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Conspectus

There is a need for affordable, point-of-care devices to ease the high burden of disease in 

low-resource settings. The past decade of work on paper-based fluidic devices has resulted the 

invention of many paper-based biosensors for disease detection. However, a challenge still remains 

in detecting pathogenic biomarkers from complex human samples without specialized laboratory 

equipment. Our research has focused on the development of affordable technologies to extract 

and detect nucleic acids in clinical samples with minimal equipment. Here we describe methods 

for paper-based extraction, amplification and detection of nucleic acids. This Account provides 

an overview of our latest technologies developed to detect an array of diseases in low-resource 

settings.

Graphical Abstract

Introduction

Infectious disease prevalence is highest in low-resource settings (LRS) due to a lack 

of trained personnel, money and infrastructure needed to carry out lab-based molecular 

diagnostics. The Klapperich Lab focuses on building low-cost point-of-care diagnostics, 

that don’t require specialized equipment, for use in low-resource settings. These tests are 

largely comprised of paperfluidic devices that are made to enable extraction, amplification 

and detection of nucleic acids. While these platforms can be modified to detect any 

disease, we have focused our efforts on detecting malaria,1,2 influenza3 and various sexually 
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transmitted infections.4–8 We develop technologies that aim to satisfy the World Health 

Organization’s ASSURED (Affordable, Sensitive, Specific, User friendly, Rapid and Robust, 

Equipment free and Deliverable to end users) criteria for point-of-care devices.9 Broadly 

speaking, our technology features paper-based extraction of nucleic acids from clinical 

samples,1,3,4,6,7 isothermal amplification of target nucleic acids to eliminate thermal cycling 

requirements,1–8,10 and either lateral flow2–4,6–8 or electrochemical5 detection of nucleic 

acids. Recently, we have explored CRISPR-based detection to increase assay specificity.5

Paperfluidic sample preparation

In order to first detect a nucleic acid target specific to a pathogen, in most cases that nucleic 

acid must be extracted from a clinical sample. In high-resource settings, this extraction 

is perfomed using a multistep protocol requiring centrifugation or a vacuum manifold. To 

eliminate the need for specialized equipment, we have built paperfluidic systems for the 

extraction of nucleic acids from various clinical sample types, including nasopharyngeal 

swabs,11 cervical swabs,12 urethral and vaginal swabs,6 urine4,8 and whole blood.1

Paper-based extraction of H1N1 RNA from nasopharyngeal swabs was demonstrated using 

a polyethersulfone (PES) membrane attached to a wicking pad (Fig 1).3 The sample was 

mixed with a lysis buffer that contained Glycoblue coprecipitant (Thermofisher, Lexington, 

MA) for visualization of the pelleted NA. When the mixture is applied to the PES 

membrane, the Glycoblue and RNA precipitate is captured by the PES membrane while 

the liquid phase is wicked away by the absorbent pad. During the initial proof-of-concept 

demonstration of using PES for RNA extraction, RNA was eluted from the PES membrane 

via centrifugation. The paper-based extraction yields were comparable to gold-standard 

benchtop extraction methods.

To eliminate all centrifugation steps in a sample-extraction process, a PES membrane 

was next incorporated into a fully integrated device for the extraction, amplification and 

detection of human papillomavirus (HPV) DNA from cervical swabs (Fig 2).12 Again, the 

sample was first mixed with a lysis buffer that contained Glycoblue coprecipitant. Upon 

application to the PES membrane, the DNA-Glycoblue precipitate was captured by the PES 

membrane while the liquid phase was wicked away by the absorbent pad. After a series 

of ethanol washes to remove impurities, the DNA of interest was amplified directly on the 

PES membrane by the addition of an aqueous solution containing the amplification reagents. 

After amplification, the DNA was eluted onto a lateral flow strip for visual detection. This 

technology was also used to detect Neisseria gonorrhoeae (NG) DNA from vaginal and 

urethral swabs to demonstrate the versatility of this platform.6

In cases where the detection of a pathogen from whole blood is needed, the process 

requires more washing to remove inhibitors of downstream amplification techniques. To deal 

with whole blood samples, we built a flexible, paper-based device for nucleic acid sample 

preparation from blood (SNAPflex) (Fig 3). The device resembles the integrated paperfluidic 

device made by Rodriguez et al., but instead uses a glass fiber membrane to capture the 

nucleic acids. Similar to the previously published paperfluidic device,13 the sample is first 

mixed with lysis buffer that contains Glycoblue precipitant. The nucleic acid-glycoblue 
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precipitate is again left behind on the glass fiber membrane while the solution phase is 

wicked away with the absorbent pad. This device has been used to extract HIV RNA 

and malaria DNA from whole blood for either immediate use or long-term storage of the 

extracted nucleic acid.

