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ABSTRACT
Objectives  The American College of Cardiology 
and the American Heart Association guidelines on 
primary prevention of atherosclerotic cardiovascular 
disease (ASCVD) recommend using 10-year ASCVD 
risk estimation models to initiate statin treatment. For 
guideline-concordant decision-making, risk estimates 
need to be calibrated. However, existing models are often 
miscalibrated for race, ethnicity and sex based subgroups. 
This study evaluates two algorithmic fairness approaches 
to adjust the risk estimators (group recalibration 
and equalised odds) for their compatibility with the 
assumptions underpinning the guidelines’ decision rules.
MethodsUsing an updated pooled cohorts data set, we 
derive unconstrained, group-recalibrated and equalised 
odds-constrained versions of the 10-year ASCVD risk 
estimators, and compare their calibration at guideline-
concordant decision thresholds.
Results  We find that, compared with the unconstrained 
model, group-recalibration improves calibration at one of 
the relevant thresholds for each group, but exacerbates 
differences in false positive and false negative rates 
between groups. An equalised odds constraint, meant 
to equalise error rates across groups, does so by 
miscalibrating the model overall and at relevant decision 
thresholds.
Discussion  Hence, because of induced miscalibration, 
decisions guided by risk estimators learned with an 
equalised odds fairness constraint are not concordant 
with existing guidelines. Conversely, recalibrating the 
model separately for each group can increase guideline 
compatibility, while increasing intergroup differences in 
error rates. As such, comparisons of error rates across 
groups can be misleading when guidelines recommend 
treating at fixed decision thresholds.
Conclusion  The illustrated tradeoffs between satisfying 
a fairness criterion and retaining guideline compatibility 
underscore the need to evaluate models in the context of 
downstream interventions.

INTRODUCTION
While risk stratification models are central 
to personalising care, their use can worsen 
health inequities.1 In an effort to mitigate 
harms, several recent works propose algo-
rithmic group fairness—mathematical criteria 

which require that certain statistical prop-
erties of a model’s predictions not differ 
across groups.2 3 However, identifying which 
statistical properties are most relevant to fair-
ness in a given context is non-trivial. Hence, 
before applying fairness criteria for eval-
uation or model adjustment, it is crucial to 
examine how the model’s predictions will 
inform treatment decisions—and what effect 
those decisions will have on patients’ health.

Here, we consider the 2019 guidelines of 
the American College of Cardiology and the 
American Heart Association (ACC/AHA) on 
primary prevention of atherosclerotic cardio-
vascular disease (ASCVD),4 which codify 

Summary

What is already known?
	► Algorithmic fairness methods can be used to quanti-
fy and correct for differences in specific model per-
formance metrics across groups, but the choice of 
an appropriate fairness metric is difficult.

	► The pooled cohort equations (PCEs), 10-year ath-
erosclerotic cardiovascular disease risk prediction 
models used to guide statin treatment decisions in 
the USA, exhibit differences in calibration and dis-
crimination across demographic groups, which can 
lead to inappropriate or misinformed treatment de-
cisions for some groups.

	► Two theoretically incompatible fairness adjustments 
have been separately proposed for re-deriving the 
PCEs.

What does this paper add?
	► Proposes a measure of local calibration of the PCEs 
at therapeutic thresholds as a method for probing 
guideline compatibility.

	► Quantifies the effect of two proposed fairness meth-
ods for re-deriving the PCEs in terms of their impact 
on local calibration.

	► Illustrates general principles that can be used to 
conduct contextually-relevant fairness evaluations 
of models used in clinical settings in the presence 
of clinical guidelines.
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the use of 10-year ASCVD risk predictions to inform a 
clinician-patient shared decision-making on initiating 
statin therapy. These guidelines recommend that individ-
uals estimated to be at intermediate risk (>7.5%–20%) 
be considered for initiation for moderate-intensity to 
high-intensity statin therapy, and that those at high risk 
(>20%) be considered for high-intensity statin therapy. 
Individuals at borderline risk (>5%–7.5%) may be consid-
ered for therapy under some circumstances.4 5

These therapeutic thresholds were established based on 
randomised control trials, and correspond to risk levels 
where expected overall benefits derived from low-density 
lipoprotein cholesterol reduction outweigh risks of side 
effects (online supplemental file C).4 6 In general, such 
thresholds can be identified using decision analysis 
methods7 (figure  1A). The models accompanying the 
guidelines (pooled cohort equations, PCEs6 8 9), devel-
oped for Black women, white women, Black men and 
white men, differ in both calibration and discrimina-
tion across groups.10 11 The resultant systematic bias in 
risk misestimation in these subgroups can lead to inap-
propriate or misinformed treatment decisions. Since 
then, several works derived updated equations,11–14 some 
explicitly incorporating fairness adjustments.13 14

