction term between treatment, BCLC stage, and cause of liver cancer 
and other confounders are included in the model.
3Interaction term between treatment and Child-Pugh classification and other 
confounders are included in the model.

sd(results$t[, 3]))
mean <- results$t0

# 95% normal confidence interval using se
ll1 <- mean - qnorm(0.975) * se
ul1 <- mean + qnorm(0.975) * se

# 95% percentile confidence interval
ll2 <- c (quantile (results$t[,1], 0.025), quantile 

(results$t[,2], 0.025), quantile (results$t[,3], 0.025)) 
ul2 <- c (quantile (results$t[,1], 0.975), quantile 

(results$t[,2], 0.975), quantile (results$t[,3], 0.975)) 
# [2]-2. Present the result

bootstrap <-data.frame(cbind(c(“ATE”, “RR”, “OR”), round 
(mean, 4), round (se, 4), round (ll1 , 4), round (ul1 , 4), 
round (ll2 , 4), round (ul2, 4)), row.names=NULL)

colnames (bootstrap) <- c(“Estimand”, “mean”, “se”, 
“Lower1”, “Upper1”, “Lower2”, “Upper2”)
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not change drastically.
Table 5 shows the results of the sensitivity analysis. Different 

interaction terms were included in each model, and estimates 
from Tables 4 and 5 were compared to one another. The results 
of the sensitivity analysis support the robustness of our find-
ings since the compared estimates were very similar.

The R script for performing standardization on a subset of 
the population is shown in Supplemental Material 1. The meth-
od for estimating the subgroup causal effects was straightfor-
ward. In the standardization function, the procedure until the 
steps for fitting a logistic regression model was the same as 
estimating the whole population’s estimands. As such, individ-
uals were selected from the subset of the population when 
averaging the probability of the event. When using the stdReg 
package, the estimands for the subset of the population can 
be computed by setting the subsetnew argument in the stdG-
lm function. The rest of the steps in both methods for estimat-
ing the subgroup causal effects were the same as those for the 
whole population. In the example, the subgroup consisted of 
individuals with a BCLC stage of A, and the results are present-
ed in Supplemental Material 2. Sensitivity analyses were also 
performed for the subgroups, and the results are presented in 
Supplemental Material 3.

DISCUSSION AND CONCLUSION

Standardization is traditionally used in epidemiology when 
reporting the specific rate or ratio of a disease, such as the age-
standardized incidence rate and the standardized mortality 
ratio [16]. The application of standardization would remove 
the confounding effect [17]. For example, a country with a pop-
ulation distribution that is skewed toward the elderly would al-
ways show a high cancer incidence. In these cases, using the 
age-standardized incidence rate of cancer would remove the 
confounding effect of the age variable.

Standardization in causal inference answers the causal ques-
tion based on the potential outcome if everyone is either treat-
ed or untreated. Causal inference based on observational stud-
ies is difficult since the causal estimand is not fully identifiable 
without having to make a strong assumption. The observation-
al study must also have conditions that are similar to those of 
a conditional randomized experiment. However, the required 
conditional exchangeability between treated and untreated 
subjects cannot be proven by data and can only be examined 
using subject matter knowledge. 

Our tutorial demonstrated how standardization is implement-
ed for estimating various causal estimands. Before fitting a re-
gression model, creating a DAG is important since it guides 
the systematic selection of the potential confounders that will 
be included in a model. In particular, nodes and arrows in a 
DAG are drawn based on background knowledge [18], and dif-
ferent versions of a DAG can be used for sensitivity analysis. 
Consistent results from different versions of DAGs indicate a 
higher degree of confidence in the causal effect estimation. 
Additional sensitivity analysis under unmeasured confound-
ing may also be performed using subject matter knowledge.

Standardization is simply a method for estimating the causal 
estimand of interest. Other methods such as inverse probabili-
ty weighting, propensity score matching, and instrumental 
variable methods are some alternatives with different assump-
tions. Inverse probability weighting is usually compared to 
standardization when estimating the causal estimand [19]. The 
key difference between the two methods is based on which 
parts are modeled. Inverse probability weighting models the 
treatment using Pr[T=t|C=c], while standardization models 
the outcome using Pr[Y=1|T=t, C=c]. The propensity score 
matching method estimates the causal estimands from ex-
posed and unexposed groups that are matched based on the 
propensity score [20]. Instrumental variables, associated with 
treatment but not associated with outcomes, as well as con-
founders, can be used to estimate the estimands even when 
confounding variables are not measured. However, all meth-
ods require either the conditional exchangeability condition 
or its corresponding untestable conditions. Therefore, research-
ers should be fully aware that causal inference from an obser-
vational study cannot replace causal inference from an RCT. 
Conditional exchangeability is an untestable assumption in an 
observational study, whereas in an RCT, conditional exchange-
ability holds true in practice.
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