When detection of low concentrations of pathogenic DNA in large volumes, such as 

urine, DNA must first be concentrated from large volumes of the sample. This can be 

done using solid-phase extraction techniques, such as using a porous polymer monolith to 

extract Chlamydia trachomatis (CT) DNA from clinical samples.8 However, the solid phase 

extraction of DNA requires chaotropic agents and nonpolar solvents that inhibit downstream 

nucleic acid amplification techniques (NAATs). An alternative to DNA extraction via solid 

phase extraction is a DNA enrichment strategy where the negatively charged DNA is 

captured by a positively charged substrate.4 We have demonstrated Trichomonas vaginalis 
(TV) DNA capture using a chitosan-modified paper membrane, which acquires a positive 

charge at a slightly acidic pH, from large urine samples without using inhibitors of 

downstream NAAT.4 As shown in Figure 4, the chitosan-functionalized paper is placed in a 

syringe that processes large volumes of urine. As the urine passes through the membrane, 

DNA is captured by the positively charged chitosan-functionalized membrane.

Isothermal amplification

Once pathogenic DNA or RNA of interest has been isolated, for most detection methods, 

it needs to be amplified. In high-resource settings, this is done with the polymerase chain 

reaction (PCR), which requires expensive equipment for thermocycling. In order to obviate 

the need for a thermal cycler, a number of isothermal amplification techniques have been 

developed. These techniques can amplify DNA at a constant temperature, necessitating 

only a water bath or an inexpensive resistive heating element. These techniques have 

been extensively reviewed.14 We have predominately used thermophilic helicase-dependent 

amplification (tHDA)4,6,8,10 and loop-mediated isothermal amplification (LAMP).3,5,7,10 

Our lab also engineered a novel isothermal amplification technique called Iso-IMRS, which 

achieves a sensitivity similar to that of PCR.2

HDA assays employ helicase enzymes to unwind DNA in preparation for replication 

via DNA polymerase.15,16 Unlike PCR, they do not require successive heating steps to 

de-hybridize the DNA and can be performed at a single temperature. After DNA unwinding, 

single stranded binding protein (SSBP) in the reaction mixture stabilizes the DNA and 

allows the primers to bind. Once both of the primers have bound to the template, DNA 

polymerase will begin the replication process. Early versions of the protocol used a helicase 

and polymerase able to perform amplification at 37°C. Later, a thermostable helicase 

was used, in conjunction with Bst DNA polymerase, to enable amplification at a higher 

temperature (65°C), thereby improving the reaction efficiency and reducing the formation of 

non-specific products. HDA assays that employ the thermostable helicase are called tHDA 

assays. We have used tHDA assays to amplify Chlamydia trachomatis DNA,8 Neisseria 

gonorrhoeae DNA,6 and Trichomonas vaginalis DNA4.
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LAMP assays employ 4–6 primers that target between 6–8 regions of the target DNA 

and a strand-displacing DNA polymerase to amplify a target gene.17,18 Typically these 

reactions run at ~65°C. Initially, the assay was designed to incorporate four primers 

that targeted six regions of the gene; the addition of two more primers was added 

later to accelerate the reaction.19 The primers are designed such that the amplicons self-

hybridize into a dumbbell structure; these dumbbell structures serve as additional points 

of initiation for the primers, leading to exponential amplification. LAMP is known to be 

resistant to common PCR inhibitors that are found in complex sample matrices.14 We have 

used LAMP reactions to amplify HPV DNA.5,7,10 We have also developed a method to 

characterize LAMP amplicons during assay development using fluorescent primers.20 We 

used reverse-transcriptase LAMP (RT-LAMP) to reverse-transcribe H1N1 RNA to DNA 

prior to amplifying the cDNA of interest.3

A novel isothermal amplification technique to detect P. falciparum genomic DNA was 

engineered in our laboratory.2 A collaborator devised a computational method to design 