If therapeutic thresholds recommended by guidelines 
reflect a balance of relevant harms and benefits for all 
subgroups,15 16 therapeutic decisions could be unfair if 
thresholds used for different groups differ, as they would 
lead to suboptimal treatment decisions for some groups 
(figure 1A). As such, subgroup calibration at optimal ther-
apeutic thresholds is an important fairness criterion for 
10-year ASCVD risk estimation models,14 since under miscal-
ibration (systematic overestimation or underestimation of 
risk), treatment thresholds implicitly change (figure  1C) 
from treatment thresholds to implied thresholds.17 18

An alternative fairness criterion, known as equalised odds 
(EO),3 which has previously been used to evaluate several 
clinical predictive models,13 19 20 requires equality in false 
positive and false negative error rates (FPR and FNR) 
across groups. One work proposed to explicitly incorpo-
rate EO constraints into the training objective to learn 
ASCVD risk estimators with minimal intergroup differ-
ences in FPR and FNR.13

In the context of ASCVD risk estimation, the EO crite-
rion lacks a clear motivation and can thus yield misleading 
results. FPR and FNR are sensitive to the distribution 
of risk and are expected to differ across groups when 
the incidence of outcomes differs (figure  1B).18 21 22 

Figure 1  (A) Identifying an optimal therapeutic threshold. An individual with risk r should be treated if the expected value of 
treatment exceeds that of non-treatment. As risk increases, the benefits of treatment become more significant, and assigning 
treatment becomes more optimal than withholding it. The optimal therapeutic threshold t is the value of risk at which treatment 
and non-treatment have the same expected value (the indifference point)—for individuals with r>t, treatment is expected to be 
more beneficial than non-treatment. Setting a non-optimal therapeutic threshold could lead to suboptimal treatment decisions 
for some individuals (treating some individuals for whom non-treatment has a higher expected value, or not treating individuals 
for whom treatment has a higher expected value). (B) Illustration of the sensitivity of FPR and FNR to the distribution of risk. 
Assume that there are two types of easily distinguishable individuals: with 5% and 50% chance of developing a disease, 
respectively, and there are two groups composed of both types of individuals, but one has a higher proportion of lower-risk 
individuals. If the same therapeutic threshold is applied to both groups, false positive rates (FPR) and false negative rates 
(FNR) will not be equal, even though we would be making optimal treatment decisions for each patient, in both populations. 
(C) Under miscalibration, implied thresholds differ from therapeutic thresholds. If risk scores are miscalibrated, taking action 
at the threshold of 7.5% corresponds to different observed outcome rates in the two groups. For Group I, a risk score of 7.5% 
corresponds to an observed outcome incidence of 10%, while for Group II it corresponds to 6%, therefore, individuals in Group 
II would be treated at a lower risk than individuals in Group I.
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Furthermore, approaches to build EO-satisfying models 
either explicitly adjust group-specific decision thresholds, 
introduce differential miscalibration or reduce model fit 
for each group3—which may lead to suboptimal decisions 
(figure 1A,C). EO-satisfying models may therefore be less 
appropriate than calibrated estimators for use with the 
ACC/AHA guidelines.17

We aim to evaluate the tension between calibration, 
EO and guideline-concordant decision-making. To do so, 
we propose a measure of local calibration at guideline-
concordant therapeutic thresholds as a method for 
probing guideline compatibility and apply it to uncon-
strained, group-recalibrated and EO-constrained versions 
of the 10-year ASCVD risk prediction models learnt 
from the updated pooled cohorts data set,9 11 as well as 
the original8 and revised PCEs.11 We assess the proposed 
local calibration measure and error rates across groups 
for each model, and conclude with recommendations 
for identifying quantification and adjustment criteria for 
enabling fair model-guided decisions.

METHODS
Data sets
We use an updated pooled cohorts data set,11 comprised 
of ARIC (Atherosclerosis Risk in Communities Study, 
1987–2011), CARDIA (Coronary Artery Risk Devel-
opment in Young Adults Study, 1983–2006), CHS 
(Cardiovascular Health Study, 1989–1999), FHS OS 
(Framingham Heart Study Offspring Cohort, 1971–
2014), MESA (Multi-Ethnic Study of Atherosclerosis, 
2000–2012) and JHS (Jackson Heart Study, 2000–2012). 
Following the original PCE inclusion criteria,9 we 
include individuals aged 40–79, excluding those with 
a history of myocardial infarction, stroke, coronary 
bypass surgery, angioplasty, congestive heart failure or 
atrial fibrillation, or receiving statins at the time of the 
initial examination. We include all individuals, regard-
less of racial category, and classify them as Black and 
non-Black, consistent with the use of PCEs in practice 
for non-Black patients of colour.

We extract features included in the PCEs (total choles-
terol, high-density lipoprotein (HDL) cholesterol, treated 
and untreated systolic blood pressure, diabetes, smoking 
status, age, binary sex and race) and body mass index, 
recorded at the initial examination. We also extract dates 
of observed ASCVD events (myocardial infarction, lethal 
or non-lethal stroke or lethal coronary heart disease), 
and of last recorded observation (follow-up or death), 
to define binary labels for 10-year ASCVD outcome and 
censoring. Individuals whose last recorded observation 
happened before an ASCVD event and before year 10 are 
considered censored. We remove records with extreme 
values of systolic blood pressure (outside 90–200 mm 
Hg), total cholesterol and HDL cholesterol (outside 
130–320 and 20–100 mg/dL, respectively) or missing 
covariates.

Models
Unconstrained model
The original PCEs consist of four separate Cox propor-
tional hazards models, stratified by sex and race, to 
account for differences in ASCVD incidence across the 
four groups (Black women, white women, Black men and 
white men).8 One revision of the PCEs, which reduced 
overfitting and improved calibration, replaced the 
Cox models with censoring-adjusted logistic regression 
models, stratified by sex and included race as a variable in 
each model.11 Our implementation of the unconstrained 
(UC) models consists of a single inverse probability of 
censoring (IPCW)-adjusted logistic regression model,23 
and includes race and sex as binary variables. Censoring 
weights are obtained from four group-level Kaplan-Meier 
estimators applied to the training set. We include all 
features and their two-way interactions.

Group-recalibrated model
For recalibration, we logit-transform the predicted prob-
abilities generated by the UC model, and use IPCW-
adjusted logistic regression to fit a calibration curve for 
each group. We then use the resulting group-recalibrated 
model to obtain a set of recalibrated predictions.

EO model
The EO criterion requires that both the FPR and FNR be 
equal across groups at one or more thresholds.3 We use 
an in-processing method for constructing EO models,22 24 
which provides a better calibration-EO tradeoff than the 
post-processing approach.25 We define the training objec-
tive by adding a regulariser to the UC model’s objective 
(online supplemental file A), with the degree of regu-
larisation controlled by λ. The regulariser penalises 
differences between FPR and FNR at specified decision 
thresholds (7.5% and 20%), across the four groups.

Training procedures
Using random sampling stratified by group, outcome 
and presence of censoring, we divide our cohort into 
the training (80%), recalibration (10%) and test (10%) 
sets. Using the same procedure, we divide the training set 
into 10 equally-sized subsets and, for each subset, train 
a logistic regression model using stochastic gradient 
descent for up to 200 iterations of 128 minibatches, with 
learning rate of 10−4 on the remaining subsets. We termi-
nate training if the cross-entropy loss does not improve 
on the held-out subset for 30 iterations. This procedure 
generates 10 UC models. To generate group-recalibrated 
models, we first generate predictions on the recalibration 
set, using the UC models (figure 2) and then use those 
train logistic regression models using BFGS (Broyden-
Fletcher-Goldfarb-Shanno) optimisation, implemented 
in Scikit-Learn,26 with up to 105 iterations. To examine the 
impact of the EO penalty, we repeat the unconstrained 
training procedure using the regularised training objec-
tive with four different settings of the parameter λ, 
distributed log-uniformly on the interval 0.1–1.0 (0.100, 
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0.215, 0.464, 1.000) and refer to the resulting models as 
EO1 through EO4. PyTorch V.1.5.027 is used to define all 
models and training procedures. We make our code avail-
able at https://github.com/agataf/fairness_eval_ascvd.