PCR primers by finding identical multirepeat sequences (IMRS) in the genome. Primers 

designed to bind to these regions result in more amplification than those that only bind 

to one location on the genome. Using these primers, they made an assay requiring 

thermocycling with improved sensitivity compared to PCR.21 We developed an isothermal 

version of this assay, called iso-IMRS to detect P. falciparum DNA. This assay utilizes one 

forward primer which binds to 52 sites in the genome and one reverse primer which binds 

to 55 sites in the genome. Due to the fact that the primers target repeat sequences, iso-IMRS 

product results in amplicons of differing sizes. Iso-IMRS exhibits similar sensitivity to 

qPCR and successfully amplified P. falciparum DNA from human saliva and blood samples.

CRISPR Cas12a-based detection

One drawback of HDA and LAMP assays is that they often suffer from false-positive 

results. In PCR, the denaturation step reduces the impact of off target primer binding 

events. Isothermal techniques do not have this natural “reset” and accumulate non-specific 

binding events throughout the reaction time. The relatively long primers used in HDA 

make them prone to primer dimer formation15 while the large number of primers used in 

LAMP can lead to self-annealing of the primers, leading to nonspecific amplification.12 

We coupled a LAMP reaction with a CRISPR-Cas12a assay to improve assay specificity.5 

CRISPR-Cas12a is a RNA-guided enzyme that, upon binding to a specific sequence 

of double-stranded DNA, exhibits random endonuclease behavior (Fig 5).22 This target-

activated endonuclease activity can be monitored fluorescently,22–25 visually via lateral flow 

strips24,26,27 or electrochemically.5,28,29 The CRISPR-Cas12a enzyme does not exhibit this 

endonuclease activity in the absence of its target sequence. Therefore, the Cas12a does 

not detect off target amplification products that have been generated in a LAMP reaction.5 

Cas12a is one of many CRISPR enzymes that have been used for pathogen diagnostics; 

CRISPR-based detection of diseases has been extensively reviewed.30 We chose to use 

Cas12a to detect HPV DNA because HPV is a DNA virus and the substrate for Cas12a 

is double-stranded DNA. Other Cas enzymes act on different substrates, such as RNA or 

ssDNA; these enzymes and their roles in diagnostics have been extensively reviewed.30
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Readout mechanisms

Once the gene of interest has been amplified, it must be detected. There are numerous 

readout mechanisms to detect amplified DNA, including colorimetric, fluorescent and 

electrochemical.31 These transduction modalities in POC biosensors has been extensively 

reviewed.32 Colorimetric readouts, including lateral flow readouts, are commonly used 

in POC diagnostics because they are easy to read without instrumentation. Fluorescent 

readout mechanisms offer increased sensitivity compared to colorimetric readouts, but 

results can be impaired by the auto fluorescence of other molecules or substrates in the 

reaction. Electrochemical readouts are favorable for POC diagnostics due to their portability, 

affordability and quantitative nature. Our technological development utilizes lateral-flow and 

electrochemical readouts.

Lateral-flow readout

A common readout for POC devices for use in LRS is the lateral-flow readout. One of the 

first examples of a lateral flow readout is a pregnancy test. As shown in Fig 6, a lateral 

flow strip consists of a membrane that contains antibodies against the antigen of interest. In 

order to detect amplified nucleic acids using a lateral flow strips, the primers used to amplify 

the DNA are tagged with either a small molecular that acts as an antigen, such as FAM or 

DIG, or biotin. FAM and DIG are often used because antibodies to these two molecules are 

commercially available and used routinely in molecular biology. The assay is designed to 

generate amplicons that are dual labeled with the antigen and the biotin.33 When the sample 

is applied to the lateral flow strip, the antigen binds to the antibodies on the strip while 

the biotinylated side of the amplicon binds to streptavidin-coated gold nanoparticles present 

at the end of the test strip that is dipped in the sample of interest. The aggregation of the 

gold nanoparticles on the antibody line results in a red line that is visible to the naked eye. 