Evaluation
We introduce threshold calibration error (TCE), a measure 
of local calibration, defined as the difference between 
the therapeutic threshold (t1=7.5% or t2=20%) applied 
on the risk estimate and the implied threshold on the risk, 
measured by the calibration curve (figure 1C). As in the 
recalibration procedure, we estimate implied thresholds 
ga(ti) at a fixed therapeutic threshold ti by fitting a calibra-
tion curve ga for each group a (figure 1C). Then, for each 
threshold i we obtain TCE(i,a):

	﻿‍ TCE(i, a) = ti − ga ‍�

A negative TCE indicates risk underestimation, since 
the threshold applied to the risk score is lower than the 
observed incidence of the outcome at that predicted 
risk level. Similarly, a positive TCE indicates risk 
overestimation.

To understand the tradeoff between TCE, FPR and 
FNR, we calculate intergroup SD (IGSD) between the four 
group-specific values of the three metrics. For a threshold 
i, metric M and A distinct groups, IGSDMi is defined as

‍
ISGD(M, ti) =

√∑A
a=1(Mia−µMi )

2

A ‍
, where‍µMi =

∑A
a=1 Mia

A ‍

IGSD captures the degree of performance disparity 
between groups; high IGSD in FPR and FNR corresponds 
to an EO disparity, and high IGSD in TCE corresponds to 
a treatment rule disparity.

For each of the four subgroups, and overall population, 
we report calibration and discrimination metrics at both 
the aggregate (absolute calibration error, ACE22 and area 
under the receiver operating characteristic, AUROC) and 
the threshold level (TCE, FPR and FNR) at t1 and t2, for 
the UC model, the group-recalibrated model (rUC) and 
the best-performing EO model, as well as the original 
PCEs9 (PCE) and revised PCEs11 (rPCE). We draw 1000 
bootstrap samples from the test set, stratified by group 
and outcomes, to derive point estimates and 95% CIs 
for each metric. The 95% CIs are defined as the 2.5% to 
97.5% percentiles of the distribution obtained via pooling 
over both the bootstrap samples and the 10 model repli-
cates derived from the training procedure. We also report 
IGSD between the four group-specific median values in 
TCE, FPR and FNR at both thresholds. All metrics are 
computed over the uncensored population and adjusted 
for censoring using IPCW.

RESULTS
We describe the study population and present perfor-
mance of the models. We report the TCE, FPR and FNR 
in figure 3, and IGSD of those three metrics in figure 4. 
We present results for EO3 in figure 3, as it was the only 
equalised odds model that achieved a reduction of IGSD 
(FPR) while keeping a low IGSD (FNR) at both thresh-
olds. Results for the remaining EO models are included 
in online supplemental file B.

Study population
Overall, 25 619 individuals met the inclusion criteria, 
of whom 80% (N=20495) were assigned to the training 
set, and 10% (N=2562) to each the recalibration and test 
sets. Table  1 summarises the mean age, ASCVD event 
incidence and frequency of censoring across the six data 
sets and four demographic groups. A cohort construction 
flowchart is included in online supplemental figure B1.

Model performance
The UC model achieved an overall AUROC of 0.827, 
(95% CI=(0.800 to 0.853)), comparing favourably with 
PCE (0.808 (0.779 to 0.835)) and rPCE (0.804 (0.777 
to 0.831)), while maintaining differences of AUROC 
between groups (figure  3A). While UC had a slightly 
higher overall ACE (0.011 (0.006 to 0.023)) than rPCE 
(0.005 (0.001 to 0.015)), as well as a slightly higher local 
miscalibration at t1 (TCE(t1) 0.012 (0.006 to 0.019) versus 
0.000 (−0.004 to 0.005)), IGSD(TCE, t1) and IGSD(TCE, 
t2) both reduced under UC (from 0.018 to 0.004, and 
0.053 to 0.016, respectively) (figure 4).

The group recalibration procedure (rUC) reduced 
the magnitude of TCE(t1) overall (−0.001 (−0.007 to 
0.006)), and for each group, relative to UC (0.012 (0.006 

Figure 2  Visual abstract. Data from the six considered data 
sets: ARIC (Atherosclerosis Risk in Communities Study), 
CARDIA (Coronary Artery Risk Development in Young 
Adults Study), CHS (Cardiovascular Health Study), FHS OS 
(Framingham Heart Study Offspring Cohort), MESA (Multi-
Ethnic Study of Atherosclerosis) and JHS (Jackson Heart 
Study), is extracted using the cohort definition used in the 
original pooled cohort equations (PCEs), and divided into 
train (80%), validation (10%) and test (10%) sets. Equalised 
odds and unconstrained (UC) models are derived directly 
from the training set. The recalibrated model is derived from 
the UC model using a recalibration procedure, which uses 
the validation data set (not seen during training). Finally, 
predictions on the test set are generated for all models—
including the PCEs and the revised PCEs (rPCE), derived in 
past work—and evaluated.
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to 0.019)) (figure  3A). While recalibration improved 
TCE(t2) overall (0.00 (−0.019 to 0.016) vs 0.006 (−0.013 
to 0.023)), it increased the magnitude of miscalibration 
of individual groups—for instance, shifting TCE(t2) 
from 0.033 (–0.016 to 0.066) to −0.071 (−0.196 to 0.008) 
for Black men, and increasing IGSD(TCE, t2) to 0.038. 

We also observe that, while TCE(t1) and IGSD(TCE, t1) 
improved for rUC, IGSD(FNR, t1) worsened, increasing 
from 0.020 to 0.038, as did IGSD(FPR, t2) and IGSD(FNR, 
t2) (figure  4). Additionally, at each threshold, for all 
models, we observe a relationship between TCE, FPR and 
FNR: increased TCE (overestimation) leads to higher 
FPR and lower FNR, and decreased TCE (underestima-
tion)—to lower FPR an higher FNR (figure 3B).

The EO procedure generated models with FPR and 
FNR which approached similar values across groups at 
both t1 or t2—bringing IGSD(FPR, t1) to 0.054 from 0.094 
(figure  4) while maintaining almost identical AUROC 
to UC (0.822 (0.794, 0.8)) (figure 3A). However, it did 
so by trading off error rates in opposite directions at the 
two thresholds, as described above (figure  3B). It also 
increased the magnitude of TCE at both thresholds (from 
0.012 (0.006 to 0.019) to 0.033 (0.025 to 0.047) at t1 and 
from 0.006 (−0.013 to 0.023) to −0.236 (−0.335 to –0.129) 
at t2), and increased IGSD(TCE, t1) to 0.011 (from 0.004) 
and IGSD(TCE, t2) to 0.039 (from 0.016), implying that 
the scores generated by the EO model did not closely 
correspond to their calibrated values.

DISCUSSION
We identified local calibration of 10-year ASCVD risk 
prediction models at guideline-recommended thresholds 
as necessary for fair shared decision-making about statin 
treatment between patients and physicians. We find that 
the rPCEs11 differ in local calibration between groups—
making guideline-compatibility of rPCE inconsistent 
across groups. We note that global measurements of cali-
bration, used previously to evaluate the PCEs,11 14 did not 
capture this difference, illustrating the importance of 
local calibration evaluation.

Recalibrating the model separately for each group 
increased compatibility with guidelines at low levels of 
risk, while increasing intergroup differences in error 
rates. Conversely, estimators learnt with an EO constraint 
would not be concordant with existing guidelines as a 
result of induced miscalibration. Thus, absent a contex-
tual analysis, fairness approaches that focus on error rates 
can produce misleading results.

In our experiments, group-recalibration did not 
improve calibration at t=20%. This may be due to the small 
sample size of the recalibration set, as well as of individ-
uals predicted to be at high risk. This suggests that group-
recalibration may not always be desirable, especially if 
local calibration of the UC model is deemed acceptable. 
However, improvement in local calibration observed at 
t=7.5% may be more relevant than calibration at higher 
risk levels for informing statin initiation decisions, since 
benefits of treatment are clearer at higher-risk levels.

Several design choices may have impacted the results, 
including the use of a single model with race and sex as 
variables in the UC and EO models, the use of a logistic 
regression as a recalibration method, and the use of an 
in-processing method that focused on particular decision 

Figure 3  Model performance across evaluation metrics, 
stratified by demographic group, evaluated on the test set. 
The left panel showsAUROC and absolute calibration error. 
The right panel shows false negative rates, false positive 
rates and threshold calibration error at two therapeutic 
thresholds (7.5% and 20%). EO, equalised odds; PCEs, 
original pooled cohort equations; rPCE, revised PCEs; rUC, 
recalibrated model; UC, unconstrained model.