We have used lateral flow readouts to detect amplicons generated by HDA,4,6 LAMP3,7 and 

iso-IMRS.2

Electrochemical readout

Electrochemical readouts are favorable for point-of-care diagnostics due to their sensitivity, 

portability and affordability. A common electrochemical biosensor is the glucose meter. We 

used an electrochemical platform to monitor HPV-activated Cas12a endonuclease activity.5 

Importantly, we used novel gold leaf electrodes that cost nearly one order of magnitude 

less ($0.50/electrode) than the most inexpensive version of their commercially available 

counterparts (~$4.00/electrode). While gold is a common substrate for electrochemical 

biosensors due its ease of modification with thiolated molecules,34 it is often expensive and 

requires specialized equipment to fabricate. We made gold electrodes using an equipment-

free fabrication method that can be done in low-resource settings at an affordable cost (Fig 

7). The gold leaf is inexpensive because it is very thin. Our work demonstrates an important 

step forward in being able to bring gold-based electrochemical biosensors to low-resource 

settings.35
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Figure 1: 
Paperfluidic H1N1 RNA extraction. (a) Nasopharyngeal swabs are lysed and applied 

to a PES membrane attached to a wicking pad. (b) CAD diagram of paper-based 

extraction device. (c) RNA recovery extracted with PES is comparable to centrifuge 

controls. Reproduced from reference (3). Reproduced with permission. Copyright American 

Chemical Society 2015.
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Figure 2: 
Fully integrated paperfluidic device. (i) A lysed sample, represented with blue dye, is 

applied to the PES membrane. (ii) The liquid phase of the sample is wicked away by the 

absorbent pad via capillary action while the solid phase remains on the PES membrane. (iii) 

The PES membrane is washed with 70% ethanol, represented here with yellow dye. (iv) The 

ethanol is wicked away by the wicking pad, removing impurities on the PES membrane. (v) 

A final wash with 100% ethanol, represented using water, is applied to the PES membrane. 

(vi) The final wash solution wicks through the absorbent pad, removing all impurities to 

leave behind purified DNA on the PES membrane. (vii) The absorbent pad is removed. 

(viii) The LAMP reagents are applied to the PES membrane and the bottom end of the chip 

is folder over to cover the membrane containing the purified DNA and LAMP reagents. 

(ix) After amplification, the covering on the membrane is removed as is the hydrophobic 

barrier between the PES membrane and the lateral flow strip. Water is applied to the PES 
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membrane to elute the purified DNA. (x) The eluted DNA wicks to the right through the 

lateral flow strip. Reproduced from reference (7) with permission. Copyright Royal Society 

of Chemistry 2016.
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Figure 3: 
SNAPflex extraction of P. falciparum DNA using a glass fiber membrane. (a) lysed blood 

is applied to a glass fiber membrane. The liquid phase is wicked away by the absorbent 

pad. A series of ethanol washes purfies the DNA captured on the membrane. The membrane 

containing captured DNA is removed and used to elute the DNA. (b) SNAPflex extraction 

performs better than QIAGEN extraction. Adapted from refs (1) and (2). Reproduced with 

permission. Copyright Royal Society of Chemistry 2020 (1) and American Chemical Society 

2021 (2).
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Figure 4. 
(a) Chitosan aquires a positive charge at slightly acidic pHs, allowing it to capture negatively 

charged DNA. (b) A chitosan-functionalized membrane (1) is placed in front of a cellulose 

backing membrane (2) in a female Luer cap (3). The sample is pushed through the chitosan-

functionalized membrane with the syringe. The filter is then removed and used as a template 

for a TV tHDA assay. Reproduced from ref (4) with permission. Copyright Royal Society of 

Chemistry 2020.
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Figure 5. 
Cas12a is engineered to target HPV 18 DNA. In the presence of target DNA, Cas12a 

exhibits random endonuclease activity that degrades the single-stranded reporter DNA on 

the electrodes, resulting in a decrease in signal from the methylene blue (MB). In the 

presence of non-target DNA, Cas12a does not become activated and does not degrade the 

reporter DNA on the electrode. Reproduced from reference (5) with permission. Copyright 

American Chemical Society 2021.
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Figure 6: 
Lateral flow detection of amplicons. (a) Lateral flow strips designed to capture labeled 

amplicons. (b) Visual readout of iso-IMRS amplicons. Reproduced from reference (2) with 

permission. Copyright American Chemical Society 2021.
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Figure 7: 
Equipment-free fabrication of gold leaf electrodes. Reproduced from reference (5) with 

permission. Copyright American Chemical Society 2021.
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