Figure 4  Relationship between intergroup variability in 
threshold calibration rate (TCE) and error rates. The figure 
shows the relationship between intergroup SD (IGSD) of 
threshold calibration error (on the x-axis) and IGSD of false 
negative rate (FNR, circles) and false positive rate (FPR, 
crosses) across the models: EO1–4, equalised odds with 
increasing values of λ. The EO3 corresponds to the EO model 
discussed in the Results section. In the models we trained, 
IGSD of TCE scales inversely with the IGSD of FNR and FPR. 
PCE, original pooled cohort equations; rPCE, revised PCEs; 
rUC, recalibrated model; UC, unconstrained model.
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thresholds to impose EO. We anticipate that alternative 
modelling choices would impact the size of the observed 
effects, but would likely not change the conclusions, since 
known statistical tradeoffs exist between EO and calibra-
tion.18 21 22

Given this analysis, we recommend that developers 
building models for use with the ACC/AHA guidelines 
prioritise calibration across a relevant range of thresholds, 
and report group-stratified evaluation of local calibration 
alongside metrics of global fit. Before a model is deployed 
in a new setting, we recommend that it be evaluated on 
the target population, stratified by relevant groups—and 
group-recalibrated, if necessary. Knowledge about local 
miscalibration should also be incorporated into risk 
calculators to actively inform the physician-patient shared 
decision-making conversations, but should not replace 
recalibration efforts, since calibrated predictions are 
better suited for reasoning about potential consequences 
of treatment.10

Our analysis inherits the assumptions about relative 
importance of relevant risks and benefits used to derive 
therapeutic thresholds (online supplemental file C), 
which often fail to consider the impact of social deter-
minants of health on treatment efficacy and of structural 
forms of discrimination in generating health dispari-
ties.28 Additionally, our use of self-identified racial cate-
gories—which can be understood as proxies for systemic 
and structural racist factors impacting health—may be 

inappropriate, potentially exacerbating historical racial 
biases and disparities in the clinical settings.29 30 Deriva-
tion of new risk prediction models may be necessary for 
multiethnic populations.12 Future work should explore 
decision analysis and modelling choices that incorporate 
this context.

CONCLUSION
Our analysis is one of the first to consider algorithmic 
fairness in the context of clinical practice guidelines. It 
illustrates general principles that can be used to identify 
contextually relevant fairness evaluations of models used 
in clinical settings in the presence of clinical guidelines. 
Such analysis should include careful consideration of the 
interplay between model properties, model-guided treat-
ment policy, as well as the potential harms and benefits of 
treatment, for each relevant subgroup. At the same time, 
we note that striving for model fairness is unlikely to be 
sufficient in addressing health inequities, especially when 
their sources lay upstream of the model-guided interven-
tion, as is the case of structural racism.28 We encourage 
future work to situate fairness analyses in this broader 
context.
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Table 1  Cohort characteristics for patients who met inclusion criteria

Study

N Age
ASCVD event 
incidence* % censored N Age

ASCVD event 
incidence* % censored

Black women Black men

ARIC 1812 53.2 5.70% 6.51 1216 53.8 9.61% 10.03

CARDIA 232 43.0 4.42% 8.19 153 42.7 1.63% 14.38

CHS 304 70.7 22.52% 15.46 181 70.5 30.89% 27.62

JHS 1310 51.4 2.77% 14.96 751 51.1 4.47% 14.11

MESA 768 60.3 5.18% 9.64 630 60.9 7.19% 13.17

All 4426 54.6 5.69% 10.26 2931 55.1 8.15% 13.07

 �  Non-Black women Non-Black men

ARIC 4815 53.9 2.54% 3.30 4383 54.5 7.17% 4.86

CARDIA 289 42.7 0.39% 6.23 333 42.5 0.90% 6.91

CHS 1848 70.7 20.18% 15.58 1169 71.0 32.00% 17.45

FHS OS 828 46.4 2.61% 1.81 856 47.1 8.67% 3.86

MESA 1913 60.5 3.81% 7.68 1828 60.8 6.67% 10.07

All 9693 57.4 5.95% 6.47 8569 56.9 10.36% 7.67

 �  All

All 25 619 56.5 7.54% 8.28

Data are grouped by sex and race, as well as data set. Each group of patients is described by four values: total number of individuals, mean age, 
censoring-adjusted incidence of ASCVD events within 10 years of the initial examination and fraction of censored individuals.
*ASCVD event incidence was calculated by weighing the number of positive outcome and negative outcome uncensored individuals with the sum of 
their inverse probability of censoring weights.
ARIC, Atherosclerosis Risk in Communities Study; ASCVD, atherosclerotic cardiovascular disease; AUROC, area under the receiver operating 
characteristic; CARDIA, Coronary Artery Risk Development in Young Adults Study; CHS, Cardiovascular Health Study; FHS OS, Framingham Heart 
Study Offspring Cohort; FNR, false negative rate; FPR, false positive rate; IPCW, inverse probability of censoring; JHS, Jackson Heart Study; MESA, 
Multi-Ethnic Study of Atherosclerosis; PCE, Pooled Cohort Equations.
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